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Abstract: Smartphones are becoming increasingly popular day-by-day. Modern smartphones are
more than just calling devices. They incorporate a number of high-end sensors that provide many
new dimensions to smartphone experience. The use of smartphones, however, can be extended from
the usual telecommunication field to applications in other specialized fields including transportation.
Sensors embedded in the smartphones like GPS, accelerometer and gyroscope can collect data
passively, which in turn can be processed to infer the travel mode of the smartphone user. This will
solve most of the shortcomings associated with conventional travel survey methods including
biased response, no response, erroneous time recording, etc. The current study uses the sensors’
data collected by smartphones to extract nine features for classification. Variables including data
frequency, moving window size and proportion of data to be used for training, are dealt with to
achieve better results. Random forest is used to classify the smartphone data among six modes.
An overall accuracy of 99.96% is achieved, with no mode less than 99.8% for data collected at 10 Hz
frequency. The accuracy is observed to decrease with decrease in data frequency, but at the same time
the computation time also decreases.
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1. Introduction

Household trip data are of crucial importance for managing present transportation infrastructure
as well as to plan and design future facilities. They also provide basis for new policies implemented
under Transportation Demand Management (TDM). The methods used for household trip data
collection have changed with passage of time, starting with the conventional face-to-face interviews or
paper-and-pencil interviews in the 1950s. High cost and safety issues proved to be the major problems
in this approach. To overcome such disadvantages, computer assisted surveys were introduced in the
1980s. These surveys included computer-assisted telephone interview (CATI) and computer-assisted
self-interview (CASI) [1,2]. The computer assisted surveys proved to be an improvement from the
previous face-to-face interviews [3] but the underlying shortcomings in person trip (PT) data collection
methods still remained. These included inaccuracies in recording the starting and ending times,
underreporting due to missing short trips and non-response [4,5]. The source of all these problems
was the enormous burden on the respondents to answer a huge number of questions based on their
memories. To address this issue, GPS technology was employed during the late 1990s, providing the
starting point for a generation of smart travel survey methods [6].

Initially, GPS surveys were carried out as supplementary surveys to assess the accuracy of
traditional methods, but later total replacement was experimented with [7–9]. At the beginning, GPS
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devices were installed in vehicles. Consequently, only the travel behavior of people using vehicles was
monitored. In the early 2000s, rapid advancement in technology paved way for the development of
wearable GPS data loggers [10]. With the introduction of lightweight, portable and handy GPS data
loggers, all modes of transportation could be monitored. Although GPS devices can very accurately
record the locations and time-stamps, important information like travel mode and trip purpose are not
recorded. These details are inferred from the GPS data by appropriate data processing [11].

Recently, the explosive spread of smartphones has provided the transportation community with
a new potential and a lot of research is being carried out to utilize smartphones for travel data collection.
This interest is because of GPS sensors being embedded into modern smartphones, making it possible
to replace the GPS data loggers being used previously. Smartphones have an added advantage of
being a necessary travel companion, hence being able to monitor the travel patterns over extended
periods of time. Recently, GPS enabled smartphones are also utilized for indoor positioning and
pedestrian navigation [12–14]. On the other hand, GPS loggers are considered a burden to carry around.
The inclusion of accelerometer in smartphones has dramatically enhanced its capability to accurately
detect the travel mode and trip purpose. Accelerometer can detect accelerations along three axes (x, y
and z) with respect to the gravitational force. It means that at rest, the accelerometer will register an
acceleration of 9.8 m/s2 along the downward direction. Orientation augments the accelerometer data
by providing the information regarding angular motion. Orientation sensor is software-based and
drives its data from the accelerometer and the geomagnetic field sensor. The current study focuses on
the development of data-processing methodology for travel mode detection using accelerometer and
orientation data collected by smartphones.

GPS devices have been used by many researchers for the purpose of mode detection, whether
employing rule-based algorithms [15–18], or machine learning algorithms [19–21].

Before smartphones came to the spotlight, the possibility of utilizing mobile phones for data
collection using GSM technology was explored [22]. Rather than employing GPS, locations were
derived from mobile communication towers to be used for reconstructing travel patterns [23].
Soon, more technology solutions were explored including Bluetooth, WiFi, RFID and smart-cards [1].
Personal handy phone systems (PHS) became very popular in Japan for recording geographical
locations. These systems located the device with the help of base stations [24,25]. Over 20 case studies
have been conducted in Japan using PHS since 2003 [26–28].

The tremendous popularity and increasing penetration of smartphones has attracted much
research attention on their role in identifying the mode of transportation [29–33]. Most of the studies
have a similar methodology where suitable features were extracted from the raw sensor data, a training
dataset was used to train a classification algorithm and then the algorithm was used to predict the test
data based on the heuristics learned during the training phase. Transportation mode identification
accuracy increased when GPS data were linked to GIS platform [34]. The accuracy was further
improved by combining GPS and accelerometer data for mode detection [35].

A study by Tsui and Shalaby [36] collected GPS data from Toronto. Accelerations, average and
maximum speeds extracted from the GPS data along with public transportation route information,
was used to predict the transportation modes, achieving a prediction accuracy of more than 90%.
Another study performed in the same area used one participant to replicate 60 trips recorded during
the ‘Toronto Transportation Tomorrow Survey’, carrying a GPS device [37]. After collecting the GPS
data and combining it with the GIS information available, a mode prediction accuracy of 92% was
achieved. Another study extracted features like average accuracy of the GPS coordinates, average
speed, average heading change, average acceleration, bus location proximity, rail line trajectory
proximity, bus stop proximity rate and zip code, using collected GPS data accompanied by ground
conditions [30]. Five different classification algorithms were tested, with results suggesting that
random forest outperforms others. A study named Future Mobility Survey (FMS) by Pereira [38]
compared the traditional survey results with survey by smartphones. It is part of a research project
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initiated by an alliance between Singapore and Massachusetts Institute of Technology (MIT). The study
validated that participants tend to over-estimate the travel time in traditional surveys.

Smartphones are equipped with a range of sensors, many of which are not favored by or simply
overlooked by majority of researchers. However, there are some studies that incorporate these sensors
as well. Frendberg [39] utilized data collected from GPS, accelerometer, orientation sensor and magnetic
sensor to detect the travel mode using a smartphone application, similar to Su and Caceres [40].

A number of studies have utilized the accelerometer data alone for classification purposes [41–46].
In one study [29], the training and testing datasets were formed by taking 70% of the collected data as
training data and rest as test data; a similar study divided the collected data as 90% for training and
10% for testing [47]; and yet another study used almost 50% of the collected data for training and rest
for testing the classification algorithms [48]. Some studies (e.g., [49]) also collected GPS data but for
data validation only. Mode detection was still managed by accelerometer data.

Various studies have compared random forest with other algorithms for the purpose of mode
detection, while reaching the same conclusion that random forest is a superior algorithm for the
intended purpose. For instance, one study made a comparison among random forest, naïve Bayes,
Bayesian network, decision trees and multilayer perceptron [30]; another incorporated neural network
and support vector machines along with random forest [32]; one more studied random forest, k-nearest
neighbor, support vector machines, naïve Bayes and decision trees [21]; and further a study reported
a comparison among support vector machines, adaptive boosting, decision trees and random forest [50].
These studies demonstrated that random forest yields higher travel mode prediction accuracies.

In our previous studies [50,51], acceleration data were collected by a purpose-built wearable
device named as BCALs (Behavioral Context Addressable Loggers in the Shell). Mode detection
was successfully done among four modes: walk, bicycle, car and train. Developing a methodology
for data collected by smartphones and also to add some other modes for classification was required.
Therefore, our current work proposes a methodology for identification among six different travel modes
namely walk, bicycle, car, bus, train and subway, using data from accelerometer and orientation sensors
embedded in smartphones. Further, it investigates the effect of various data collection frequencies on
the classification accuracy of the used algorithm as well as the computational costs incurred.

2. Method

2.1. Data Collection

Fifty participants from Kobe, Japan contributed to the collection of data utilizing Android
smartphones, over a month during November 2013. The data collection days varied among the
participants, with some providing the records for only single day travel, while others cooperating for
multiple days. Consequently, the collected data are quite few as compared to one-month collection
time. Six modes were observed, i.e., walk, bicycle, car, bus, train and subway. Recording of the ground
truth was achieved by a simple application installed in the smartphones. The participants would
merely input the travel mode in the application while starting a trip, and then stop the recording once
they have reached their destination. At the end of the day, a recall survey would be conducted to
check the reliability of the collected data. With the help of route maps generated by the GPS data, the
participants could easily reconfirm the starting and ending times of various trips as well as the mode
of transportation used. Afterwards, only the sensor data associated with the trips were retained and all
other data including any problematic data or unlabeled data were discarded (Table 1). The distribution
of participants according to gender as well as age is shown in Table 2. Although the participants’
demographics are not used in the analysis, it is worth mentioning because it implicitly affects the
collected data. Table 2 shows that almost all age groups capable of driving and using other modes
of transportation are incorporated in this study. Demographic data were collected during several
meetings, where the participants were enrolled in the program. The general demographics of Kobe,
according to 2010 census, are presented in Figure 1. The participants do not strictly represent the
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general demographics, i.e., male participants are more than female participants, as this was a limitation
of the willingness of people to participate in the survey.
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Figure 1. Demographics of Kobe city.

Table 1. Example of retained and discarded data.

Trip Confirmed by Participant GPS Coordinates Acceleration (m/s2) Remarks

Trip Start 34.6707318, 135.1759662 10.01443 Retained

Driving
34.6707316, 135.1759678 9.836915 Retained

0, 0 9.505924 Discarded
34.6707313, 135.1759697 9.253243 Retained

Trip End 34.670731, 135.1759717 9.579927 Retained

Unlinked Data
34.6707307, 135.1759734 10.13853 Discarded
34.6707306, 135.1759744 10.04357 Discarded

Table 2. Details of participants.

Gender Number Average Age
Number by Age

20–30 30–40 40–50 50–60 60–70 Above 70

Male 27 35.56 7 10 4 1 4 1
Female 23 32.17 6 8 7 2 0 0

The collected data consisted of readings by accelerometer (accelerations along z-, y- and z-axes)
and orientation sensor (pitch and roll). GPS data were also collected but were used in this study for
data verification only. For mode detection, it was dropped as the aim was to devise a battery-efficient
methodology. The sensors recorded data at an average frequency of 14 Hz but due to the varying
frequencies among the users, the data collection frequency was scaled down to a uniform 10 Hz.
Further decreased frequencies were also tested to compare them with respect to their computational
costs (details in Section 2.6). An additional advantage of decreasing the frequency can be in making the
procedure more battery-efficient, as battery time is one of the main obstacles in data collection using
smartphones. This can be visualized by the power consumption figures provided in the literature [52].
The study reported that an accelerometer collecting the readings at 20 Hz frequency consumes 230 mW.
The power consumption reduces to 180 mW for 10 Hz frequency, and further reduces to 164 mW for
2 Hz frequency. Unfortunately, during data collection for the current study, the battery usage was
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not tracked, making it impossible to carry out energy consumption analysis. Nevertheless, energy
consumption is an issue when it comes to employing smartphones; therefore, it was partially dealt
here by reducing the data collection frequency. Table 3 provides the number of trips and the amount
of data instances recorded for each mode at 10 Hz frequency. The percentages do not add up to 100
because of rounding.

Table 3. Amount of data recorded by smartphones.

Mode No. of Trips Total Time (Hours) Amount of Data Instances Percentage of Total Data

Walk 442 144 5,186,095 71%
Bicycle 10 9 326,500 4%

Car 31 14 500,410 7%
Bus 21 11 381,698 5%

Train 45 18 659,528 9%
Subway 10 7 236,738 3%

Total 559 203 7,290,969 99%

2.2. Pre-Processing

Smartphones are usually carried in different positions by the users, e.g., some place their
smartphones in their pockets, some carry it in their purse and some simply keep it in their hands while
messaging or calling. These different orientations make it difficult to individually use the accelerations
along the coordinate axes because smartphones’ accelerometer record accelerations with respect to the
force of gravity. Therefore different orientations affect the individual accelerations differently. To solve
this problem, like some other studies [47,53–55], instead of using accelerations along the three axes
individually, magnitude of the resultant acceleration was used, calculated as below.

Ares “
b

Ax2 ` Ay2 ` Az2 (1)

Figures 2–7 exhibit the accelerations recorded along the three axes and their calculated resultant
for each mode over a single trip respectively. The change in position of the smartphone can be observed
by the abrupt shift in acceleration values in Figure 3a. This is the reason that individual accelerations
were not used; instead, the magnitude of their resultant was utilized in the analysis. Furthermore, it
is evident from the figures that the non-motorized modes, i.e., walk and bicycle, register a lot of
fluctuations, whereas the behavior of motorized modes is different, with comparatively smooth trends.
It can also be noted that resultant acceleration alone is not sufficient to distinguish among the modes,
therefore some other features need to be extracted (details in Section 2.3). The magnitude of resultant
acceleration might be affected by the activity performed on the smartphone by the owner, like calling
or texting or no action at all. This probable effect should be investigated further as mentioned in
future work.

Wolf [56] used a dwell time of 120 s for trip identification. The value was based on the design
criteria mentioned in the Highway Capacity Manual, where the traffic signal cycle should be less than
120 s. It was assumed that stoppage at traffic signals should not be considered as trip ends. The 120 s
rule lacked empirical results to support it [11]. Shen and Stopher [57] tested different thresholds of
dwell time from 15 s to 120 s and concluded that 60 s would be a better criterion for trip segmentation.
In the current study, the same dwell time of 60 s was used to identify different trips. In other words, if
two consecutive readings were more than 60 s apart then they were considered as the ending point of
the previous trip and starting point of the next trip, respectively.

This simple solution was applicable because only the sensors’ data associated with the trips was
taken; hence, various trips were already segmented as far as the data were concerned. It also resulted
in identifying one trip as several independent trips due to short stops on the way, for instance waiting
at intersections. This was not a serious issue as the only aim of the current study was to identify
the mode of transportation. As long as the mode is detected correctly, it does not matter whether it
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is one trip or several trips. The process of splitting and joining of trips will be developed in future
research. A much better methodology for stop detection is proposed by Xiao and Low [58], but it
requires collection of GPS and GSM-based positioning data.Sensors 2016, 16, 716 6 of 23 
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Figure 2. Accelerations recorded for a walk trip: (a) Accelerations along three axes; and
(b) Resultant acceleration.
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Figure 3. Accelerations recorded for a bicycle trip: (a) Accelerations along three axes; and
(b) Resultant acceleration.
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Figure 4. Accelerations recorded for a car trip: (a) Accelerations along three axes; and
(b) Resultant acceleration.
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Figure 5. Accelerations recorded for a bus trip: (a) Accelerations along three axes; and
(b) Resultant acceleration.
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Figure 6. Cont.
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Figure 6. Accelerations recorded for a train trip: (a) Accelerations along three axes; and
(b) Resultant acceleration.
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Figure 7. Accelerations recorded for a subway trip: (a) Accelerations along three axes; and
(b) Resultant acceleration.
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2.3. Feature Extraction

In addition to resultant acceleration, six features were further extracted from resultant acceleration
namely standard deviation, skewness, kurtosis, maximum resultant acceleration, average resultant
acceleration and maximum average resultant acceleration. Pitch and roll, directly recorded by
orientation sensor, were also considered for classification.

Most of the extracted features are quite straightforward. Skewness measures the lack of symmetry
of a given dataset. A dataset is symmetric if it looks the same on both sides of the center point.
On the other hand, kurtosis measures the flatness of the dataset, determining whether the dataset or
distribution is peaked or flat around the mean, relative to normal distribution. After average resultant
accelerations were calculated, they were used to calculate maximum average resultant accelerations
in the same way as resultant accelerations were used to calculate maximum resultant accelerations,
over each window. All features/variables, except resultant acceleration, were calculated by employing
a moving window concept [50]. For the purpose of smoothening the data and reducing the effect of
the outliers, the concept of moving window was used where a certain number of readings, defined
by the window size, were used to apply an operation (e.g., average, maximum, etc.) at a certain data
entry level and this window moved downwards as the calculations proceeded along the data column.
Suppose five data readings fall in 1 min window, then Figure 8 shows an example of how moving
window concept is applied.
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Although the window size was reported in the form of time, the equation developed for the
calculation took into account the number of instances covered in the reported time interval. For example,
a 1 min window size for data collected at 10 Hz frequency would cover 10ˆ 60ˆ 1 = 600 data instances.
Suppose that the collected data contains n total instances and k is the number of instances covered in
the defined window size (like 600 in the previous example), then at any instance level i, the equation
developed can be expressed as follows.

Xi “ f
`

xj
˘

f or j “

$

’

&

’

%

i to i` k{2 when i ă k
i´ k{2 to i` k{2 when k ď i ď n´ k

i´ k{2 to i when i ą n´ k
(2)
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where

i = instance level at which moving window concept is applied.
Xi = computed value after the mathematical operation is applied.
j = range of values covered by the window.
xj = values on which the mathematical operation is applied.
k = number of data instances covered by a defined window size.
n = total number of data instances in the collected dataset.
f
`

xj
˘

= mathematical operation.

The mathematical operation can be average, maximum, skewness, etc., depending on the feature
to be extracted. The size of moving window used is discussed in Section 2.5.

2.4. Classification Algorithm

As mentioned previously in the Section 1, random forest is shown to work better as compared to
other algorithms. Consequently, only random forest was used in the present study for the purpose of
travel mode classification.

Random forest [59] is an ensemble of decision trees such that each tree is grown independently
using a randomly selected dataset while the distribution remains same for all the trees in the
forest. As the number of trees in the forest becomes large, the generalization error converges to
a limit. The generalization error is dependent on the strength of individual trees and their correlation.
Each node within the trees is split using a randomly selected set of features. This randomness
introduces robustness to the algorithm against noise. Internal estimates of the algorithm can monitor
error, strength and correlation. Variable importance measurement can also be done. Random forest is
equally applicable to both classification and regression problems. A general structure of random forest
is shown in Figure 9.Sensors 2016, 16, 716 12 of 23 
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R package named “RandomForest” was used in the current study. The package, developed by
Liaw and Wiener, use the original coding of the algorithm written by Breiman and Cutler in Fortran,
which is imported into R environment. It has the ability to combine various ensembles of trees, extract
a single tree from a forest, add trees to an ensemble, extract variable importance measures, etc.; and, of
course, includes the training of algorithm, predicting and plotting the results. Default values were
used for various variables involved in the algorithm whereas the number of trees to be grown was
set to 100. From our previous studies, it has been learned that 100 trees are enough for such kind of
classification and increasing the number will not be helpful. The number was further confirmed for
the data used in the current study.

The classification results reported in this study are in the form of producer accuracy. For example,
if the accuracy is reported to be 70%, it means that 70% of the data belonging to a certain known travel
mode (ground truth) is classified correctly as that particular mode by the algorithm. In other words,
for any mode “a”

Accuracy “
number o f instances correctly classi f ied as mode 2a2 by algorithm

total number o f instances belonging to mode 2a2
(3)

2.5. Moving Window Size

According to a previous study [60], the average commute travel time for walking is 16.15 min.
Walking is generally the travel mode for the shortest trips; the moving window size should therefore
be less than the average value of 16.15 min. 10 min moving window size was selected. Although some
trips will even be shorter than 10 min, as is also evident from the distribution of collected data with
respect to time intervals shown in Figure 10 (3.37% of the collected data were less than 10 min), the
window size cannot be reduced to cover all the trips because then the moving window concept will
be useless.
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Figure 10. Distribution of trips according to travel time.

The aim of moving window is to smoothen the data, and hence decreasing the variation range;
this goal cannot be achieved if a very small window size is utilized. In Figure 10, the total recorded time
for each trip falling into the various time interval slots (x-axis) was added and plotted on the y-axis.
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2.6. Data Frequency

As already mentioned in Section 2.1, the data collection frequency varied from 12 to 16 Hz,
therefore to attain a uniform frequency, the data were scaled down to 10 Hz. This was achieved by
cumulating the time intervals between successive readings. As the sum of time intervals exceeded 0.1 s,
the corresponding acceleration reading was selected and the cumulative sum was reset to zero in order
to proceed further. In this manner, all data were screened and the readings spaced at 0.1 s apart were
selected. The process can be further understood by an example provided in Table 4. It can be observed
that the time interval is cumulated until it exceeds the required data interval (2 s or 0.5 Hz in this case),
after which it is reset to zero and the corresponding acceleration reading is picked up. The process
is repeated for the subsequent readings till all recorded data are scanned. The same procedure was
repeated to attain datasets for reduced frequencies: 4 Hz (0.25 s), 2 Hz (0.5 s), 1 Hz (1 s), 0.5 Hz (2 s),
0.33 Hz (3 s), 0.25 Hz (4 s) and 0.2 Hz (5 s). The window size taken was 10 min, so depending on the
various data collection frequencies (10 Hz or 1 Hz or any other value), the number of readings in each
window will differ, e.g., for 10 Hz, the window will cover 600 readings, whereas for 1 Hz, the window
will cover 60 readings.

Table 4. Methodology employed for data frequency reduction.

Sr. No. Time Interval Acceleration (m/s2)
Cumulative Time

for 2 s Interval
Acceleration at
0.5 Hz (m/s2)

1 0 10.01443 0 10.01443
2 0.6 9.836915 0.6 -
3 0.5 9.505924 1.1 -
4 0.4 9.253243 1.5 -
5 0.6 9.579927 0 9.579927
6 0.6 10.13853 0.6 -
7 0.4 10.04357 1 -
8 0.5 10.01443 1.5 -
9 0.4 9.836915 1.9 -

10 0.5 9.505924 0 9.505924

2.7. Amount of Learning Data

For applying the classification algorithm, some portion of the total collected data should be used
to train the classifier. Different values of learning data have been used by researchers (Table 5). It is
evident from the table that no single value has been agreed upon by researchers. Moreover, the values
listed in the table were selected arbitrarily, without any empirical support. For the current study,
learning data percentages varying from 5% to 80% were tested on 0.2 Hz data (Figure 11).

Table 5. Percentage of learning data used by various researchers.

Study Percentage of Data Used for Training (%)

Nick, Coersmeier [47] 90
Tragopoulou, Varlamis [61] 80

Lester, Choudhury [45], Nitsche, Widhalm [62] 75
Nham, Siangliulue [29] 70

Abdulazim, Abdelgawad [32] 65
Figo, Diniz [48] 50

The lowest frequency value was selected as it was expected that the accuracy will be lower as
compared to other frequencies and hence the accuracy variation with respect to amount of learning
data will be more visible. Regarding the development of learning dataset, stratified random sampling
was employed, wherein equal percentage data from each mode was randomly selected.
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The results exhibited in Figure 11 are quite logical, with the accuracy increasing with increase in
the share of learning data. It is evident that, except walk, all other modes show deteriorated accuracy
as the learning data share is reduced. This trend might be specific to the data used in this study because
of the huge share of walk instances. The figure suggests that better prediction results can be achieved
by simply increasing the amount of learning data compared to the test data. However, this means that
for the deployment of the developed methodology for real data, the requirement of a huge controlled
survey for obtaining the learning dataset is essential. This requirement will limit the applicability of
the approach; therefore, a methodology should be developed that will utilize comparatively fewer
learning data but at the same time provide acceptable prediction accuracy.

From Table 6, which is the quantitative translation of Figure 11, it can be seen that increasing the
learning data from 5% to 10%, the prediction accuracy increased by about 3.4%, but from 10% to 80%
the increase is only 5%. In other words, the prediction accuracy decreased steadily until 10% learning
data, after which a drastic drop was witnessed. It was therefore decided to set the amount of learning
data to 10%.

Table 6. Increase in accuracy with amount of training data.

Amount of Training Data (%) Overall Accuracy (%) Increase in Accuracy (%)

5 90.863 -
10 94.253 3.390
15 95.928 1.674
20 96.902 0.974
25 97.653 0.751
30 97.995 0.342
35 98.401 0.406
40 98.566 0.165
45 98.835 0.269
50 98.887 0.053
55 99.022 0.135
60 99.059 0.037
65 99.190 0.131
70 99.271 0.081
75 99.304 0.033
80 99.356 0.052
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3. Results and Discussion

Using 10 min moving window to extract the features and 10% data to train the algorithm,
classification results were computed for datasets with varying recording frequencies. Additionally, the
computation times were also recorded for each dataset, in order to aid in the comparison. Table 7 gives
the overall results along with the computation times and Table 8 provides the detailed results in the
form of confusion matrices. It is evident from Table 7 that the overall classification accuracy decreases
with decrease in data frequency.

Table 7. Summary of classification results.

Results
Data Frequency (Hz)

10 4 2 1 0.5 0.33 0.25 0.2

Training instances 729,097 364,588 184,297 98,301 50,805 34,291 25,527 20,566
Test instances 6,561,871 3,281,290 1,658,673 884,709 457,244 308,623 229,746 185,092

Overall accuracy (%) 99.963 99.883 99.690 99.131 98.012 96.731 95.415 94.477
Time (s) 304.86 102.09 42.05 19.37 9.45 6.02 5.35 3.53

It is already established from Table 6 that the accuracy increases with increase in amount of training
data. The trend observed in Table 8 might also have the same reason. With increase in frequency,
the amount of data also increased, which in turn increased the training data. Moreover, moving
window concept seems to extract better feature values for high frequencies, as the outliers are averaged
over a wider range, hence reducing their impacts. The other criterion observed is the time spent in
computation. The computation time depends on the amount of data and as the data decreases with
the decreased frequency, even though the recorded total time remains the same, the time required
for computing decreases. Thus, if the required classification accuracy is more than 99%, then 1 Hz
frequency will meet that condition with a 94% decrease in computation time compared to 10 Hz, while
the difference in accuracy would be only 0.8%. Furthermore, as mentioned in Section 3, the power
consumption will also be reduced.

Hence, selection of data collection frequency is very crucial, as it not only controls the classification
accuracy but also the efficiency of the methodology. Nevertheless, there is a tradeoff between the
accuracy and efficiency of the methodology. Therefore, researchers should select the frequency
according to their specific needs. Table 9 provides an insight into the prediction accuracy for 0.2 Hz
frequency data, with respect to entire trips. One thing to note here is the slightly larger number of trips
(625) than reported in Table 3 (559). This is due to breaking up of larger trips into multiple smaller
ones when 60 s dwell time was used for trip segregation.

A valid question arises as to the reason for the remarkably high detection accuracy by this
methodology. The secret lies in the moving window concept used to extract the various features.
Figure 12 shows the resultant acceleration data collected for a part of a walking trip. The average
resultant acceleration calculated by moving window is also shown in the figure. It is evident that
the average values approximately remain constant, hence providing a very useful feature for the
algorithm. If the algorithm is trained using only a few average values, then the algorithm will very
easily identify the remaining values against the values from other modes. Moreover, additional
features like maximum resultant acceleration, standard deviation, skewness and kurtosis refine the
classification process and decrease the number of misclassifications. Conventionally, researchers use
specific time windows, mostly having 50% overlap, to extract various features [21,29,47,54,62]. One of
the problems with this kind of approach is the loss of data points. For example, for data collected at
one reading per second (1 Hz) and a time window of 10 s with 50% overlap, the extracted features will
have a frequency of one reading per 5 s (0.2 Hz).
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Table 8. Detailed classification results.

Data Frequency (Hz) Actual Class
Predicted Class

Ground Truth Accuracy (%)
Walk Bicycle Car Bus Train Subway

10

Walk 4,667,281 40 51 39 34 40 4,667,485 99.996
Bicycle 104 293,731 2 1 12 0 293,850 99.960

Car 543 0 449,816 6 3 1 450,369 99.877
Bus 212 0 3 343,310 1 2 343,528 99.937

Train 796 5 2 7 592,755 10 593,575 99.862
Subway 460 0 7 31 15 212,551 213,064 99.759

4

Walk 2,336,253 36 63 40 62 76 2,336,530 99.988
Bicycle 173 146,767 2 2 0 0 146,944 99.880

Car 618 10 224,715 5 8 1 225,357 99.715
Bus 379 0 36 171,462 19 9 171,905 99.742

Train 1386 1 24 17 295,489 2 296,919 99.518
Subway 825 0 21 10 28 102,751 103,635 99.147

2

Walk 1,183,188 29 38 8 71 49 1,183,383 99.984
Bicycle 364 73,251 7 1 9 0 73,632 99.483

Car 1068 5 111,905 4 71 14 113,067 98.972
Bus 732 0 13 85,525 8 0 86,278 99.127

Train 1775 1 15 8 147,214 0 149,013 98.793
Subway 833 8 1 6 8 52,444 53,300 98.394

1

Walk 631,319 45 61 29 61 56 631,571 99.960
Bicycle 371 38,863 6 0 10 0 39,250 99.014

Car 1302 6 58,898 6 26 4 60,242 97.769
Bus 1184 19 50 44,736 5 9 46,003 97.246

Train 2797 3 21 1 76,555 20 79,397 96.421
Subway 1497 2 22 60 16 26,649 28,246 94.346

0.5

Walk 326,154 50 93 84 72 26 326,479 99.900
Bicycle 565 19,691 41 1 7 0 20,305 96.976

Car 1536 0 29,598 5 28 0 31,167 94.966
Bus 1325 1 61 22,359 11 3 23,760 94.104

Train 3546 6 33 5 37,454 22 41,066 91.204
Subway 1527 0 17 19 5 12,899 14,467 89.162
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Table 8. Cont.

Data Frequency (Hz) Actual Class
Predicted Class

Ground Truth Accuracy (%)
Walk Bicycle Car Bus Train Subway

0.33

Walk 220,111 57 88 47 80 27 220,410 99.864
Bicycle 547 13,133 10 1 7 0 13,698 95.875

Car 1936 6 19,039 10 37 2 21,030 90.533
Bus 1254 34 38 14,658 37 6 16,027 91.458

Train 3813 40 55 15 23,770 17 27,710 85.781
Subway 1881 2 15 17 9 7824 9748 80.263

0.25

Walk 163,812 102 93 53 73 44 164,177 99.778
Bicycle 753 9396 9 0 4 0 10,162 92.462

Car 1928 0 13,648 3 35 0 15,614 87.409
Bus 1670 3 64 10,135 36 7 11,915 85.061

Train 3841 15 19 19 16,669 11 20,574 81.020
Subway 1709 24 2 9 8 5552 7304 76.013

0.2

Walk 131,946 65 96 102 34 32 132,275 99.751
Bicycle 742 7431 5 7 3 0 8188 90.755

Car 2154 5 10,398 5 19 1 12,582 82.642
Bus 1186 4 49 8319 22 19 9599 86.665

Train 3908 22 68 3 12,579 0 16,580 75.869
Subway 1608 3 3 32 26 4196 5868 71.506
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Table 9. Classification results of trips for 0.2 Hz data.

Prediction Accuracy (%) No. of Trips

100 453
95–100 59
90–95 16
85–90 15
80–85 8
75–80 10
70–75 12
0–70 52
Total 625
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Figure 12. Resultant acceleration and average resultant acceleration for part of a walking trip.

This explains why moving window was used but does not justify the large window size selected,
which might result in excessive overlapping and consequently high prediction accuracies. The reason
for using this approach lies in the real world application design of the developed methodology.
Generally, people have unique walking and driving patterns, even if they usually stick to a distinctive
routine while commuting daily via public transportation. To predict the mode of transportation
of a person by studying a completely different person might not yield better results. However, if
the prediction is done by studying limited data yielded from the same person, the accuracy will
certainly be much better. As the algorithm requires training data, the application design is such that
the participants will be asked to at least annotate one day’s data (encouraged by providing some
incentive like free cinema tickets, gift vouchers, etc.), all of which will be regarded as the training
data. After that, the participants just need to keep the application running in the background for the
intended period of the survey. In such a design, the big window size does not pose a problem; in
fact, it helps to achieve higher prediction accuracy by smoothening the data and bringing it near to
the training data. To explain this, Figure 13 demonstrates the average resultant acceleration values,
calculated by a 10 min moving window, for first day walking trips made by four participants only.
It is evident from the figure that large window size brings the average resultant acceleration data for
each trip, by a particular participant, closer to an average value. Hence, it allows the correct prediction
within each participant’s data. Note that the figure shows only one feature. When assisted with
a number of other features, the prediction process becomes efficient. This is the probable reason behind
the extraordinarily high detection accuracies achieved in this study. To include randomness into the
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present analysis, the training data were randomly selected rather than taking entire trips. The aim
is to assist the travel data collection survey; therefore, the predictions need not to be in real-time.
Needless to say, it can be used for real-time prediction but then the window size should be decreased
so as to abstain from unnecessarily long lag. The grouping of data in Figure 13 should not be confused
with window size, which remained constant throughout the entire data for the calculation of all
features. This grouping is merely to assist in understanding the advantage of using the large window
size of 10 min. Furthermore, each trip demonstrates the spread of average resultant acceleration values
calculated using 10-min window size.
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The variable importance, calculated by random forest, is shown in Figure 14. It is evident that all
features, including orientation readings, are important and add to the predictive power of the algorithm.
Resultant acceleration is least important, possibly because all other features are extracted from it and
within the extracted features the distinguishable information is magnified. Resultant acceleration can
therefore be eliminated from the list of features.
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4. Conclusions and Future Work

Smartphones are opening up a new horizon for introduction of technology to solve problems in the
transportation sector. Travel data collection method can be revolutionized by employing smartphones
for passive data recording. This vast possibility is identified by researchers all over the world and
much research is being undertaken. The present study is expected to contribute to the ongoing research.
The developed methodology takes the data from smartphone sensors as the input information. All this
input data can be passively recorded without any effort required on the part of the smartphone carriers.

The current study demonstrated that data recording frequency has huge impacts on the accuracy
and efficiency of the methodology. The frequency should be selected with care, as the accuracy
decreases with decrease in frequency but simultaneously, the time required for computation also
drops. As computation cost will play a decisive role for huge amounts of data, when data collection by
smartphones will be applied on a large extent, selection of suitable frequency value will become
all the more important. The researcher has to settle for a compromise between accuracy and
computational cost. The results showed that an impressive overall classification accuracy of 99.96%
can be achieved, with identification level of no mode less than 99.8%. The main sensor value used
to extract further features was the magnitude of resultant acceleration. As individual accelerations
are affected by activities performed on the smartphones, it is likely that the calculated magnitude will
be slightly different for the same mode among smartphones in use and not in use. This in turn will
influence the extracted features. It is therefore necessary to investigate this variability and its effect on
mode detection.

Initially, automatic mode detection will complement the traditional travel data collection methods
by providing accurate and detailed travel information. The participants will no longer need to keep
a mental note of where and when they took a trip. All this information will be provided by their
smartphones, and the accuracy will obviously be higher. The final form of smart data collection would
be making the traditional methods redundant. In future, the smartphone will not only be able to
determine the mode of transportation used but will also be able to identify the family, thereby extracting
the family data from governmental records like number of family members, their ages, salaries, etc.
Moreover, by interacting with nearby smartphones, the identity of the accompanying persons will also
be ascertained. We are moving briskly towards that era, with ever increasing smartphone penetration
as well as tremendous increase in Internet access.

The sharp decrease in accuracy below 10% learning data, as mentioned in Section 2.7 might also
be the result of small amount of collected data. As the amount of training data are increased, the
algorithm becomes more and more intelligent towards predicting unknown examples correctly, until
a certain amount is achieved, after which additional training examples do not add substantial detection
power to the algorithm. In other words, the algorithm is fully trained and can predict huge amounts of
unknown examples. Future studies should keep this aspect in mind and, while using large dataset,
report the training data in terms of data points or number of trips rather than percentage of total data.
Furthermore, the saturation point should be determined to decide the amount of training data.

One of the major limitations of this study is trip segmentation. Trip segmentation is implicitly
added to the data by deleting sensor data during stay or periods of non-activity. It is then coupled with
60 s dwell time to divide the data into trips. In reality, the analyst will be unaware of breaks in the data;
therefore, an efficient trip segmentation methodology should be developed. Another major constraint
is the unequal representation of various modes in the collected data. Although the data provide
a realistic picture of typical Japanese lifestyle, where walking has a major share in daily travelling, this
may overshadow other modes. It can be witnessed from the mode-wise classification results, where
walk showed outstanding accuracy as compared to other modes. Moreover, due to the massive amount
of walk data used for training the algorithm, other modes are predominantly misclassified as walk.
Applying the developed methodology for data with comparable representation from all modes might
yield different results and should therefore be tested. Another limitation is the small amount of data
used in the study. More data should be tested so that the developed methodology may obtain wider
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acceptance. Effort should be made in order to further decrease the percentage of data used to train
the algorithm while attaining similar accuracy levels. This will ensure accurate data interpretation for
a large amount of data collected, even when using a small percentage for training purpose.
Moreover, variation in data and classification accuracy among different users should be explored
to understand the role of users. This may provide new ideas to tackle the issue at hand.
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