
sensors

Article

A Linked List-Based Algorithm for Blob Detection on
Embedded Vision-Based Sensors
Ricardo Acevedo-Avila *, Miguel Gonzalez-Mendoza † and Andres Garcia-Garcia †

Department of Postgraduate Studies, Tecnológico de Monterrey, Campus Estado de México,
Atizapán de Zaragoza, Estado de México 52926, Mexico; mgonza@itesm.mx (M.G.-M.);
garcia.andres@itesm.mx (A.G.-G.)
* Correspondence: ricardo.acevedo@itesm.mx; Tel.: +52-55-5864-5875; Fax: +52-55-5864-5969
† These authors contributed equally to this work.

Academic Editors: Lourdes Martínez-Villaseñor and Hiram Ponce
Received: 5 February 2016; Accepted: 25 May 2016; Published: 28 May 2016

Abstract: Blob detection is a common task in vision-based applications. Most existing algorithms are
aimed at execution on general purpose computers; while very few can be adapted to the computing
restrictions present in embedded platforms. This paper focuses on the design of an algorithm
capable of real-time blob detection that minimizes system memory consumption. The proposed
algorithm detects objects in one image scan; it is based on a linked-list data structure tree used to
label blobs depending on their shape and node information. An example application showing the
results of a blob detection co-processor has been built on a low-powered field programmable gate
array hardware as a step towards developing a smart video surveillance system. The detection
method is intended for general purpose application. As such, several test cases focused on character
recognition are also examined. The results obtained present a fair trade-off between accuracy and
memory requirements; and prove the validity of the proposed approach for real-time implementation
on resource-constrained computing platforms.

Keywords: embedded computer vision; field programmable gate array (FPGA); object detection

1. Introduction

Consumption of automated image recognition technology has been growing steadily over the
past few years [1–3]. Today, the use of embedded camera-equipped devices is common and is often
found in commercial hardware ranging from laptop computers, mobile phones and personal digital
assistants (PDAs) to smart vehicles and automated surveillance systems. Modern image processing
applications must support complex computations on large streams of visual data. This technology
could be provided by personal computers; however, power consumption, size and mobility are
commonly desired and often forbid the use of such devices in many vision applications. Dedicated
image processing platforms offer a combination of embedded computing power and video sensors
that present the resources needed to perform real-time image processing operations with a focus on
efficiency maximization (i.e., performance and manufacturing cost).

Embedded vision (EV) is a subset of computer vision focused on systems where sensors are
often encapsulated by the device they control. Processing is performed on-board, and system
design constantly requires a trade-off between computationally-intensive algorithms and resource
consumption. EV applications are diverse, and implementation ranges from entertainment interaction
systems, such as video games [4] and virtual reality systems [5,6], to human assistance tools, like robots
and other autonomous devices [7]. In the automotive industry, embedded sensors-based systems are
commonly focused on challenging tasks like pedestrian detection [8], lane departure prevention [9,10]
or obstacle detection [11]. In the smart surveillance field, computer vision is used as a video analysis

Sensors 2016, 16, 782; doi:10.3390/s16060782 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
http://www.mdpi.com/journal/sensors

Sensors 2016, 16, 782 2 of 25

accelerator. Examples include vehicle traffic monitoring [12], event surveillance and sophisticated
biometrics analysis of human features (e.g., face or fingerprints) [13].

Common EV algorithms include image enhancement, image segmentation, pattern recognition
and object detection. Object detection deals with the extraction and measurement of the objects
that are present in the scene. This task can be further sub-divided into two operations: background
segmentation and blob analysis. Background segmentation involves the separation of background
and foreground information, while blob analysis focuses on the identification of specific foreground
regions that represent object shapes. The first step of blob analysis is blob detection. Blob detection
is used to detect connectivity among image objects (i.e., adjacent pixel areas sharing one common
color value). In typical EV operations, bottlenecks arise due to high data transfers (image information
stored on memory devices), algorithm implementation (serial vs. parallel) and hardware resources
(CPU vs. GPU). One possible solution to build up an efficient EV system is to develop custom hardware
dedicated to process raw image information.

Nonetheless, only a small sub-set of software-based algorithms are suitable for implementation
on embedded hardware, and few solutions have been developed for resource-limited devices [14–17].
This article is focused on the design of a one-scan low-memory blob detection algorithm. The proposed
algorithm analyzes the input image as it is buffered from the image acquisition stage. Only relevant
information for blob identification is stored. Detection is based on the fast management of linked-lists
data structures to process blob information based on object shape. We propose the use of a data tree
intended for classification of each blob according to its detection history. This makes analysis direct, as
each class involves a defined set of operations that do not require broad computational overhead.

As a proof of concept, the algorithm is evaluated in a case study consisting of an EV system realized
on an Altera Cyclone III EP3C120F780I7 (119K Logic Elements) field programmable gate array (FPGA)
development board as part of a mobile object recognition system intended for smart surveillance
analytics. We effectively minimize memory consumption while achieving real-time processing. The
FPGA implementation is capable of analyzing video graphics array images in three formats: Quarter-
VGA (320 × 240), VGA (640 × 480) and Super-VGA (800 × 600). The blob detection subsystem
consumes a total of 665 logic elements. Processing rates vary from 221 FPS (QVGA) to 88 FPS (SVGA).

The remainder of this paper is organized as follows: Section 2 presents related concepts and
work. Section 3 discusses the proposed algorithm for blob detection. Section 4 examines an example
application built on FPGA hardware. In Section 5, we present and evaluate the results obtained. Finally,
in Section 6, conclusions are drawn.

2. Related Concepts and Work

The object detection stage typically receives a binary image as input. A binary image denotes
foreground pixels with a color value of 1, while the the background pixels are denoted with 0. This
image is also referred to as the foreground mask and is produced by a background segmentation
technique that can range from a simple thresholding operation (i.e., the use of a fixed rule to determine
background and foreground pixels) to an elaborate statistical-based algorithm (i.e., the use of historic
models to determine the class of a new pixel) [18,19].

Region connectivity is the main criteria used to identify object shapes in a foreground mask.
Connectivity in a pixel area is described as the spatial proximity between pixels in a binary
image [20]; each connected area is often called a binary large object (blob) [21]. In order to
isolate each blob as one entity, a labeling process is carried out to partition the input image into
connected components. A labeled blob has a unique identifier that can be used to further measure
general properties, like shape, position and state [22]. Blob processing algorithms are typically
raster scan-based. A raster scanned image is displayed as a horizontal sequence of pixels starting
in the upper left-hand corner of the image gradually moving from left to right, top to bottom.
Scan-based blob detection techniques are classified into two main categories [23–25]: recursive [26] and
sequential [27].

Sensors 2016, 16, 782 3 of 25

Recursive approaches assume that read-accesses to the input image are unlimited. The method is
simple, but inefficient in resource-limited machines. The main issue being the number of image scans
over the input depends on the complexity of the image. Recent techniques have been developed to
optimize recursive-based algorithms. The authors in [28] present a method featuring a label connection
table that stores assigned labels throughout the input image; it substantially reduces execution time by
performing forward and backward image scanning. This feature allows one to resolve duplicated or
conflicting labels.

Conversely, sequential methods typically require two image scans and can be optimized to
process more than one image row at a time. This technique is used when there is limited storage.
An example of this approach is presented by [29]; where the authors propose a union-find structure-
based algorithm that re-uses temporary labels. This scheme allows representing labels and their
relationship as data trees, where labels with few children are absorbed by labels with a bigger number
of descendants.

A simplified case of sequential methods are one-pass only algorithms. The main idea of the
algorithms in this sub-category is to detect and label blobs in just one image scan. In order to achieve
this, [30] proposes the implementation of boundary object detection. This technique focuses on
estimating blob contours and filling their interior with a label that depends on neighboring pixel areas.

Examples of blob detection algorithms based on these ideas are well documented. The
implementation typically targets general computing platforms. The work in [31] presents a fast
connected component labeling software. The application is built using the Open Source Computer
Vision (OpenCV) framework. The algorithm explores the input image in search of connected
sub-regions via pixel neighborhoods; several sub-regions are then integrated into a single region.
The approach uses a partial neighborhood mask that leaves small unconnected holes. Nevertheless,
the trade-off substantially reduces labeling computation time. The software runs at 30 FPS on a PC
under Windows 7 with a single core Intel Atom N280 CPU at 1.6 GHz and 1 GB of memory. Image
acquisition is performed by a web camera; image sizes range from 176 × 144 to 1280 × 1024.

The authors in [32] propose a real-time blob detection algorithm for software video surveillance.
Their method relies on applying a correction phase before component detection is carried out. The
correction applies morphological filtering (i.e., filling up image holes) while labeling is being performed.
The technique is called neighbor foreground pixel propagation (NPP); which effectively removes small
un-connected pixel regions. The software runs on a Windows PC with a 3-GHz Pentium 4 Core CPU
and 3 GB of main memory; the frame resolution is 320 × 240. Although the algorithm seems to achieve
high-speed processing, maximum throughput is not reported.

A blob detection algorithm for digital documents is proposed by [33]. Their goal is to detect glyphs
on different kinds of images. Again, frame sub-regions are exploited to accelerate processing. The
authors benefit from the fact that text documents have less foreground information than background.
The algorithm analyzes the image looking for foreground objects; once an object is found, its position
is stored in a vector. This position is used to assign a label in a second image scan. The software
processes frame sizes of 850 × 1600, 2500 × 3500 and 800 × 1200; it runs on a Windows XP Intel
2.2 GHz Core 2 Duo PC with 3 GB RAM. Maximum size images (2500 × 3500) are processed in 132 ms.
General frame rates for each image size are not reported.

The work in [34] proposes a general Laplacian of Gaussian (gLoG) filter for detecting elliptical
blobs in medical images. The algorithm also computes blob features, such as center, scale and
orientation. The approach works by first applying a Gaussian filter to reduce image noise and then
using a Laplacian operator to detect edges. The algorithm is implemented in MATLAB and is not
intended for real-time execution. It runs on a Windows PC with a 2.4-GHz CPU and 4 GB of memory.
It processes 800 × 600 images at a rate of 3.5 min/image (0.0047 FPS).

GPU-based solutions are often examined in the image processing literature. However, due to
their high power consumption, they are rarely used as embedded computing platforms. The authors
in [35] develop a full face detection system implemented on a NVIDIA GTX 470 graphics card using

Sensors 2016, 16, 782 4 of 25

CUDA. The system carries out several image processing tasks, but focuses on blob detection using
a parallel integral image computation. This operation is optimized to compute integral images in
parallel employing a multiscan kernel operation. Next in the processing pipeline is a parallel Haar
evaluation filter that analyzes the input image for face-like features. The system analyzes HD images
of a size of 1920 × 1080 at 35 FPS. The parallel integral image is computed in 2.3 ms.

Applications involving blob detection for embedded platforms have been increasing in recent
years. One example is presented in [36]; where the authors suggest a face recognition algorithm
implemented with a complementary metal-oxide semiconductor (CMOS) sensor housed in parallel
with a digital signal processor (DSP). The set-up is intended for image analysis acceleration. The
algorithm is executed in 4.2 ms on 640 × 480 (VGA) images at 30 FPS and detects the faces of five
persons. In [37], the authors minimize the computational overhead for embedded blob detection with
the proposal of a parallel algorithm. The input image is partitioned and distributed to four concurrent
processing elements (PE). Each PE compares the labels of an input pixel and four adjacent neighbors.
The corresponding label is output based on this information, requiring at least four image scans.
A merging phase delivers the final labeled image.

The approach presented in [38] proposes an algorithm based on a method called pseudo
partitioning. This technique allows labeling without the use of a merging phase. The algorithm
runs on an array of nine DSPs. Each DSP performs component labeling for a portion of the image,
based on neighborhood search. This solution does not require DSP intercommunication, yielding good
performance and speed. An algorithm called light speed labeling (LSL) is introduced in [39]. This blob
detection method is designed for the implementation on RISC processor architectures. It is focused
on CPU pipeline optimization by the reduction of conditional evaluations and memory accesses. It
is based on a concept called line-relative labeling, a segment-based adjacency detection method that
is used to simplify equivalence between image rows. The algorithm requires three image scans for
corrected input to be generated.

A custom computer platform approach for vehicle tracking and surveillance is suggested by [40].
According to the authors, the hardware architecture has been chosen to support fast prototype
development, flexibility and performance. Image acquisition is achieved by an embedded monochrome
CMOS image sensor. This device delivers images with a VGA resolution at 30 FPS. The processing
unit is an array of Texas Instruments (TMS320C64x) DSPs. The DSP array performs the actual
image processing algorithms with a power of 80 billion instructions per second. Custom embedded
architectures can also be designed in order to achieve real-time image processing. FPGA-based
implementations have gained focus in computer vision due to their capabilities of developing software,
as well as custom hardware [41–43], boosting performance. FPGA technology offers the possibility
to develop a full system on a chip (SOC); where custom processors can analyze data coming directly
from the acquisition stage.

The FPGA architecture presented in [44] is based on the two-pass algorithm introduced by [45].
The algorithm operates on a binary image. In the first image scan, background pixels are filtered out
and foreground pixels are classified based on their neighborhood labels. A second pass is used to
resolve possible connectivity problems. The hardware implementation is achieved on a Spartan-3A
DSP FPGA board, working at 27 MHz and processing 640 × 480 (VGA) images at 60 FPS. Another
implementation is found in [46]; the authors employ a single-pass component-labeling algorithm.
Their system is equipped with a custom Shack-Hartmann wavefront sensor (SHWVFS) connected
to a charge-coupled device (CCD) array, from which 224 × 244 frames are acquired. The detection
algorithm is implemented on a Xilinx Spartan-6 150LX FPGA working at 70 MHz. The SHWVFS device
allows a high-speed throughput of 905 FPS.

The authors in [47] propose a technique based on the identification of intersecting pixels on each
image row and column. The image is first pre-processed by a chain of filters (e.g., grayscale conversion,
median filtering and a final threshold operation). Pre-processing is intended to boost detection results;
a series of logical tests are then carried out to label each intersecting pixel. Their solution is designed

Sensors 2016, 16, 782 5 of 25

for visual navigation systems and also computes object area and centroid. The algorithm is realized
on a Xilinx Virtex V FPGA board, operating at 100 MHz. Their system processes 100 × 100 images at
4545.45 FPS (0.22 ms) and 1024 × 1024 images at 61.72 FPS (16.2 ms). It detects a total of five objects
and utilizes four blocks of RAM.

The work by [48] exploits parallel processing inherent in hardware design by partitioning the
input frame into vertical slices. The partitioning idea is similar to the work presented in [37]. Each
image slice is analyzed for connected components concurrently by a pixel processing component.
A central unit merges all label data from separated pixel processing components. The algorithm is
implemented on a Xilinx Virtex 6 XC6VLX240T FPGA clocked at 136.4 MHz for 1024 × 1024 input
frames. The architecture is optimized for high throughput, achieving a frame rate of 1.1 GPixels
per second (1049 FPS for a 1024 × 1024 image).

An updated architecture by the same authors is presented in [49]. The new features include
detection of image patterns aimed to minimize label errors, a control structure used to detect the last
pixel of an image, optimizing memory resources, recycling of previous labels and simplification of
the labeling processes by reducing the number of label lookups per pixel. The hardware architecture
detects blobs in images ranging from 640 × 480 to 7680 × 4330. The implementation is evaluated using
different FPGA families, including Xilinx Virtex 6, Spartan 6 and Kintex 7 boards. Evaluation on Kintex
7 yields a working frequency of 170.3 MHz, using 548,000 bits of block ram memory (BRAM) and
processing images of 256 × 256 up to 7680 × 4320 ultra-high definition (UHD8k) frames. A worst-case
throughput of 136.42 MPixel/s is reported.

The authors in [50] propose minimum memory consumption by implementing a one-scan
algorithm. Based on pseudo-partitioning; image sub-regions are processed in search of connected
components. The solution operates on binary images and propagates labels as soon as a connected
component is detected. Small sub-region images allows label information to be stored in only
75.6 kbits of on-chip RAM. The architecture can process frame sizes of 512 × 512, 1280 × 720,
1024 × 1024, 1920 × 1280 and 1280 × 1280. The blob detection system is realized on a Stratix II
FPGA working at 97.4 MHz; it achieves a frame rate of 49 FPS while processing a 1280 × 1280 frame.

The authors in [51] propose a blob detection system intended for virtual reality (VR) applications.
The system detects blobs and computes their center points in real time. Blobs are identified by running
an adjacency test using a four- and eight-pixel neighborhood. After a blob has proven adjacency, its
coordinates are computer based on bounding boxes. It works by searching the minimal and maximal
XY coordinates of each blob. Blob attributes are then written to a FIFO structure. The system is realized
on a DE2 Altera FPGA board running at 125 MHz and processing 640 × 480 frame sizes at a maximum
of 50 FPS, without monitor output. Resource consumption is of 13,311 logic elements and 239,316 bits
of memory.

One of the main challenges of designing an object detection algorithm for embedded hardware is
balancing the trade-off between memory throughput, processing time and detection accuracy [52]. It is
possible to partially solve these issues with the implementation of data structures used to represent
blob information over the input image [24,53–55]. A label can be propagated from a parent node
throughout the rest of the tree if contiguity has been proven; saving further processing time. It is
possible to use linked-list to represent blob information. A linked-list is a node structure that contains
a pointer to a preceding or successive node [56]. This list can quickly update its root node without
affecting its child nodes, offering design flexibility while supporting dynamic data.

In this article, we present an algorithm for blob detection based on linked-lists for embedded
implementation. It prioritizes minimum data storage and fast processing. The algorithm is examined
and is used in a prototype blob detection system deployed on FPGA hardware. FPGA technology
enables reconfigurable hardware development on the fly and can be also used to develop complete
pipelined systems in one physical chip. The blob detection architecture is also integrated with a blob
tracker sub-system. Results obtained while tracking blobs in a video surveillance application are
presented, as we compare the specifications of similar architectures studied in the literature. The

Sensors 2016, 16, 782 6 of 25

algorithm is also evaluated for general purpose detection within a character recognition scenario. This
is a particularly challenging area of blob detection, as blob geometry is often complex, nevertheless, it
helps us evaluate the algorithm under the most extreme conditions.

3. Blob Recognition Process

3.1. Overview

The algorithm receives a binary foreground mask in which all detectable objects are rendered
in white. The mask is transferred from the video source throughout the application pipeline as
a continuous stream of pixels. Each pixel is received from left to right and top to bottom, in
a raster-graphics format. Pixel connectivity along the input image is determined on a two-row basis.
This technique exploits the fact that connectivity is present if two rows of the same color share a
horizontal coordinate. The binary nature of the input image allows the use of a data compression
method aimed to reduce the volume of processed information, as each row can be reconstructed in
sequences of smaller numerical intervals (e.g., run length encoding (RLE)). The algorithm runs the
compressed data through several tests aimed to classify each blob in a particular detection case where
a unique label is assigned. Each case performs a series of operations based on the object shape and
previous detection information. Once classified, each blob is assigned a corresponding label. The label
can be a non-repeating integer, but usually takes the form of a color value, with each connected blob
represented by a different color.

Blob information is stored in data structures called bins. Each bin contains the label and the
current pixels linked with a detected object in the input image. Bin management is fast, but not easy; it
involves managing data from multiple list data structures. Each list is updated differently according
to established detection rules. Simple shaped blobs (e.g., circles and rectangles) can be detected in
a single pass with almost no further problems. However, complex shapes that are first detected as
separated blobs and later found to be joined (e.g., concave objects) will need an extra correction step.

Blob
Detection

Run Length
Encoding

Bin Label
1
2

...

n Ln

...

Run
[10, 15]

[22, 25]
[18, 20]

3

3
2
1

...

[sn, en]

Input Image

Blob Feature
Extraction

{
Label Cx

1
2

...

n Cxn

...

3

3
1
2

Cy

...

5
7
3

Width
5
2

...

3

Height
3
5

...

8

Area
15
10

...

24

Cyn Wn Hn An

Blob Tracker
Label x

1
2

...

n Cxn

...

3

3
1
2

 y

...

5
7
3

Cyn

{
Video Frames

1 3

4

6

2

7 5

{Application
Speci�c

Figure 1. Blob detection and tracking. Full system overview.

The correction phase relies directly on the information contained in the linked-lists. Correction is
achieved by merging blobs with common bin information and using a single label for the complete
shape. After each blob has been identified and labeled as a group of connected pixels, feature properties
can be computed. Feature extraction is usually application dependent. In this work, the blob detection
algorithm performance is evaluated with a simple tracker for object motion. The tracker uses a

Sensors 2016, 16, 782 7 of 25

minimum distance vector (MDV) obtained for different blob metrics, such as centroid and area. This
information allows identifying each detected blob trough time regardless of its location on the scene,
as long as their geometrical properties remain reasonably consistent. Figure 1 depicts the full overview
of a blob detection and tracking system.

3.2. Connectivity Test

The proposed approach involves analyzing two image rows (runs) per processing step. The
lower row is considered part of the upper row only when both share a common horizontal point.
In such a case, the rows belong to a parent blob and a single label must be assigned. The test of
connected (i.e., adjacent) runs is not trivial, however, as each upper row run (n) has to be tested with
each lower rower run (m). This a computational problem of complexity n× m. In the worst case
scenario n = m, and complexity increases to n2. The connectivity test is composed of four logical
comparisons. Consider Figure 2; each run is described by a starting and ending value. Two rows are
overlapped if one of the four possible tests is valid (true) for two given runs with starting values A or
C and ending values B or D.

Test 1: C ≤ A ≤ D

Test 3: A ≤ C ≤ B

Test 2: C ≤ B ≤ D

Test 4: A ≤ D ≤ B

A B

C D

C D

A B

A B

C D

C D

A B

Row 1

Row 2

Figure 2. The four tests that comprise the row connectivity test.

3.3. Bin Data System

Once a run is detected, it must be linked with either a new or existing label. A new label will be
assigned only if the connectivity test fails in a single processing step. A bin data structure is used to
efficiently keep track of each blob and their associated information. Bins can store object and label data
using a minimum amount of resources (e.g., an integer word to encode the current label used). A bin
can easily be implemented using an array or a list.

A set of three main list structures is used through this algorithm. A list called bin list exclusively
contains all of the detected blobs and their assigned bins. A second list, called label list, is used to store
labels. A third and final list structure, the free bins, is employed to check which bins are currently
under use and which are free. The latter is also useful for recycling unused bins and keeping control of
correct bin assignments. The maximum number of detectable objects will be directly related to the
maximum number of bins (i.e., total entries in the list) supported by the computing platform.

3.4. Data Structure Dependencies

Each data structure can be thought of as a linked-list. Data structure linking depends on the
current blob portion that is being processed; a partially-detected blob is referred to as an object. The
current object generates a node key according to its position. Keys are implemented as integers that
increment as subsequent objects are encountered. A pair of rows is processed from left to right. The
initial key assignment is, therefore, dependent on the object’s initial position in the image. The object
key is used to link the object to a bin; the bin is then linked to a label. The list of current free and used
bins is also linked to the tree structure. An extra data structure can be used to store the start and end
points of a detected object. Figure 3 depicts the linked-lists used and their interdependence.

Sensors 2016, 16, 782 8 of 25

Bin Object Label
1
2

...

n

Label 2
Label 1

Label n

... {
Key Object Bin

1
2

...

n

Bin 2
Bin 1

Bin n

...

Object

{Bins List

La
be

ls
 L

is
t

Bin Object Bin
1
2

...

n

Used
Used

Free

... {

Fr
ee

 B
in

s

Bin
1
2

...

n

... ...

Start End
X1

X1

X1

X2

X2

X2

{

Bi
n

Figure 3. Relationships between linked-lists and bin data structure.

3.5. Detection Cases Classification

The typical operation of the three linked-lists is as follows: An object is detected, and a unique
key is generated. A new label is provided only if the object is not part of an existing blob. If the object
is part of a previously detected blob, its key is linked to an existing root node. Same bin information
(i.e., root label) is used for all of the objects that are part of a common parent blob. The approach is
direct; however, several complex scenarios can be encountered depending on the shape and parent
information of an object. In this section, some basic detection cases are examined, and the use of
linked-lists is exploited to obtain a successful detection under most circumstances. For the next part,
assume a two-row processing from left to right is performed at all times, unless otherwise stated.

3.5.1. Detection Order Changes (Bin 6= Object Order)

Suppose a new object begins detection at one frame. A new bin and label are assigned. However,
midway through processing, a second object located below the original object is detected for the
first time. The new object displaces the original object as first in the object detection stack. This is an
instance of the case where detection order changes and the assigned bin is different from object order.
Refer to Figure 4. The first data array represents the white pixel lines in compressed RLE format. Each
cell has been labeled with a different color to illustrate overlapping runs. Row 1 has one pixel line
(labeled in red) as the currently-detected object.

In Row 2, a second object (labeled in blue) is detected before Object 1. The algorithm adjusts the
linked-lists structures by updating the objects keys accordingly. The second data array presents the
adjusted lists after processing of both rows is completed. The key of the red object has been updated
from one to two, while its linked bin, bin status and label value present no further change. Meanwhile,
the blue object shows no adjacency with any other run; thus, it is not yet assigned a label or a bin.
Selection of a new bin depends on the information available on the free bins list.

1 2 3 4 5

Row 1

Row 2

Key

[40,50]

[10,30] [40,50]

[0,0] [0,0]

[0,0]

[0,0]

[0,0]

[0,0]

[0,0]

Key Bin Bin Free Label
1→2 1 FALSE Red
1→0 2 TRUE None

Figure 4. Detection Case 1: detection order changes.

Sensors 2016, 16, 782 9 of 25

3.5.2. Long Run

A long run is encountered when disjointed objects (i.e., multiple runs in a row) are
part of a parent blob previously detected. This situation is typically found when processing
concave-down-like shapes. In this case, the connectivity test will be valid for more than one run.
Under this scenario, objects contained in different bins will share the same label.

Figure 5 depicts the situation. Notice that two different runs can share a parent blob. Both runs in
Row 2 have proven adjacency with the run in Row 1. For Run 2, a new key and bin have been issued
using the information of the original parent blob. The successive presence of multiple long runs can
affect the original detection order of the objects, as a parent blob can spawn several child objects (i.e.,
a blob can be forked in other objects). This also means that an object can be inserted between two
originally disjointed objects. To deal with such a case, the number of displaced positions produced by
each child object must be accumulated before re-adjusting final object keys.

1 2 3 4 5

Row 1

Row 2

Key

[40,50]

[40,45] [50,60]

[0,0] [0,0]

[0,0]

[0,0]

[0,0]

[0,0]

[0,0]

Key Bin Bin Free Label
1 1 FALSE Red

0→2 2 FALSE Red

Figure 5. Detection Case 2: long run.

A variation of the long run case is the reverse long run. It is presented when disjointed objects are
first detected in a row and then are found to be joined by a parent blob in the next processing step. A
common instance of this case is found when a concave-up blob is processed. This case can be solved
by merging all object labels. However, if the objects have not been found to share a parent blob until
the last moment, a final correction must be applied.

3.5.3. Blob Termination

Whenever a previously-detected blob reaches an end (e.g., is no longer detected in the following
row), its data structures must be removed. Blob termination is straightforward. The last object that is
part of a blob will not share adjacency with any other run computed afterwards. This situation is the
cue for the object’s bin and label to be discarded. The free bins list will also update the current status
for that bin, marking it available for future use. Figure 6 shows the blob termination case.

1 2 3 4 5

Row 1

Row 2

Key

[40,50]

[0,0] [0,0]

[0,0] [0,0]

[0,0]

[0,0]

[0,0]

[0,0]

[0,0]

Key Bin Bin Free Label
1→0 1 TRUE None

0 2 TRUE None

Figure 6. Detection Case 3: blob termination.

3.6. The Bin-Based Blob Detection Algorithm

Once the components required by the blob recognition algorithm have been explained, we
can proceed to outline the full approach for general blob recognition. The algorithm’s input is
two binary image rows encoded in RLE format. Each row contains a variable number of encoded
white pixel lines (runs). After the foreground mask information is encoded in runs, a principal run
list is generated. This list is depicted in Figure 7. The number of columns represents the maximum

Sensors 2016, 16, 782 10 of 25

number of simultaneously-detectable objects (SDO) the algorithm is able to process. This value is
denoted by the constant r. As mentioned in Section 3.2, processing is of n×m complexity, where n is
the number of runs contained in the first row and m the number of runs in the second row; in both
cases, n ≤ r and m ≤ r.

Row 1

1

[10, 15] [22, 25] [0, 0] [0, 0]

2 3 4 5

Row 2

Key 1

[5, 15] [20, 25] [0, 0] [0, 0] [0, 0]

2 3 4 5

[18, 20]

Maximum Number of SDO (r)

Key

Origin

Destiny

Figure 7. Run list. The first row is called the origin row, while the second is the destiny row.

Bin and label management is progressive and depends on chronological operations, which means
each encoded run needs to be processed sequentially. Each origin element in the run list is processed
with each destiny element. Once all elements in the destiny row are traversed, the origin key is
incremented in one unit. After the origin key reaches its maximum value, processing for both rows is
completed. Figure 8 shows the sequential order in which two runs are processed. The following step is
to perform the connectivity test. The test involves four logical comparisons. A logical function, called
the adjacency function (Equation (1)), summarizes the overall result of each individual test.

(1,2)

(2,1)

(2,2)

(2,3)

(1,1)

(2,1)

(2,2)

(2,3)

Processing Order

(1,3)

(2,1)

(2,2)

(2,3)

Figure 8. Sequential processing of two runs in a list of SDO = 3. Each node is depicted as (Row, Key).

AdjFun =⇒ {(c ≤ a) ∧ (a ≤ d)} ∨ {(c ≤ b) ∧ (b ≤ d)}
∨{(a ≤ c) ∧ (c ≤ b)} ∨ {(a ≤ d) ∧ (d ≤ b)}

(1)

Algorithm 1 shows the general outline of the blob detection algorithm. The inputs required are
the three linked lists, as well as the lists of run length encoded image rows. Consider that processing is
performed on two image rows at a time, top to bottom. Once two adjacent runs are detected, one of the
following two cases may occur: both runs share the same position in the run list or one of both runs is
spread across a row. In the former case, run keys share the same value. However, in the latter case, run
keys are different. If the current destiny run shares its key and position with an origin run, an existing
parent bin and label might have been already assigned. The algorithm requests a new bin using the
origin key as the index value in the bin list. If the requested bin has a value of zero, the current bin is
not under use. The algorithm assigns a new bin using the information available in the free bins list.
Label assignation follows using the current bin as the index. As before, a value of zero denotes an
unassigned label.

If the positions of two detected bins are not the same, two sub-cases can be presented depending
on the occurrence of a previous detection. The first sub-case involves the long run situation described
previously. In this situation, the algorithm updates the object’s origin key while maintaining its bin
unaffected. Each object detected as part of a long run must also have its label merged with its parent
label. The second sub-case must be evaluated for two possible situations. If a new object proved
adjacent to a previous run, a reverse long run might occur. If this is not the case, the final situation
must involve a previously-detected run that just changed position.

Sensors 2016, 16, 782 11 of 25

Algorithm 1 The blob detection algorithm.

procedure blobDetection(runList, binList, labelList, freeBins) 1
2 if (adjFun) then
3 if (objectOrigin = objectDestiny) then
4 currentBin assignBin(objectOrigin)
5 else
6 mergeRun false
7 previousDetection longRunDetection(runList)
8 if (previousDetection) then
9 currentBin longRun()

 mergeRun true 10
 adjacentRun true 11
 else 12
 if (adjacentRun) then 13
 currentBin reverseLongRun() 14
 else 15
 currentBin changeObjectPosition() 16
 end if 17
 end if 18
 end if 19

 currentLabel labelList(currentBin) 20
 if (currentLabel = 21) then 0
 if (mergeRun) then 22
 assignLabel(parent) 23
 mergeRun false 24
 else 25
 assignLabel(new) 26
 end if 27
 end if 28
 else 29
 adjacentRun false 30
 end if 31
 checkBlobTermination() 32
 updateBinData(currentBin, currentLabel) 33

34 end procedure

The next step is to detect a blob’s end. The algorithm cannot detect the termination of an object
unless all of the elements of both rows have been processed. Every time a valid run fails the adjacency
test, a flag is set, and its bin and label are marked. The flag is unset if adjacency is eventually found.
Finally, bin, label and coordinates are updated. Parent initial propagation is also handled during the
update procedure.

3.7. Label Correction (Bin Merging)

The goal of the blob recognition algorithm is to detect blobs using the minimum possible amount
of memory while maintaining real-time processing speed. The two-row approach serves both purposes;
however, its biggest weakness is the correction of objects that turn out to be connected at the very last
minute (i.e., concave shapes). To address this issue, a label correction stage has been implemented.
It operates on bin data instead of raw-image information.

Its principle is very similar to the connectivity test. If two different bins need to be merged, they
must share a common point (i.e., a common run). The approach involves traversing through all of
the bins in current use in search for common run points. If a common point is found, the label of
the first object is copied to the second object; all remaining data structures are left unaffected. The
correction phase is active every time an image scan is finished and does not require an additional pass.
Nonetheless, this operation introduces extra latency to the overall system pipeline. Figure 9 illustrates
an input blob after correction is applied.

Sensors 2016, 16, 782 12 of 25

Correction

Figure 9. Concave up shape before and after correction.

4. Application Example

We have evaluated the results of the proposed blob detection approach in an automated
surveillance context, as part of an embedded vision-based architecture that has been implemented on
an FPGA. The blob detection architecture has been described and documented entirely in VHDL, a
very strict, but powerful low-level hardware description language (HDL). VHDL offers early and fast
simulation at the register-transfer logic (RTL) and gate level, close-to-implementation synthesis and
tool/technological independence. Inter-module portions of the full automated surveillance have been
also described using Verilog.

In the image acquisition stage, the system receives raw input provided by a video source (e.g.,
video camera or DVR). Raw image data are typically received as a Bayer-filter pattern and then
converted to RGB pixels. The RGB information is then formatted into VGA-compatible frames. Input
frames are buffered into SDRAM sequentially (e.g., pixel(0,0) is at memory offset zero, pixel(1,0) is
at offset one.). An additional memory controller requests pixels from SDRAM and feeds them to a
background classifier component. The background classifier uses statistical data to filter out objects
that do not belong to the original scene. The final binary mask is then processed by the blob detection
co-processor. The component realizes the algorithm described in Section 3.6. Detection results can
also be displayed on a VGA-compatible monitor. Figure 10 depicts a block diagram of the complete
surveillance embedded system.

Digital Im
age

Image
Filtering

Blob
Detection

Co-Processors

Field Programmable Gate Array

CPU

Blob
Tracking

Blob
Measurements

Image
Aquisition

SDRAM
Frame
Bu�er

Blob Data

Raw
 VGA Input

VGA-com
patible Output

VGA
Decoding

Statistical
Background

Modeling

Frame
Memory

Controller

Statistical
Data

Figure 10. Application example: complete video surveillance embedded system.

Finally, a simple software-based motion tracker module is used to estimate and register the
position of the detected objects throughout time. The tracker’s main function is to resolve spatial
occlusion [57,58] between two or more different shapes. Spatial occlusion causes two or more
blobs to change position within two frames, thus changing the initial label assignation. Blob
tracking techniques are plentiful and range from histogram-based correlation [59], HSV-based
filtering [60] and blob counting [61] to more elaborated approaches, such as random sample
consensus (RANSAC) [62], Markov model-based tracking [63] and Kalman filtering [64] for
motion prediction.

Sensors 2016, 16, 782 13 of 25

In this paper, minimum vector distance is used as a tracking algorithm due to the simplicity and
effectiveness in application [65]. This technique exploits temporal coherence, which asserts that the
state (e.g., position and shape) of detected objects does not change significantly between successive
time steps. The MDV is computed as the positional Euclidean distance between an origin blob and a
target blob. The target blob that produces the smallest MDV is chosen as the origin blob displaced
between two different frames. This technique serves as a proof of concept that validates our blob
detection algorithm as a basis for higher-level operations, such as blob tracking.

A general overview of the blob detection hardware architecture is depicted in Figure 11. Data input
is received as a stream of black and white pixels coming from the previous processing co-processor
(i.e., the background pixel classifier). Pixels are compressed in run length-based packets. Pixel packets
are then stored in a register array named the register bank. This component stores a maximum of
two horizontal image lines (now described as runs) and provides a constant flow of data to the core
processing unit through the dataSelect block. Connectivity tests are then carried by a gate-based
implementation of Equation (1) within the same module.

Register
Bank

dataSelect
&

adjFun

control
FSM

Bin List

Label List

Free Bins

RLE
Encoder

Bi
na

ry
 P

ix
el

 C
la

ss

Blob Data

Blob Detection Co-processor

Figure 11. General overview of the blob detection co-processor.

The core processing unit is the control finite state machine (FSM) block. This component
implements the logic needed to realize the blob detection algorithm depicted in Algorithm 1. It
relies on the three different slave register-based arrays discussed in Section 3.4. The first register array
is the bin list. This structure stores part of a detected object in a specified bin. The label list is used to
store a label associated with a bin. Finally, the free bins component keeps tracks of the bins that are
both used and free.

Figure 12 depicts a simplified state diagram for the hardware implementation of the control FSM.
The diagram closely follows Algorithm 1. The figure does not consider latency introduced by data
transfers. In the S0 state, all signals are set to their initial values. In S1, a pair of new runs (pixel
packets) are retrieved from the register bank. The connectivity test is performed on these runs in S2.
Depending on the results, state flow can be directed to three different states. If the connectivity test is
true and object keys are the same, control flow is directed towards S3. If the connectivity test is true
and object keys are different, control flow is directed to S4. If the connectivity test fails, a consecutive
detection flag (adjacent run) is unset, and the FSM goes to S10.

Bin assignment is performed in S3. S4 evaluates the conditions for the long run case detection
discussed in Section 3.5.2. If the conditions are true, the FSM goes to S5. If a long run is not detected,
flow is resumed towards S6. The long run case is processed in S5, and the adjacent run flag is set. The
reverse long run is detected using the adjacent run flag once S6 is reached. If the flag is set, the reverse
long run is processed in S7. If no reverse long run is detected, control flow is sent to S8, where the
change object position operation is handled. In S9, label assignment is performed. The final state for
one machine cycle is S10, where the conditions for blob termination are evaluated and all bin data are
updated. The control FSM loops again to S1 as long as image input is received.

Sensors 2016, 16, 782 14 of 25

S0

S1

S5

S4

S8S7

S9

S2

S3

S6

S10 S1

State Operations
S0 Reset.
S1 Run Retrieval.
S2 Connectivity Test.
S3 Bin Assignment
S4 Long Run Evaluation.
S5 Process Long Run.
S6 Reverse Long Run Evaluation.
S7 Process Reverse Long Run.
S8 Change Object Position.
S9 Label Assignment.
S10 Blob Termination & Bin Data Update.

Figure 12. Simplified control FSM diagram for hardware implementation.

Blob processing is unique and depends on the blob detection case currently evaluated. Some cases
involve quicker operations than others. This makes overall latency difficult to calculate. Nevertheless,
we can estimate the maximum latency required by the control operations in the slowest execution
paths. Equation (2) summarizes the expression used to estimate the maximum latency of the control
FSM during one machine cycle.

latency = 10r2 − 7r + 11 (2)

Figure 13 shows the block diagram of a hardware linked-list implementation. The bin list
structure is used to link a bin to a detected object. The data structure resembles a table, where an entry
is assigned to an index (or key). In this case, the entry corresponds to the assigned bin. The component
implementing this functionality receives an input index to select a destiny register, as well as a data
word to be stored in the target register. Input is received through the binData bus. The target register is
set using the objIndex port. The core component is a demultiplexer that routes the information to the
desired register. It is also useful to query a register to retrieve its contents. This is achieved using the
rqObj signal, used to control a multiplexer that is connected to all register outputs. The queried bin is
then shown in the rqBin bus.

Reg01

binData

objIndex

rqObj

clk

rqBin

Bin List

Reg02

Reg03

obj1Bin

obj2Bin

obj3Bin

Figure 13. The bin list implemented as a register-based array. In this figure, a maximum of three objects
can be stored.

The label list hardware implementation is shown in Figure 14. This module is used to link a bin
with a label. The idea and implementation is identical to the bin list. As before, a target bin is selected
via the binIndex port, while a label is fed through the labelData signal. We have also included the same

Sensors 2016, 16, 782 15 of 25

mechanism to query a label based on an input bin. This is accomplished with the rqBin signal. Lastly,
the free bins list is also implemented as a register-based array. The free bins component includes an
additional mechanism designed to show the latest free bin based on bin availability.

Reg01

labelData

binIndex

rqBin

clk

rqLabel

Label List

Reg02

Reg03

bin1Label

bin2Label

bin3Label

Figure 14. The label list implemented as a register-based array. In this figure, a maximum of three
labels can be stored.

The hardware implementation is depicted in Figure 15. Input is received through the data bus. A
bit is used to denote the status of a bin; an empty bin is marked with a logical zero, while a used bin is
marked with a logical one. The target bin is set with the binIndex signal. Every time a bin is used, the
input port must be filled with valid data, and the writeEnable signal must be asserted. This component
features two operational modes: manual and automatic; set through the mode port.

Under manual operation, the control FSM must feed a target bin and a bit to mark it used or
empty. Under automatic mode, the component will show the next available bin in the currenFreeBin
port and will automatically mark it used as soon as writeMode is set. This mode helps to hasten bin
assignation from the control FSM. The logic necessary to implement this functionality is stored in the
freeBin Fun block. Each bin’s individual status can also be observed through the qBinn output ports.

freeBin
Fun

modeCtrl

data

binIndex

mode

writeEnable

qBin1

qBin2

qBin3

currentFreeBin

Free Bins

clk

R1

R2

R3

Figure 15. The free bins component. In this figure, a maximum of three bins can be used.

The blob detection co-processor is realized on FPGA hardware with a consumption
of 665 logic elements. The nominal working frequency is 50 MHz, and the maximum frequency
is 125 MHz. The general co-processor specifications are depicted in Table 1. FPGA device specifications
are also included. The maximum static power consumption has been estimated using Altera’s Power
Consumption Documentation for Cyclone III family devices. Performance has been measured in

Sensors 2016, 16, 782 16 of 25

frames per second (FPS). FPS measurement was performed at the RTL level. We used Altera’s Quartus
software and Mentor Graphics’ Modelsim to time and inspect each processing stage of the architecture
while input images were being fed. Performance was also measured by counting the number of frames
per second that were processed on the FPGA board.

Table 1. Blob detection architecture specification.

Parameter Value

FPGA Technology Altera Cyclone III
FPGA Chip Used EP3C120
Max. Frequency 125 MHz @ 100 ◦C
Min. Frequency 112.74 MHz @ − 40 ◦C

Working Frequency 50 MHz
Input Image Width 320 px
Input Image Height 240 px
Input Pixel Depth 1 bit

Processing Time per Frame 4.52 ms
Processed Frames Per Second 221 FPS
Logic Elements Consumption 665

Max. Static Power Consumption 0.17 Watts

For test purposes, the system is tuned to track blobs based on their position and area only. Our
application is interested in tracking the largest moving objects in a scene. Results obtained for this
scenario are shown in Figure 16. A man throws a box at a rail-road in a desolate area. The scene is
supervised with the automatic surveillance system focused on motion detection. The system’s output
contains all of the detected blobs in the scene; a maximum number of SDO has been pre-set at ten
blobs. After measurements are computed and correction is applied, the motion tracker identifies the
target objects during three sequential frames. A total of eight labels is used, contained in ten bins.

Input Frame Foreground Mask Detected Blobs

Frame 1 Frame 2 Frame 3

Tracked Output

Figure 16. Results from the blob detection FPGA sub-system.

Figure 17 presents a scene that has been taken from the performance evaluation of tracking and
surveillance 2001 (PETS2001) database [66]. It features an outdoor surveillance view of a parking lot
on a campus. No clean background of the scene is available; thus, the background modeling stage is
trained with cars already parked. The figure depicts three input video frames and the blobs detected
for each case, post-correction stage. There is moderate traffic of moving vehicles and persons, and the
scene has been recorded under inconsistent light conditions, which causes some blobs to break into
smaller pixel regions. Blobs also change labels between frames; however, our motion tracker detects
this situation. A total of seven labels is used, contained in eight bins.

Sensors 2016, 16, 782 17 of 25

In
pu

t
Frame 1 Frame 2 Frame 3

Frame 1 Frame 2 Frame 3

O
ut

pu
t

Figure 17. Outdoor PETS2001database blob detection.

5. Results and Discussion

The blob detection algorithm is intended for general purpose recognition. As such, we evaluate
its performance with various images that test general detection for use in other applications. On each
test, the input image is scanned just once. The correction phase may be required for certain images
after the first scan analysis is performed. If a common run in more than one bin is found, correction is
applied by label merging. Figure 18 shows the first test image. The figure depicts the input binary
mask, the blob detector output and the contents of each used bin. Blobs of different sizes and shapes
are present, as well as multiple simultaneous disconnected blobs. For this image, a maximum number
of three bins is used. As can be seen, a new bin is assigned every time a new SDO appears. As soon as
a blob terminates and its data structures are freed, its original assigned bin can be used to store a new
object. Bins 2 and 3 share a complex blob that cannot be stored using a single bin; however, its label is
successfully shared across the two data structures.

Handwritten characters obtained from a sample of letters are used as test input in Figure 19. Three
letters are tested simultaneously. Each character is stored in two bins. a and b are correctly assigned to
a parent label across all their bins. A portion of the letter c is first identified as a separated blob; thus, a
new (yellow) label is used instead of the parent (blue) label. Correction is applied on Bin 3 and Bin 6.
Figure 20 shows an array of varied complex symbols. Only the input and output images are shown.

Input Output

Bin 1 Bin 2

Bin 3

Figure 18. Test Image 1.

Sensors 2016, 16, 782 18 of 25

Input Output

Bin 1 Bin 2

Bin 3 Bin 4

Bin 5 Bin 6

Figure 19. Test Image 2.

Bins Used: 7
Labels Used: 4

Input Output Resources

Bins Used: 5
Labels Used: 4

Bins Used: 4
Labels Used: 3

Bins Used: 7
Labels Used: 5

Bins Used: 5
Labels Used: 7

Bins Used: 12
Labels Used: 9

Figure 20. Complex test images.

The resources needed to correctly detect each blob are also listed. For the most part, the test
images are correctly identified without the need to apply the correction step. The two last images
present a complicated mix of concave-down and concave-up shapes. Many of these shapes are not
found to be joined until the last minute. The corrected results are depicted in Figure 21. Finally, input
images from the University of Southern California Signal and Image Processing Institute (USC-SIPI)
database [67] have also been tested. Most of these images show uniform blobs; however, big complex
shapes are broken up into multiple bins; albeit, all sharing one single label. The frame size is of
200 × 200; the lack of detail in small images generally boosts performance. Results post-correction
stage are shown in Figure 22.

System latency depends directly on the number of simultaneously-detectable objects present
in a single image row. Processing time increases quadratically to the input image’s size. Table 2
summarizes the maximum latency and frame processing rate consumed by three different image
resolutions for a different number of maximum simultaneously detectable objects in one processing

Sensors 2016, 16, 782 19 of 25

step. Performance for processing a full frame is also given. Similarly, Figure 23 depicts frame rates for
maximum SDOs between five and 15. As mentioned in Section 3.6, computationally-heavy operations
are carried out in the master control FSM. Classification of blob detection cases introduces the system’s
main bottleneck. Nonetheless, processing frame rates are within real-time operating boundaries for
most standard-definition applications. (e.g., 30 FPS). For this implementation test, processing has been
fixed at a working system frequency of 50 MHz.

Detected Blobs Correction Applied

Figure 21. Complex test images after correction is applied.

Bins Used: 3
Labels Used: 2

Input Output (Corrected) Resources

Bins Used: 6
Labels Used: 4

Bins Used: 7
Labels Used: 7

Bins Used: 4
Labels Used: 2

Figure 22. Input images from the USC-SIPI image database.

Sensors 2016, 16, 782 20 of 25

Table 2. Blob detection latency and frame processing rate.

Latency Per Frame Performance

Processing Stage (50 MHz) 320 × 240 640 × 480 800 × 600

Objects Clock Cycles Seconds (FPS) (FPS) (FPS)

1 14 6.7× 10−10 14,880 7440 5952
2 37 1.8× 10−4 5630 2815 2252
3 80 3.8× 10−4 2604 1302 1041
4 143 6.9× 10−4 1456 728 582
5 226 1.1× 10−3 921 460 368
6 329 1.6× 10−3 633 316 253
7 452 2.2× 10−3 460 230 184
8 595 2.9× 10−3 350 175 140
9 758 3.6× 10−3 274 137 109
10 941 4.5× 10−3 221 110 88

0

100

200

300

400

500

600

700

800

900

1000

5 6 7 8 9 10 11 12 13 14 15

320 x 240 (QVGA)

640 x 480 (VGA)

800 x 600 (SVGA)

Simultaneously Detectable Objects

Fr
am

es
 P

ro
ce

ss
ed

 p
er

 S
ec

on
d

Figure 23. Simultaneously-detectable objects vs. frame processing rates for different image resolutions.

Table 3 summarizes the specifications of the FPGA-based implementations previously presented
and compares them to the proposed architecture. Unfortunately, not all authors report all of
their resource consumption parameters. Furthermore, the same frame size is not used across all
architectures. We have included the bits of memory required for VGA frame buffering during the
image acquisition stage. For an input QVGA image with one-bit data, pixels must be stored in a block
of 76,800 (320 × 240) bits. Memory requirements for the rest of the resolutions are also shown. Our
approach effectively minimizes memory consumption while meeting real-time requirements. For
video surveillance applications, our work has found that a QVGA frame generally conveys enough
detail for effective object and event detection. Some software solutions are presented in Table 4.
Most achieve real-time performance; nevertheless, high-resource consumption makes embedded
deployment difficult.

Sensors 2016, 16, 782 21 of 25

Table 3. Comparison of blob detection FPGA architectures.

Hardware Platform Frame Pixel Memory Frequency FPSArchitecture Size Depth Usage

Calvo-Galle et al. Xilinx Spartan-3A 640 × 480 8 bit 2, 462, 720 bits 27 MHz 60
Kiran et al. (1) Xilinx Virtex V 100 × 100 8 bit 144, 000 bits 100 MHz 4545
Kiran et al. (2) Xilinx Virtex V 1024 × 1024 8 bit N/A 100 MHz 61
Mauch et al. Xilinx Spartan-6 224 × 224 12/10 bit 162,000 bits 70 MHz 905

Klaiber et al. (2013) Xilinx Virtex VI 1024 × 1024 N/A 1,512,000 bits 136.4 MHz 1049
Klaiber et al. (2015) Xilinx Kintex 7 7680 × 4330 N/A 548,000 bits 170.3 MHz N/A

Yuhabi et al. Altera Stratix II 1280 × 1280 1 bit 75,600 bits 97.4 MHz 49
Bochem et al. Altera DE2 Cyclone II 640 × 480 N/A 239, 316 bits 125 MHz 50

Proposed

QVGA Altera Cyclone III 320 × 240 1 bit 76,800 bits 50 MHz 221
VGA Altera Cyclone III 640 × 480 1 bit 307,200 bits 50 MHz 110

SVGA Altera Cyclone III 800 × 600 1 bit 480,000 bits 50 MHz 88

Table 4. Comparison of blob detection software algorithms.

Algorithm Technology Frame Memory Processing FPSSize Time

Paralic et al. (1) Intel Atom N280 320 × 240 1 GB 1.13 ms 30
Paralic et al. (2) Intel Atom N280 640 × 480 1 GB 4.86 ms 30

Binh et al. Pentium 4 (3 GHz) 320 × 240 3 GB 3.72 ms N/A
Swati et al. Intel Core 2 Duo 800 × 1200 3 GB 21 ms N/A
Oro et al. NVidia GTX 470 GPU 1920 × 1080 1.2 GB 2.3 ms 35

Kumar et al. TriMedia DSP 640 × 480 N/A 4.2 ms 30

6. Conclusions

Blob detection is a common task for computer vision applications. It is often performed on general
purpose computing architectures as an algorithm that relies on image storage. For implementation
on embedded systems, however, system memory and computing power are limited resources, and
alternate techniques must be designed. In this paper, a blob detection algorithm was proposed and
developed for implementation on embedded hardware, focused on a system-on-chip application.
Emphasis has been made on low-memory consumption and fast processing.

Blob information is stored in discrete data structures called bins. Bin management is achieved
using linked-lists structures. It is important to note that blobs are dynamic objects with properties that
can change within frames. Liked-lists keep track of these changes efficiently. Moreover, linked-lists
present a good trade-off between design flexibility and resource consumption. Depending on blob
dynamics, several cases that hinder optimal detection can be encountered. Complex shapes cannot
be correctly identified on a single image scan and can lead to labeling errors. Such is the case of
concave-up objects. To deal with this situation, an additional correction phase is also implemented.
The correction phase only depends on the information contained in each data bin and does not require
additional image scans or storage. Nonetheless, extra latency is added to the system.

Once a blob is detected, a label and a bin are assigned; blob data are processed for feature
extraction, and a motion tracking stage can be used for blob seeking through multiple video frames.
The system is used to track simple convex objects, composed of circular and squared contours. The
correction phase has been seamlessly integrated in the detection module. A soft-core CPU is used to
execute tracking software. The results obtained with this implementation show a fast blob detection of
simple, but restricted shapes. The current version of the object sensing system is configured to detect a
maximum number of ten blobs presented simultaneously (i.e., in one single row of the input image).

We evaluated the performance of the blob detection algorithm implementing a full vision-based
object detection system built on FPGA hardware. The application focuses on automated video
surveillance. The system integrates background modeling and blob detection co-processors. A simple

Sensors 2016, 16, 782 22 of 25

tracking algorithm based on the minimum distance vector is used and the results obtained while
monitoring a fixed area shown. Tracking is intended to demonstrate the feasibility of our blob detection
approach as a basis for higher level operations. Our system is capable of detecting basic motion based
on blob position and size on a low traffic area in real time. The system is, however, currently locked to
a detection of 10 simultaneously-detectable objects. Items that exceed such a threshold are simply not
detected due to the absence of resources.

Results evaluating character recognition are also included. Character recognition features complex
shapes; however, the algorithm shows an adequate detection rate in most of the cases. The precision
of the algorithm is always restricted by the number of maximum simultaneously-detectable objects
and the number of bins available. As the complexity of the detected objects increases, the resources
needed to handle multiple object data also raises. The algorithm can be used in applications that
require character recognition of small images composed of simple strings and custom symbols. More
complex characters will need the definitions of new detection cases.

In this work, full image storage is traded for simplified description data stored using linked-lists.
Although the proposed hardware implementation focuses on QVGA (320 × 240) resolutions, we
present two additional variants that process VGA (640 × 480) and SVGA (800 × 600) frame sizes.
Binary input can be obtained directly from the acquisition stage (e.g., a black and white sensor) or
computed by an additional processing module (e.g., background pixel classifier). In either case, the
binary image must be first stored in memory to be read by our blob detection module. Processing
latency grows quadratically to the frame size. However, real-time constraints are met for all of our
target resolutions.

Author Contributions: Ricardo Acevedo-Avila and Andres Garcia-Garcia conceived of, designed and discussed
the algorithms and the FPGA-based architectures. Ricardo Acevedo-Avila and Miguel Gonzalez-Mendoza
discussed and analyzed the results and performed manuscript proofreading and editing.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Malamas, E.N.; Petrakis, E.G.M.; Zervakis, M.; Petit, L.; Legat, J. A survey on industrial vision systems,
applications and tools, image and vision computing. Image Vis. Comput. 2003, 21, 171–188.

2. Kastrinaki, V.; Zervakis, M.E.; Kalaitzakis, K. A survey of video processing techniques for traffic applications.
Image Vis. Comput. 2003, 21, 359–381.

3. Hu, W.; Tan, T.; Wang, L.; Maybank, S. A survey on visual surveillance of object motion and behaviors.
IEEE Trans. Syst. Man Cybern. 2004, 34, 334–352.

4. Camplani, M.; Mantecon, T.; Salgado, L. Depth-Color Fusion Strategy for 3-D Scene Modeling With Kinect.
IEEE Trans. Cybern. 2013, 43, 1560–1571.

5. Kumar, V.; Todorov, E. MuJoCo HAPTIX: A virtual reality system for hand manipulation. In Proceedings
of the 2015 IEEE-RAS 15th International Conference on Humanoid Robots (Humanoids), Seoul, Korea,
3–5 November 2015; pp. 657–663.

6. Azami, N.; Idrissi, D.E.; Amrane, S.; Harmouchi, M. Computer blob detection and tracking for highly
repeatable optical fiber sensor. In Proceedings of the 2014 9th International Conference on Intelligent
Systems: Theories and Applications (SITA-14), Rabat, Morocco, 7–8 May 2014; pp. 1–5.

7. Hegde, G.; Ye, C.; Robinson, C.; Stroupe, A.; Tunstel, E. Computer-Vision-Based Wheel Sinkage Estimation
for Robot Navigation on Lunar Terrain. IEEE/ASME Trans. Mechatron. 2013, 18, 1346–1356.

8. Besbes, B.; Rogozan, A.; Rus, A.M.; Bensrhair, A.; Broggi, A. Pedestrian Detection in Far-Infrared Daytime
Images Using a Hierarchical Codebook of SURF. Sensors 2015, 15, 8570–8594.

9. Tapia-Espinoza, R.; Torres-Torriti, M. Robust Lane Sensing and Departure Warning under Shadows and
Occlusions. Sensors 2013, 13, 3270–3298.

10. Eum, S.; Jung, H.G. Enhancing Light Blob Detection for Intelligent Headlight Control Using Lane Detection.
IEEE Trans. Intell. Transp. Syst. 2013, 14, 1003–1011.

Sensors 2016, 16, 782 23 of 25

11. Zhang, Y.; Xu, X.; Lu, H.; Dai, Y. Two-Stage Obstacle Detection Based on Stereo Vision in Unstructured
Environment. In Proceedings of the 2014 Sixth International Conference on Intelligent Human-Machine
Systems and Cybernetics (IHMSC 2014), Hangzhou, China, 26–27 August 2014; pp. 168–172.

12. Chen, Y.L.; Wu, B.F.; Huang, H.Y.; Fan, C.J. A Real-Time Vision System for Nighttime Vehicle Detection and
Traffic Surveillance. IEEE Trans. Ind. Electron. 2011, 58, 2030–2044.

13. Saeed, A.; Al-Hamadi, A.; Ghoneim, A. Head Pose Estimation on Top of Haar-Like Face Detection: A Study
Using the Kinect Sensor. Sensors 2015, 15, 20945–20966.

14. Kyrkou, C.; Theocharides, T. A flexible parallel hardware architecture for AdaBoost-based real-time object
detection. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 2011, 19, 1034–1047.

15. Viola, P.; Jones, M. Robust real-time face detection. Int. J. Comput. Vis. 2004, 57, 137–154.
16. Mahlknecht, S.; Oberhammer, R.; Novak, G. A real-time image recognition system for tiny autonomous

mobile robots. In Proceedings of the IEEE Real-Time and Embedded Technology and Applications
Symposium, Toronto, ON, Canada, 25–28 May 2004; pp. 324–330.

17. Patro, B.N. Design and implementation of novel image segmentation and BLOB detection algorithm for
real-time video surveillance using DaVinci processor. In Proceedings of the 2014 International Conference on
Advances in Computing, Communications and Informatics (ICACCI), Delhi, India, 24–27 September 2014;
pp. 1909–1915.

18. Havasi, L.; Szlavik, Z.; Sziranyi, T. The Use of Vanishing Point for the Classification of Reflections from
Foreground Mask in Videos. IEEE Trans. Image Process. 2009, 18, 1366–1372.

19. Rafique, A.; Sheri, A.M.; Jeon, M. Background scene modeling for PTZ cameras using RBM. In Proceedings of
the 2014 International Conference on Control, Automation and Information Sciences (ICCAIS2014), Gwangju,
Korea, 2–5 December 2014; pp. 165–169.

20. Kwong, J.N.S.; Gong, S. Learning pixel-wise signal energy for understanding semantics. Image Vis. Comput.
2003, 21, 1183–1189.

21. Burns, R. Version management and recoverability for large object data. In Proceedings of the IEEE Computer
Society International Workshop on Multimedia Database Management Systems (IW-MMDBMS), Dayton,
OH, USA, 5–7 August 1998; pp. 12–19.

22. He, L.; Chao, Y.; Suzuki, K. Two Efficient Label-Equivalence-Based Connected-Component Labeling
Algorithms for 3-D Binary Images. IEEE Trans. Image Process. 2011, 20, 2122–2134.

23. Jain, R.C.; Kasturi, R.; Schunck, B.G. Machine Vision, 1st ed.; McGraw-Hill Science/Engineering/Math:
New York, New York, USA, 1995; pp. 44–47.

24. Wu, K.; Otoo, E.J.; Suzuki, K. Optimizing two-pass connected-component labeling algorithms.
Pattern Anal. Appl. 2009, 12, 117–135.

25. Belmonte, U.H.H.; Ayala-Ramirez, V.; Sanchez-Yanez, R.E. A Comparative Review of Two-Pass Connected
Component Labeling Algorithms. In Advances in Soft Computing; Springer: Berlin/Heidelberg, Germany,
2011; pp. 452–462.

26. Kiran, B.; Ramakrishnan, K.; Kumar, Y.; Anoop, K.P. An improved connected component labeling by
recursive label propagation. In Proceedings of the 2011 National Conference on Communications (NCC),
Bangalore, India, 28–30 January 2011; pp. 1–5.

27. He, L.; Chao, Y.; Suzuki, K. A Linear-Time Two-Scan Labeling Algorithm. In Proceedings of the 2007 IEEE
International Conference on Image Processing, Berlin, Germany, 16 September–19 October 2007; pp. 241–244.

28. Suzuki, K.; Horiba, I.; Sugie, N. Linear-time Connected-component Labeling Based on Sequential Local
Operations. Comput. Vis. Image Underst. 2003, 89, 1–23.

29. Dillencourt, M.B.; Samet, H.; Tamminen, M. A General Approach to Connected-component Labeling for
Arbitrary Image Representations. J. ACM 1992, 39, 253–280.

30. Chang, F.; jen Chen, C.; jen Lu, C. A linear-time component-labeling algorithm using contour tracing
technique. Comput. Vis. Image Underst. 2004, 93, 206–220.

31. Paralic, M. Fast connected component labeling in binary images. In Proceedings of the 2012 35th
International Conference on Telecommunications and Signal Processing (TSP), Prague, Czech Republic,
3–4 July 2012; pp. 706–709.

32. Nguyen, T.B.; Chung, S.T. An Improved Real-Time Blob Detection for Visual Surveillance. In Proceedings of
the CISP ’09. 2nd International Congress on Image and Signal Processing, Tianjin, China, 17–19 October 2009;
pp. 1–5.

Sensors 2016, 16, 782 24 of 25

33. Swati.; Dixit, G. Improved algorithm for blob detection in document images. In Proceedings of the
2014 5th International Conference Confluence the Next Generation Information Technology Summit
(Confluence 2014), Noida, India, 25–26 September 2014; pp. 703–708.

34. Kong, H.; Akakin, H.C.; Sarma, S.E. A Generalized Laplacian of Gaussian Filter for Blob Detection and Its
Applications. IEEE Trans. Cybern. 2013, 43, 1719–1733.

35. Oro, D.; Fernandez, C.; Saeta, J.R.; Martorell, X.; Hernando, J. Real-time GPU-based face detection in HD
video sequences. In Proceedings of the 2011 IEEE International Conference on Computer Vision Workshops
(ICCV Workshops 2011), Barcelona, Spain, 6–13 November 2011; pp. 530–537.

36. Srinivasa Kumar, D.; Krishna, I.V.M.; Tiruveedhula1, V.R. Real-time Face Recognition Using SIMD and
VLIW Architecture. J. Comput. Inf. Technol. (CIT) 2007, 15, 143–149.

37. bor Wang, K.; lin Chia, T.; Chen, Z.; Lou, D. Parallel execution of a connected component labeling operation
on a linear array architecture. J. Inf. Sci. Eng. 2003, 19, 353–370.

38. Ercan, M.; Fung, Y.F. Connected component labeling on a one dimensional DSP array. In Proceedings of the
IEEE Region 10 Conference TENCON 99, Cheju Island, Korea, 15–17 September 1999; pp. 1299–1302.

39. Lacassagne, L.; Zavidovique, B. Light speed labeling: efficient connected component labeling on RISC
architectures. J. Real-Time Image Process. 2011, 6, 117–135.

40. Bramberger, M.; Doblander, A.; Maier, A.; Rinner, B.; Schwabach, H. Distributed embedded smart cameras
for surveillance applications. Computer 2006, 39, 68–75.

41. MacLean, W. An Evaluation of the Suitability of FPGAs for Embedded Vision Systems. In Proceedings
of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops
(CVPRW ’05), San Diego, CA, USA, 20–26 June 2005.

42. Fresse, V.; Aubert, A.; Bochard, N. A Predictive NoC Architecture for Vision Systems Dedicated to Image
Analysis. EURASIP J. Embed. Syst. 2007, 2007, 36–36.

43. Bravo, I.; Balinas, J.; Gardel, A.; Lazaro, J.L.; Espinosa, F.; Garcia, J. Efficient Smart CMOS Camera Based on
FPGAs Oriented to Embedded Image Processing. Sensors 2011, 11, 2282–2303.

44. Calvo-Gallego, E.; Aldaya, A.C.; Brox, P.; Sánchez-Solano, S. Real-time FPGA connected component labeling
system. In Proceedings of the 2012 19th IEEE International Conference on Electronics, Circuits and Systems
(ICECS), Seville, Spain, 9–12 December 2012; pp. 593–596.

45. Bailey, D.G. Design for Embedded Image Processing on FPGAs, 1st ed.; Wiley-IEEE Press: Hoboken, NJ, USA, 2011.
46. Mauch, S.; Reger, J. Real-Time Spot Detection and Ordering for a ShackHartmann Wavefront Sensor with a

Low-Cost FPGA. IEEE Trans. Instrum. Meas. 2014, 63, 2379–2386.
47. Kiran, D.; Rasheed, A.I.; Ramasangu, H. FPGA implementation of blob detection algorithm for object

detection in visual navigation. In Proceedings of the 2013 International conference on Circuits, Controls and
Communications (CCUBE), Channasandra Bengaluru, India, 27–28 December 2013; pp. 1–5.

48. Klaiber, M.J.; Bailey, D.G.; Ahmed, S.; Baroud, Y.; Simon, S. A high-throughput FPGA architecture for
parallel connected components analysis based on label reuse. In Proceedings of the 2013 International
Conference on Field-Programmable Technology (FPT 2013), Kyoto, Japan, 9–11 December 2013; pp. 302–305.

49. Klaiber, M.J.; Bailey, D.G.; Baroud, Y.O.; Simon, S. A Resource-Efficient Hardware Architecture for Connected
Components Analysis. IEEE Trans. Circuits Syst. Video Technol. 2015; 1–16.

50. Yuhai, L.; Mei, K.; Dong, P. An Effiient and Low Memory Requirement Algorithm for Extracting Image
Component Information. Int. J. Adv. Intell. 2011, 3, 255–267.

51. Bochem, A.; Kent, K.B.; Herpers, R. FPGA based real-time object detection approach with validation of
precision and performance. In Proceedings of the 2011 22nd IEEE International Symposium on Rapid System
Prototyping (RSP 2011), Karlsruhe, Germany, 24–27 May 2011; pp. 9–15.

52. Choi, Y.; Kim, T.; Han, H. Memory layout techniques for variables utilizing efficient DRAM access modes in
embedded system design. IEEE Trans. CAD Integr. Circuits Syst. 2005, 24, 278–287.

53. Fiorio, C.; Gustedt, J. Two Linear Time Union-Find Strategies for Image Processing. Theor. Comput. Sci. 1996,
154, 165–181.

54. Zhao, H.; Fan, Y.; Zhang, T.; Sang, H. Stripe-based connected components labelling. Electron. Lett. 2010,
46, 1434–1436.

55. Grana, C.; Borghesani, D.; Cucchiara, R. Optimized Block-Based Connected Components Labeling with
Decision Trees. IEEE Trans. Image Process. 2010, 19, 1596–1609.

Sensors 2016, 16, 782 25 of 25

56. Cormen, T.H.; Stein, C.; Rivest, R.L.; Leiserson, C.E. Introduction to Algorithms, 3rd ed.; MIT Press: Cambridge,
MA, USA, 2009; pp. 236–240.

57. Pan, J.; Hu, B.; Zhang, J. Robust and Accurate Object Tracking Under Various Types of Occlusions.
Circuits Syst. Video 2008, 18, 223–236.

58. Loutas, E.; Pitas, I.; Nikou, C. Entropy-based metrics for the analysis of partial and total occlusion in video
object tracking. IEE Proc. Vis. Image Signal Process. 2004, 151, 487–497.

59. Patil, S.; Talele, K. Suspicious movement detection and tracking based on color histogram. In Proceedings of
the 2015 International Conference on Communication, Information Computing Technology (ICCICT 2015),
Mumbai, India, 15–17 January 2015; pp. 1–6.

60. Kar, A.; Deb, K. Moving cast shadow detection and removal from Video based on HSV color
space. In Proceedings of the 2nd International Conference on Electrical Engineering and Information
& Communication Technology (ICEEICT), Jahangirnagar University, Dhaka, Bangladesh, 21–23 May 2015;
pp. 1–6.

61. Yuan, C.; Liu, Z.; Zhang, Y. UAV-based forest fire detection and tracking using image processing techniques.
In Proceedings of the 2015 International Conference on Unmanned Aircraft Systems (ICUAS), Denver
Marriot Tech Center, Denver, CO, USA, 9–12 June 2015; pp. 639–643.

62. Ingersoll, K.; Niedfeldt, P.C.; Beard, R.W. Multiple target tracking and stationary object detection in video
with Recursive-RANSAC and tracker-sensor feedback. In Proceedings of the 2015 International Conference
on Unmanned Aircraft Systems (ICUAS), Denver Marriot Tech Center, Denver, CO, USA, 9–12 June 2015;
pp. 1320–1329.

63. Zhao, L.; Gao, X.; Tao, D.; Li, X. Tracking Human Pose Using Max-Margin Markov Models. IEEE Trans.
Image Process. 2015, 24, 5274–5287.

64. Vinaykumar, M.; Jatoth, R.K. Performance evaluation of Alpha-Beta and Kalman filter for object tracking. In
Proceedings of the 2014 International Conference on Advanced Communication Control and Computing
Technologies (ICACCCT 2014), Ramanathapuram, India, 8–10 May 2014; pp. 1369–1373.

65. Zou, Z.; Xiao, J. Tracking minimum distances between curved objects with parametric surfaces in real
time. In Proceedings of the 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS 2003), Las Vegas, NV, USA, 27–31 October 2003; Volume 3, pp. 2692–2698.

66. PETS2001 Image Database. Available online: http://ftp.pets.rdg.ac.uk/pub/PETS2001/ (accessed on 27 May 2016).
67. USC-SIPI Image Database. Available online: http://sipi.usc.edu/database/ (accessed on 27 May 2016).

c© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC-BY) license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/

	Introduction
	Related Concepts and Work
	Blob Recognition Process
	Overview
	Connectivity Test
	Bin Data System
	Data Structure Dependencies
	Detection Cases Classification
	Detection Order Changes (Bin = Object Order)
	Long Run
	Blob Termination

	The Bin-Based Blob Detection Algorithm
	Label Correction (Bin Merging)

	Application Example
	Results and Discussion
	Conclusions

