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Abstract: This paper presents an L-shaped sparsely-distributed vector sensor (SD-VS) array with
four different antenna compositions. With the proposed SD-VS array, a novel two-dimensional
(2-D) direction of arrival (DOA) and polarization estimation method is proposed to handle the
scenario where uncorrelated and coherent sources coexist. The uncorrelated and coherent sources are
separated based on the moduli of the eigenvalues. For the uncorrelated sources, coarse estimates are
acquired by extracting the DOA information embedded in the steering vectors from estimated array
response matrix of the uncorrelated sources, and they serve as coarse references to disambiguate
fine estimates with cyclical ambiguity obtained from the spatial phase factors. For the coherent
sources, four Hankel matrices are constructed, with which the coherent sources are resolved in a
similar way as for the uncorrelated sources. The proposed SD-VS array requires only two collocated
antennas for each vector sensor, thus the mutual coupling effects across the collocated antennas are
reduced greatly. Moreover, the inter-sensor spacings are allowed beyond a half-wavelength, which
results in an extended array aperture. Simulation results demonstrate the effectiveness and favorable
performance of the proposed method.

Keywords: DOA estimation; polarization estimation; uncorrelated and coherent sources;
sparsely-distributed vector sensor array

1. Introduction

Direction of arrival (DOA) estimation using a sensor array has been a fundamental issue in many
practical applications involving radar, wireless communication systems, and navigation [1,2]. The
vector sensor array [3,4], which can make full use of the polarization diversity of the impinging sources,
has shown significant superiority for DOA estimation as compared to the traditional scalar sensor
array. Thus, the issue of DOA estimation with vector sensor array has attracted extensive attention
during the last decades [5–10]. In the related studies, the polarized MUSIC-based methods [5–7]
and the polarized ESPRIT-based methods [8–10] are two major kinds of approaches, and can achieve
satisfactory performance in the case of uncorrelated sources. However, in practical environments,
sources from an identical target may go through reflection from various surfaces, and hence the
received sources may be a mixture of uncorrelated and coherent sources. In such environments, the
methods mentioned above would suffer from serious performance deterioration owing to the rank
deficiency of array covariance matrix caused by the multipath propagation.

To solve this problem, several decorrelation methods with vector sensor arrays have been
investigated [11–18], where the DOAs are extracted on the basis of the polarization diversity and spatial
diversity. References [11–14] are proposed using the spatially collocated six-component vector sensor
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arrays, and the key idea of these methods is to restore the rank of source subspace by averaging the
data covariance matrices corresponding to each electric or magnetic component. Rahamim et al. [11]
first developed a polarization smoothing (PS) technique to address the coherent sources using a
vector sensor array. He et al. proposed a polarization difference smoothing (PDS) method [12] by
incorporating the propagator method. Xu et al. presented a polarization angular smoothing (PAS)
technique [13] by taking advantage of the cross-correlations among six subarrays. Subsequently,
based on the rotational invariance, an improved polarization angular smoothing (IPAS) method was
addressed in [14] to cope with the scenarios where uncorrelated and coherent sources coexist. However,
the spatially collocated six-component vector sensor arrays used in these methods are easily subjected
to the mutual coupling effects across the collocated antennas (hereinafter referred to as mutual coupling
effects). Besides, the inter-sensor spacings of these arrays are required within a half-wavelength in
accordance with the spatial Nyquist sampling theorem, thus the DOA estimation accuracy of these
methods is limited to some extent [19–21]. Moreover, these methods fail to provide the estimation of
polarization parameters. Since the mutual coupling effects have severe disturbances on the received
sources, some efforts have been made to alleviate the mutual coupling effects [15,16]. A parallel factor
analysis-based DOA-polarization estimation method [15] was investigated by using a tripole sensor
array, where the collocated antennas of each vector sensor are reduced from six to three, and hence
the mutual coupling effects are reduced. In [16], a DOA and polarization estimation method with
a co-centered orthogonal loop and dipole (COLD) array was proposed by introducing the sparse
Bayesian learning technique, and the mutual coupling effects are alleviated since the number of the
collocated antennas of each vector sensor is reduced to two. On the other hand, to extend the array
aperture, the sparsely-distributed vector sensor (SD-VS) array [10] with the inter-sensor spacings
beyond a half-wavelength has been adopted [17,18]. Gu et al. [17] proposed a propagator-based DOA
and polarization estimation method by exploiting the planar-plus-an-isolated sensor array, and the
array aperture is extended owing to the inherent structure of the array. In [18], a well-separated
dipole-loop sensor array was presented for expanding the array aperture, and DOA estimation
accuracy was improved accordingly.

In view of the fact that the aforementioned “decorrelating” methods mainly focus on dealing with
the coherent sources, while the coexistence of both uncorrelated and coherent sources is a common
situation for many applications due to the multipath propagation [22,23]. It has been demonstrated that
the PAS method can be extended to the scenario where uncorrelated and coherent sources coexist [14].
Unfortunately, it suffers from the mutual interference between uncorrelated and coherent sources and
the low utilization of array aperture due to the simultaneous estimation of uncorrelated and coherent
sources. Although the IPAS method specially considers the estimation for the DOA of uncorrelated
and coherent sources by taking advantage of the spatial differencing theory, which however causes
power loss of coherent sources. In summary, the existing solutions to the problem of DOA estimation
under the coexistence of uncorrelated and coherent sources are confronted with two main difficulties:
(1) how to separate the uncorrelated sources from coherent sources effectively; (2) how to reduce the
mutual coupling effects and extend the array aperture simultaneously. In addition, considering the
importance of polarization information for DOA resolution, and further for target classification and
recognition, it is a critical issue to estimate the polarization parameters of mixed sources along with
the DOA parameters.

To address these issues, we present an L-shaped sparsely-distributed vector sensor (SD-VS) array
with four different antenna compositions in this paper, which provides two notable advantages:

(1). The mutual coupling effects are alleviated benefiting from the reduced collocated antennas of
each vector sensor.

(2). The array aperture is extended by expanding the inter-sensor spacings beyond a half-wavelength.

With the proposed SD-VS array, a novel 2-D DOA and polarization estimation method for a
mixture of uncorrelated and coherent sources is proposed. On the basis of the modulus property of
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the eigenvalues, the uncorrelated sources are firstly separated from the coherent sources, and hence
the mutual interference between these two kinds of sources is avoided. For the uncorrelated sources,
the coarse estimates are derived by exploiting the DOA information embedded in the polarization
steering vectors which are obtained from the estimation of the uncorrelated array response matrix, and
the fine estimates with cyclical ambiguity are obtained from spatial phase factors. In order to achieve
the refined DOAs with no cyclical ambiguity, the coarse estimates are used for disambiguating the fine
estimates. For the separated coherent sources, four Hankel matrices are constructed for the purpose of
“decorrelating”, with which the coherent coarse estimates and the coherent fine estimates with cyclical
ambiguity are calculated in a similar way as for the uncorrelated sources. Also, the coherent coarse
estimates serve as references for the coherent fine estimates with cyclical ambiguity. Simulation results
show the effectiveness and the improved estimate accuracy of the proposed method.

The mathematical notations used throughout this paper are denoted as follows. Vectors and
matrices are denoted by lowercase and uppercase bold-face italic letters, respectively. p¨qT , p¨q˚, p¨qH ,
p¨q
´1, p¨q†, b, and E t¨u denote transpose, conjugate, conjugate transpose, inverse, Moore-Penrose

inverse, Kronecker product, and the statistical expectation, respectively. 0mˆn is an null matrix and Im

is an mˆm identity matrix. = denotes the angle of the ensuing entity, and |¨| denotes the modulus of
the internal entity. Additionally, det p¨q and rank p¨q are the determinant and the rank of the embraced
matrix. diag t¨u and blkdiag t¨u denote a diagonal matrix and a block diagonal matrix, respectively.
Re p¨q and Im p¨q are the real and the imaginary part of the embraced matrix. Furthermore, t¨u and r¨s

are the floor and ceil operators.
The remainder of this paper is organized as follows. The proposed array configuration and

source estimation model for mixed sources are given in Section 2. Section 3 presents the proposed
DOA and polarization estimation method for a mixture of uncorrelated and coherent sources in
detail. The computational complexity, several individual properties, and the extension of the proposed
method are discussed in Section 4. Section 5 exhibits the simulation results of the proposed method.
Conclusions are drawn in Section 6.

2. Array Configuration and Problem Formulation

2.1. Array Configuration Used in This Work

The six-component vector sensor array [11–14] is widely used for the estimation of DOA
and polarization parameters. In general, each six-component vector sensor is composed of three
orthogonally oriented dipoles plus three orthogonally oriented loops (spatially collocated in a point-like
geometry), which is easily subjected to the mutual coupling effects. To reduce the mutual coupling
effects, a new array configuration with four different antenna compositions is proposed as follows.

Consider an L-shaped SD-VS array consisting of dipole-dipole, loop-loop or dipole-loop antenna
pairs distributed along the x-axis and y-axis with the inter-sensor spacings far larger than a
half-wavelength (i.e., ∆x " λ{2 and ∆y " λ{2 , λ denotes the source wave length). For convenience,
here we denote the dipole and the loop parallel to the x-axis as the x-dipole and x-loop, respectively,
and the same is true for the y-dipole, y-loop, z-dipole, and z-loop. As demonstrated in [24], to make
sure that the closed-form estimation-formulas are available, the number of linearly independent
real-valued equations must be no less than the number of unknown parameters (elevation angle,
azimuth angle, auxiliary polarization angle, and the polarization phase difference), which is referred
to as the determined or over-determined conditions. Thus, the proposed array is configured with three
constraint conditions:

(1). x-dipoles or x-loops must be placed on the x-axis, and y-dipoles or y-loops must be placed on the
y-axis.

(2). If x-dipoles are placed on the x-axis, the corresponding y-dipoles are placed on the y-axis, and if
x-loops are placed on the x-axis, the corresponding y-loops are placed on the y-axis.

(3). z-dipoles or z-loops must be placed on the x-axis and y-axis simultaneously.
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According to the above constraint conditions, there exist four different antenna compositions in
the SD-VS array, as depicted in Figure 1. Compared with the spatially collocated six-component vector
sensor array, the proposed SD-VS array has the following two advantages:

(1). Since the proposed SD-VS array is composed of dipole-dipole, loop-loop, or dipole-loop antenna
pairs, it only requires two collocated antennas for each vector sensor. Hence, the mutual coupling
effects are alleviated greatly. Moreover, the antenna hardware costs are reduced.

(2). The inter-sensor spacings are allowed beyond a half-wavelength, which results in an extended
array aperture, and the DOA estimation accuracy is improved accordingly.
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Figure 1. The four different antenna compositions of the L-shaped SD-VS array (a) dipole-dipole 

pairs; (b) loop-loop pairs; (c) dipole-loop pairs with z-dipoles; (d) loop-dipole pairs with z-loops. 

  

Figure 1. The four different antenna compositions of the L-shaped SD-VS array (a) dipole-dipole pairs;
(b) loop-loop pairs; (c) dipole-loop pairs with z-dipoles; (d) loop-dipole pairs with z-loops.

Note that Wong [15,25] proposed six permutations of an electromagnetic vector sensor constituted
by spatially noncollocating component-antennas which also have the same advantages (advantages 1
and 2 mentioned above) as the proposed SD-VS array. However, the DOA and polarization estimation
method in [15,25] is developed based on a vector sensor, not a vector sensor array (i.e., the maximum
number of available antennas is six), thus the number of resolvable sources is limited.

2.2. Problem for Mulation and Modeling

Note that the following analysis is similar for all the four antenna compositions, we here take
composition (a) as an example to derive the DOA and polarization estimation method for a mixture
of uncorrelated and coherent sources. Consider K completely polarized narrow-band transverse
electromagnetic (TEM) waves impinging on this array with M pM “ M1 `M2q vector sensors, where
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the number of dipoles or loops parallel to the x-axis, y-axis and z-axis are M1, M2 and M1 ` M2,
respectively. The electric-field vector e measured by dipoles and the magnetic-field vector h measured
by loops can be expressed as [15].

c “
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»
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—

—
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—

–

cosφ cosθ sinγejη ´ sinφ cosγ

sinφ cosθ sinγejη ` cosφ cosγ

´sinθ sinγejη

´sinφ sinγejη ´ cosφ cosθ cosγ

cosφ sinγejη ´ sinφ cosθ cosγ

sinθ cosγ

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(1)

where θ P r0, π{2 q signifies the elevation angle measured from the positive z-axis; φ P r0, 2πq

signifies the azimuth angle measured from the positive x-axis; γ P r0, π{2 q signifies the auxiliary
polarization angle; and η P r´π, πq signifies the polarization phase difference. Thus, the x-axis and
y-axis polarization steering vectors are given by

cx “

«

ex

ez

ff

“

«

cosφ cosθ sinγejη ´ sinφ cosγ

´sinθ sinγejη

ff

(2)

cy “

«

ey

ez

ff

“

«

sinφ cosθ sinγejη ` cosφ cosγ

´sinθ sinγejη

ff

(3)

The impinging sources, parameterized by tθ1, φ1, γ1, η1u , tθ2, φ2, γ2, η2u , ¨ ¨ ¨ , tθK, φK, γK, ηKu, are
composed of Ku uncorrelated sources and D groups (each group has pk coherent sources) of Kc coherent

sources, which satisfy Kc “ K´ Ku “
D
ř

k“1
pk. The entire 2Mˆ 1 array output vector of the proposed

array at time t is written as

x ptq “
Ku
ÿ

k“1

a pθk, φk, γk, ηkq sk ptq `
Ku`D
ÿ

k“Ku`1

pk
ÿ

p“1

a
´

θk,p, φk,p, γk,p, ηk,p

¯

ςk,psk ptq ` n ptq (4)

where a pθk, φk, γk, ηkq is the 2Mˆ 1 steering vector of the entire SD-VS array, which is given by

ak “

„

`

Qx,k b cx,k
˘T ,

´

Qy,k b cy,k

¯T
T

(5)

where cx,k and cy,k are given by Equations (2) and (3), respectively, with respect to the kth impinging

source. Qx,k “
”

qx,k, q2
x,k, ¨ ¨ ¨ , qM1

x,k

ıT
with qx,k “ ej2πuk∆x{λ and uk “ sinθkcosφk being the spatial phase

factor and the direction-cosine along the x-axis, and Qy,k “
”

qy,k, q2
y,k, ¨ ¨ ¨ , qM2

y,k

ıT
with qy,k “ ej2πvk∆y{λ

and vk “ sinθksinφk being the spatial phase factor and the direction-cosine along the y-axis.
Equation (4) can be further rewritten as

x ptq “ Au pθ, φ, γ, ηq su ptq `Ac pθ, φ, γ, ηq Γsc ptq ` n ptq
“ A pθ, φ, γ, ηqEs ptq ` n ptq

(6)

where s ptq “ rs1 ptq , s2 ptq , ¨ ¨ ¨ , sK ptqs
T and n ptq are the source and noise vectors, respectively.

For brevity, we define s ptq “
“

sT
u ptq , sT

c ptq
‰T with su ptq “ rs1 ptq , s2 ptq , ¨ ¨ ¨ , sKu ptqs

T

and sc ptq “
“

sKu`1 ptq , sKu`2 ptq , ¨ ¨ ¨ , sKu`D ptq
‰T as being the source vectors associated

with the uncorrelated and coherent sources, respectively. E “ blkdiag tIKu , Γu is a
K ˆ pKu ` Dq block diagonal matrix, and Γ is the fading coefficient matrix whose the kth
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column is expressed as σk “

”

ςk,1, ςk,2, ¨ ¨ ¨ , ςk,pk

ıT
for k “ Ku ` 1, Ku ` 2, ¨ ¨ ¨ , Ku ` D.

A pθ, φ, γ, ηq “ rAu pθ, φ, γ, ηq , Ac pθ, φ, γ, ηqs is the array response matrix of size 2M ˆ K,
in which Au pθ, φ, γ, ηq “ ra pθ1, φ1, γ1, η1q , a pθ2, φ2, γ2, η2q , ¨ ¨ ¨ , a pθKu , φKu , γKu , ηKuqs and
Ac pθ, φ, γ, ηq “

“

Ac,Ku`1 pθ, φ, γ, ηq , Ac,Ku`2 pθ, φ, γ, ηq , ¨ ¨ ¨ , Ac,Ku`D pθ, φ, γ, ηqs are the array
manifold matrices corresponding to Ku uncorrelated sources and Kc coherent sources respectively with
Ac,k pθ, φ, γ, ηq “

“

a
`

θk,1, φk,1, γk,1, ηk,1
˘

, a
`

θk,2, φk,2, γk,2, ηk,2
˘

, ¨ ¨ ¨ , a
´

θk,pk
, φk,pk

, γk,pk
, ηk,pk

¯ı

being
the array response matrix of the kth coherent group. The array output of N snapshots collected by the
SD-VS array can be represented by

X “ Au pθ, φ, γ, ηqSu `Ac pθ, φ, γ, ηq ΓSc `N
“ A pθ, φ, γ, ηqES` N

(7)

where X “ rxp1q, xp2q, ¨ ¨ ¨ , xpNqs, Su “ rsup1q, sup2q, ¨ ¨ ¨ , supNqs, Sc “ rscp1q, scp2q, ¨ ¨ ¨ , scpNqs and
S “ rsp1q, sp2q, ¨ ¨ ¨ , spNqs. The objective of the proposed method is to determine the 2-D DOA and
polarization parameters tθk, φk, γk, ηku k “ 1, 2, ¨ ¨ ¨ , K for a mixture of uncorrelated and coherent
sources. For notational convenience, A pθ, φ, γ, ηq, Au pθ, φ, γ, ηq, and Ac pθ, φ, γ, ηq are respectively
abbreviated as A, Au, and Ac in the following analysis.

The basic assumptions utilized throughout this paper are listed as follows.

(1). sptq and nptq are the two mutually uncorrelated zero-mean stationary Gaussian random processes.
(2). Coherent sources tskptqu

Ku`D
k“Ku`1 from different coherent groups are uncorrelated with each other,

and they are uncorrelated with the uncorrelated sources tskptqu
Ku
k“1 as well.

(3). The number of uncorrelated sources, coherent sources, coherent groups and fading coefficients
(i.e., the values of Ku, Kc, D, ςk,p) can be estimated using the source number estimation method [26]
and the fading coefficients estimation method [27].

3. 2-D Parameter Estimation

In this section, a 2-D DOA and polarization estimation method is proposed for a mixture of
uncorrelated and coherent sources by using composition (a) of Figure 1 of the proposed SD-VS array.

3.1. Distinguish Uncorrelated Sources from Coherent Sources

The covariance matrix of X is written as

R “ E
 

XXH( “ AERsEHAH ` σ2
nI

“ AuRuAH
u `AcΓRcΓHAH

c ` σ2
nI

(8)

where σ2
n denotes the noise variance. Rs “ E

!

SSH
)

denotes the source covariance matrix,

Ru “ E
!

SuSH
u

)

and Rc “ E
!

ScSH
c

)

are the source covariance matrices related to the uncorrelated and
the coherent sources, respectively. Due to the fact that the K impinging sources are composed of Ku

uncorrelated sources and D groups of Kc coherent sources, Rs is of rank Ku `D.
By performing eigenvalue decomposition (EVD) on R, Ku ` D larger eigenvalues are selected.

Additionally, the source subspace Es can be constructed from the corresponding Ku `D eigenvectors.
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It is well known that the columns of Es and AE span the same subspace, hence there must exist a
unique full-rank matrix T which satisfies

Es “ AET “ rAu, AcΓsT “

»

—

—

—

—

—

—

—

—

—

—

—

–

Crx,zs
u ∆ux Crx,zs

c ∆cx Γ
...

...

Crx,zs
u ∆M1

ux Crx,zs
c ∆M1

cx Γ

Cry,zs
u ∆uy Cry,zs

c ∆cy Γ
...

...

Cry,zs
u ∆M2

uy Cry,zs
c ∆M2

cy Γ

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

T (9)

where ∆ux “ diag tqx,1, qx,2, ¨ ¨ ¨ , qx,Kuu and ∆uy “ diag
 

qy,1, qy,2, ¨ ¨ ¨ , qy,Ku

(

are two
Ku ˆ Ku diagonal matrices constituted by the x-axis and y-axis spatial phase factors of
uncorrelated sources, and ∆cx “ diag

 

qx,Ku`1,1, ¨ ¨ ¨ , qx,Ku`1,p1 , ¨ ¨ ¨ , qx,Ku`D,1, ¨ ¨ ¨ , qx,Ku`D,pD

(

and ∆cy “ diag
 

qy,Ku`1,1, ¨ ¨ ¨ , qy,Ku`1,p1 , ¨ ¨ ¨ , qy,Ku`D,1, ¨ ¨ ¨ , qy,Ku`D,pD

(

are
two Kc ˆ Kc diagonal matrices constituted by the x-axis and y-axis spatial

phase factors of coherent sources. Crx,zs
u “ rcx,1, cx,2, ¨ ¨ ¨ , cx,Ku s, Cry,zs

u “
“

cy,1, cy,2, ¨ ¨ ¨ , cy,Ku

‰

, Crx,zs
c “

“

cx,Ku`1,1, ¨ ¨ ¨ , cx,Ku`1,p1 , ¨ ¨ ¨ , cx,Ku`D,1, ¨ ¨ ¨ , cx,Ku`D,pD

‰

and

Cry,zs
c “

“

cy,Ku`1,1, ¨ ¨ ¨ , cy,Ku`1,p1 , ¨ ¨ ¨ , cy,Ku`D,1, ¨ ¨ ¨ , cy,Ku`D,pD

‰

.
According to the array configuration of the proposed SD-VS array, Es can be divided into four

submatrices with the identical size, which is given by

Es “

„

´

Erxss

¯T
,
´

Erzxs
s

¯T
,
´

Eryss

¯T
,
´

E
rzys
s

¯T
T

(10)

where
Erxss “ GT

2M1,1Erx,zs
s (11)

Erzxs
s “ GT

2M1,2Erx,zs
s (12)

Eryss “ GT
2M2,1Ery,zs

s (13)

E
rzys
s “ GT

2M2,2Ery,zs
s (14)

with Erx,zs
s and Ery,zs

s being the first 2M1 and the last 2M2 rows of Es, and Gl,n is an exchange matrix
defined as

Gl,n “ rgn, gn`2, ¨ ¨ ¨ , gn`l´2s , n “ 1, 2 (15)

where gi is a l ˆ 1 unit vector with one on the ith row and zeros elsewhere. Intuitively, Erxss , Erzxs
s , Eryss

and E
rzys
s are characteristic of inherent rotational-invariant structure, thus any one of them can be used

for distinguishing uncorrelated sources from coherent sources. Here, we take Erxss as an example.
By taking advantage of the rotational invariance, Erxss can be divided into two overlapped

submatrices, as
Erxs1s “ JM1,1Erxss (16)

Erxs2s “ JM1,2Erxss (17)

with the selection matrix Jl,n “
”

0pl´1qˆpn´1q Ipl´1q 0pl´1qˆp2´nq

ı

. Combining Equations (16) with
(17) yields

´

Erxs1s

¯†
Erxs2s “ T´1∆xT (18)
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where ∆x “ blkdiag
!

∆ux , Γ†∆cx Γ
)

is a block diagonal matrix that contains the DOA information of
both uncorrelated and coherent sources. As can be seen from Equation (18), ∆x is constructed by

extracting the Ku ` D larger eigenvalues of
´

Erxs1s

¯†
Erxs2s and the full-rank matrix T´1 is obtained

from the corresponding Ku ` D eigenvectors. Based on modulus property outlined in [28], the
moduli of the elements in ∆ux are approximately equivalent to 1 in the case of noise disturbance, i.e.,
||det p∆uxq| ´ 1| “ ε with ε Ñ 0 (in the noise-free case, ε “ 0), while those in ∆cx are far away from 1.
Following this principle, the uncorrelated sources can be distinguished from the coherent sources.

In order to construct the uncorrelated eigenvector matrix T´1
u , Ku column vectors corresponding to

uncorrelated sources are extracted from T´1. Similarly, the remaining D column vectors corresponding
to coherent sources are extracted to construct the matrix T´1

c .

3.2. 2-D Parameter Estimation for Uncorrelated Sources

The estimation of Au is given by

Âu “ EsT´1
u “

»

—

—

—

—

—

—

—

—

—

—

—

–

Crx,zs
u ∆ux

...

Crx,zs
u ∆M1

ux

Cry,zs
u ∆uy

...

Cry,zs
u ∆M2

uy

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(19)

For the kth uncorrelated source, we have Âu,k “ EsT´1
u,k , where T´1

u,k is the eigenvector of the kth
uncorrelated source selected from T´1

u . With the definition of the exchange matrix Gl,n, Âu,k can be
partitioned as

Âu,k “

„

´

Ârxsu,k

¯T
,
´

Ârzxs
u,k

¯T
,
´

Ârysu,k

¯T
,
´

Â
rzys

u,k

¯T
T

(20)

where
Ârxsu,k “ GT

2M1,1Ârx,zs
u,k (21)

Ârzxs
u,k “ GT

2M1,2Ârx,zs
u,k (22)

Ârysu,k “ GT
2M2,1Âry,zs

u,k (23)

Â
rzys

u,k “ GT
2M2,2Âry,zs

u,k (24)

with Ârx,zs
u,k and Âry,zs

u,k the first 2M1 and the last 2M2 rows of Âu,k.
Combining Equations (21) with (22) yields

êrxsu,k

êrzsu,k

“

´

Ârzxs
u,k

¯†
Ârxsu,k “

„

´cotθkcosφk ` cotγk
sinφk
sinθk

cosηk



` j
„

´cotγk
sinφk
sinθk

sinηk



(25)

In a similar way, by exploiting Equations (23) and (24), we have

êrysu,k

êrzsu,k

“

´

Â
rzys

u,k

¯†
Ârysu,k “

„

´cotθksinφk ´ cotγk
cosφk
sinθk

cosηk



` j
„

cotγk
cosφk
sinθk

sinηk



(26)

According to Equations (25) and (26), we can obtain four real-valued equations:

Re
´

êrxsu,k{ê
rzs
u,k

¯

“ ´cotθkcosφk ` cotγk
sinφk
sinθk

cosηk, Im
´

êrxsu,k{ê
rzs
u,k

¯

“ ´cotγk
sinφk
sinθk

sinηk, Re
´

êrysu,k{ê
rzs
u,k

¯

“
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´cotθksinφk ´ cotγk
cosφk
sinθk

cosηk, Im
´

êrysu,k{ê
rzs
u,k

¯

“ cotγk
cosφk
sinθk

sinηk. Then, the closed-form
estimation-formulas (i.e., coarse estimates) of azimuth angle, elevation angle, auxiliary polarization
angle, and the polarization phase difference are given by

φ̂coarse
k “

$

’

’

’

’

&

’

’

’

’

%

tan´1

#

´Im
´

êrxsu,k {ê
rzs
u,k

¯

Im
´

êrysu,k {ê
rzs
u,k

¯

+

, if
´

sinηk ¨ Im
´

êrysu,k{ê
rzs
u,k

¯

ě 0
¯

tan´1

#

´Im
´

êrxsu,k {ê
rzs
u,k

¯

Im
´

êrysu,k {ê
rzs
u,k

¯

+

` π, if
´

sinηk ¨ Im
´

êrysu,k{ê
rzs
u,k

¯

ă 0
¯

(27)

θ̂coarse
k “

$

&

%

tan´1
!

1
H

)

, if pH ě 0q

tan´1
!

1
H

)

` π, if pH ă 0q

H “ ´Re
´

êrxsu,k{ê
rzs
u,k

¯

cosφ̂coarse
k ´Re

´

êrysu,k{ê
rzs
u,k

¯

sinφ̂coarse
k

(28)

η̂coarse
k “ ´=

´´

êrxsu,k{ê
rzs
u,k

¯

sinφ̂coarse
k ´

´

êrysu,k{ê
rzs
u,k

¯

cosφ̂coarse
k

¯

(29)

γ̂coarse
k “ cot´1

¨

˝

Im
´

êrysu,k{ê
rzs
u,k

¯

sinφ̂coarse
k

cosφ̂coarse
k sinη̂coarse

k

˛

‚ (30)

Based on the above derivation, the coarse estimates of composition (a) are achieved. Note that the
composition (b) is made up of loop-loop pairs, thus Equations (2) and (3) are respectively replaced
by cx “ rhT

x , hT
z s

T and cy “ rhT
y , hT

z s
T . Similarly, for composition (c), we have cx “ rhT

x , eT
z s

T and

cy “ rhT
y , eT

z s
T ; for composition (d), we have cx “ reT

x , hT
z s

T and cy “ reT
y , hT

z s
T . As a result, the coarse

estimates of the other three antenna compositions (composition (b), (c) and (d)) are obtained in the
same manner as those of composition (a), which are given in Table 1. Due to the fact that these coarse
estimates are irrespective of the sizes of the inter-sensor spacings ∆x and ∆y, they are unambiguous
but inaccurate. Note that the method in [29] also derives the closed-form polarization-estimation
formulas, but it operates on the premise that the DOA of the incident source is already known.
By contrast, our approach can provide the closed-form estimation formulas for both DOA and
polarization parameters. Additionally, our approach can provide the fine DOA estimates, which
is given in the following description.

To obtain the fine estimates, we need to estimate the spatial phase factors q̂x,k and q̂y,k related to

the array geometric aperture. By taking advantage of the inherent rotational-invariant structure of Ârxsu,k

and Ârysu,k, we have

q̂x,k “
´

Ârxs1u,k

¯†
Ârxs2u,k (31)

q̂y,k “
´

Ârys1u,k

¯†
Ârys2u,k (32)

where
Ârxs1u,k “ JM1,1Ârxsu,k (33)

Ârxs2u,k “ JM1,2Ârxsu,k (34)

Ârys1u,k “ JM2,1Ârysu,k (35)

Ârys2u,k “ JM2,2Ârysu,k (36)
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Table 1. Coarse estimates of uncorrelated sources for four different antenna compositions.

Composition Estimation Formulas Intermediate Variables

(a)

φ̂coarse
k “

$

’

’

’

’

&

’

’

’

’

%

tan´1

#

´Im
´

êrxs

u,k {ê
rzs

u,k

¯

Im
´

êrys

u,k {ê
rzs

u,k

¯

+

, if
´

sinηk ¨ Im
´

êrysu,k{ê
rzs
u,k

¯

ě 0
¯

tan´1

#

´Im
´

êrxs

u,k {ê
rzs

u,k

¯

Im
´

êrys

u,k {ê
rzs

u,k

¯

+

` π, if
´

sinηk ¨ Im
´

êrysu,k{ê
rzs
u,k

¯

ă 0
¯

θ̂coarse
k “

$

&

%

tan´1
!

1
H

)

, if pH ě 0q

tan´1
!

1
H

)

` π, if pH ă 0q

η̂coarse
k “ ´=

´´

êrxsu,k{ê
rzs
u,k

¯

sinφ̂coarse
k ´

´

êrysu,k{ê
rzs
u,k

¯

cosφ̂coarse
k

¯

γ̂coarse
k “ cot´1

˜

Im
´

êrys

u,k {ê
rzs

u,k

¯

sinφ̂coarse
k

cosφ̂coarse
k sinη̂coarse

k

¸

êrxs

u,k

êrzs

u,k

“

”

´cotθkcosφk ` cotγk
sinφk
sinθk

cosηk

ı

` j
”

´cotγk
sinφk
sinθk

sinηk

ı

êrys

u,k

êrzs

u,k

“

”

´cotθksinφk ´ cotγk
cosφk
sinθk

cosηk

ı

` j
”

cotγk
cosφk
sinθk

sinηk

ı

H “ ´Re
´

êrxsu,k{ê
rzs
u,k

¯

cosφ̂coarse
k ´Re

´´

êrysu,k{ê
rzs
u,k

¯¯

sinφ̂coarse
k

(b)

φ̂coarse
k “

$

’

’

’

’

&

’

’

’

’

%

tan´1

#

´Im
´

ĥrxs

u,k {ĥ
rzs

u,k

¯

Im
´

ĥrys

u,k {ĥ
rzs

u,k

¯

+

, if
´

sinηk ¨ Im
´

ĥrysu,k{ĥ
rzs
u,k

¯

ě 0
¯

tan´1

#

´Im
´

ĥrxs

u,k {ĥ
rzs

u,k

¯

Im
´

ĥrys

u,k {ĥ
rzs

u,k

¯

+

` π, if
´

sinηk ¨ Im
´

ĥrysu,k{ĥ
rzs
u,k

¯

ă 0
¯

θ̂coarse
k “

$

&

%

tan´1
!

1
H

)

, if pH ě 0q

tan´1
!

1
H

)

` π, if pH ă 0q

η̂coarse
k “ ´=

´´

ĥrxsu,k{ĥ
rzs
u,k

¯

cosφ̂coarse
k ´

´

ĥrysu,k{ĥ
rzs
u,k

¯

sinφ̂coarse
k

¯

γ̂coarse
k “ tan´1

˜

Im
´

ĥrys

u,k {ĥ
rzs

u,k

¯

sinθ̂coarse
k

cosφ̂coarse
k sinη̂coarse

k

¸

ĥrxs

u,k

ĥrzs

u,k

“

”

´cotθkcosφk ´ tanγk
sinφk
sinθk

cosηk

ı

` j
”

´tanγk
sinφk
sinθk

sinηk

ı

ĥrys

u,k

ĥrzs

u,k

“

”

´cotθksinφk ` tanγk
cosφk
sinθk

cosηk

ı

` j
”

tanγk
cosφk
sinθk

sinηk

ı

H “ ´Re
´

ĥrxsu,k{ĥ
rzs
u,k

¯

cosφ̂coarse
k ´Re

´

ĥrysu,k{ĥ
rzs
u,k

¯

sinφ̂coarse
k
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Table 1. Cont.

Composition Estimation Formulas Intermediate Variables

(c)

φ̂coarse
k “

$

’

’

’

’

&

’

’

’

’

%

cot´1

#

Im
´

ĥrxs

u,k {ê
rzs

u,k

¯

Im
´

ĥrys

u,k {ê
rzs

u,k

¯

+

, if
´

sinηk ¨ Im
´

ĥrxsu,k{ê
rzs
u,k

¯

ě 0
¯

cot´1

#

Im
´

ĥrxs

u,k {ê
rzs

u,k

¯

Im
´

ĥrys

u,k {ê
rzs

u,k

¯

+

` π, if
´

sinηk ¨ Im
´

ĥrxsu,k{ê
rzs
u,k

¯

ă 0
¯

θ̂coarse
k “

$

&

%

sin´1
!

1
H

)

, if θk P r0, π{2 s

π´ sin´1
!

1
H

)

, if θk P pπ{2, πs

η̂coarse
k “ ´=

´´

ĥrxsu,k{ê
rzs
u,k

¯

cosφ̂coarse
k `

´

ĥrysu,k{ê
rzs
u,k

¯

sinφ̂coarse
k

¯

γ̂coarse
k “ cot´1

˜

´Im
´

ĥrys

u,k {ê
rzs

u,k

¯

sinφ̂coarse
k cotθ̂coarse

k sinη̂coarse
k

¸

ĥrxs

u,k

êrzs

u,k

“

”

sinφk
sinθk

` cosφkcotθkcotγkcosηk

ı

` j r´cosφkcotθkcotγksinηks

ĥrys

u,k

êrzs

u,k

“

”

´
cosφk
sinθk

` sinφkcotθkcotγkcosηk

ı

` j r´sinφkcotθkcotγksinηks

H “ ´Re
´

ĥrxsu,k{ê
rzs
u,k

¯

sinφ̂coarse
k ´Re

´

ĥrysu,k{ê
rzs
u,k

¯

cosφ̂coarse
k

(d)

φ̂coarse
k “

$

’

’

’

’

&

’

’

’

’

%

cot´1

#

Im
´

êrxs

u,k {ĥ
rzs

u,k

¯

Im
´

êrys

u,k {ĥ
rzs

u,k

¯

+

, if
´

sinηk ¨ Im
´

êrxsu,k{ĥ
rzs
u,k

¯

ě 0
¯

cot´1

#

Im
´

êrxs

u,k {ĥ
rzs

u,k

¯

Im
´

êrys

u,k {ĥ
rzs

u,k

¯

+

` π, if
´

sinηk ¨ Im
´

êrxsu,k{ĥ
rzs
u,k

¯

ă 0
¯

θ̂coarse
k “

$

&

%

sin´1
!

1
H

)

, if θk P r0, π{2 s

π´ sin´1
!

1
H

)

, if θk P pπ{2, πs

η̂coarse
k “ =

´´

êrxsu,k{ĥ
rzs
u,k

¯

cosφ̂coarse
k `

´

êrysu,k{ĥ
rzs
u,k

¯

sinφ̂coarse
k

¯

γ̂coarse
k “ tan´1

˜

Im
´

êrxs

u,k {ĥ
rzs

u,k

¯

sinφ̂coarse
k cotθ̂coarse

k sinη̂coarse
k

¸

êrxs

u,k

ĥrzs

u,k

“

”

´
sinφk
sinθk

` cosφkcotθktanγkcosηk

ı

` j rcosφkcotθktanγksinηks

êrys

u,k

ĥrzs

u,k

“

”

cosφk
sinθk

` sinφkcotθktanγkcosηk

ı

` j rsinφkcotθktanγksinηks

H “ ´Re
´

êrxsu,k{ĥ
rzs
u,k

¯

cosφ̂coarse
k ´Re

´

êrysu,k{ĥ
rzs
u,k

¯

sinφ̂coarse
k



Sensors 2016, 16, 789 12 of 23

And the fine estimates of x-axis and y-axis direction-cosines are given by

u f ine
u,k “

λ

2π∆x
=q̂x,k (37)

v f ine
u,k “

λ

2π∆y
=q̂y,k (38)

Since the inter-sensor spacings ∆x and ∆y are beyond λ{2 , cyclical ambiguity may exist in
Equations (37) and (38), that is

ûu,k “ u f ine
u,k `m˝k

λ

∆x
(39)

v̂u,k “ v f ine
u,k ` n˝k

λ

∆y
(40)

where

m˝k “ arg min
mk

ˇ

ˇ

ˇ

ˇ

ucoarse
u,k ´ u f ine

u,k ´
m˝k λ

∆x

ˇ

ˇ

ˇ

ˇ

(41)

n˝k “ arg min
nk

ˇ

ˇ

ˇ

ˇ

vcoarse
u,k ´ v f ine

u,k ´
n˝k λ

∆y

ˇ

ˇ

ˇ

ˇ

(42)

for
m˝k P

!Q

∆x{λ
´

´1´ ucoarse
u,k

¯U

,
Y

∆x{λ
´

1´ ucoarse
u,k

¯])

(43)

n˝k P
!Q

∆y{λ
´

´1´ vcoarse
u,k

¯U

,
Y

∆y{λ
´

1´ vcoarse
u,k

¯])

(44)

where the coarse estimates of the x-axis and y-axis direction-cosines are defined by
ucoarse

u,k “ sinθ̂coarse
k cosφ̂coarse

k and vcoarse
u,k “ sinθ̂coarse

k sinφ̂coarse
k , which are used for disambiguation. As a

result, the 2-D refined and unambiguous angles are given by θ̂u,k “ sin´1
ˆ

b

`

ûu,k
˘2
`
`

v̂u,k
˘2
˙

and

φ̂u,k “ =
`

ûu,k ` jv̂u,k
˘

.

3.3. 2-D Parameter Estimation for Coherent Sources

Similar to the 2-D DOA and polarization estimation for the uncorrelated sources, the coherent
sources are also resolved by three steps: (1) the coarse estimates; (2) the fine estimates with cyclical
ambiguity; (3) using the coarse estimates to disambiguate the fine estimates.

The estimation of array response matrix with respect to the kth pk “ Ku ` 1, Ku ` 2, ¨ ¨ ¨ , Ku `Dq
coherent group Âc,k is given by

Âc,k “ EsT´1
c,k “

»

—

—

—

—

—

—

—

—

—

—

—

—

–

Crx,zs
c,k ∆k

cx ςk
...

Crx,zs
c,k

´

∆k
cx

¯M1
ςk

Cry,zs
c,k ∆k

cy ςk
...

Cry,zs
c,k

´

∆k
cy

¯M2
ςk

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(45)

where T´1
c,k denotes the coherent eigenvector of the kth coherent group,

Crx,zs
c,k “

“

cx,Ku`k,1, ¨ ¨ ¨ , cx,Ku`k,pk

ı

and Cry,zs
c,k “

”

cy,Ku`k,1, ¨ ¨ ¨ , cy,Ku`k,pk

ı

. Using the

similar way as for Equation (20), Âc,k can be partitioned into four submatrices

Âc,k “

„

´

Ârxsc,k

¯T
,
´

Ârzxs
c,k

¯T
,
´

Ârysc,k

¯T
,
´

Â
rzys

c,k

¯T
T

, where Ârxsc,k “ GT
2M1,1Ârx,zs

c,k , Ârzxs
c,k “ GT

2M1,2Ârx,zs
c,k ,
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Ârysc,k “ GT
2M2,1Âry,zs

c,k , and Â
rzys

c,k “ GT
2M2,2Âry,zs

c,k with Ârx,zs
c,k and Âry,zs

c,k being the first 2M1 and the last
2M2 rows of Âc,k. However, Âc,k and its submatrices cannot be applied to DOA estimation directly
owing to the rank deficiency (i.e., rank

`

Âc,k
˘

“ 1).
Thus, four Hankel matrices are constructed for the purpose of “decorrelating”, that is

Brxsc,k “

»

—

—

—

—

—

–

Ârxsc,k p1q Ârxsc,k p2q ¨ ¨ ¨ Ârxsc,k ppkq

Ârxsc,k p2q Ârxsc,k p3q ¨ ¨ ¨ Ârxsc,k ppk ` 1q
...

...
. . .

...

Ârxsc,k pM1 ´ pkq Ârxsc,k pM1 ´ pk ` 1q ¨ ¨ ¨ Ârxsc,k pM1q

fi

ffi

ffi

ffi

ffi

ffi

fl

(46)

Brzxs
c,k “

»

—

—

—

—

—

–

Ârzxs
c,k p1q Ârzxs

c,k p2q ¨ ¨ ¨ Ârzxs
c,k ppkq

Ârzxs
c,k p2q Ârzxs

c,k p3q ¨ ¨ ¨ Ârzxs
c,k ppk ` 1q

...
...

. . .
...

Ârzxs
c,k pM1 ´ pkq Ârzxs

c,k pM1 ´ pk ` 1q ¨ ¨ ¨ Ârzxs
c,k pM1q

fi

ffi

ffi

ffi

ffi

ffi

fl

(47)

Brysc,k “

»

—

—

—

—

—

–

Ârysc,k p1q Ârysc,k p2q ¨ ¨ ¨ Ârysc,k ppkq

Ârysc,k p2q Ârysc,k p3q ¨ ¨ ¨ Ârysc,k ppk ` 1q
...

...
. . .

...

Ârysc,k pM2 ´ pkq Ârysc,k pM2 ´ pk ` 1q ¨ ¨ ¨ Ârysc,k pM2q

fi

ffi

ffi

ffi

ffi

ffi

fl

(48)

B
rzys

c,k “

»

—

—

—

—

—

–

Â
rzys

c,k p1q Â
rzys

c,k p2q ¨ ¨ ¨ Â
rzys

c,k ppkq

Â
rzys

c,k p2q Â
rzys

c,k p3q ¨ ¨ ¨ Â
rzys

c,k ppk ` 1q
...

...
. . .

...

Â
rzys

c,k pM2 ´ pkq Â
rzys

c,k pM2 ´ pk ` 1q ¨ ¨ ¨ Â
rzys

c,k pM2q

fi

ffi

ffi

ffi

ffi

ffi

fl

(49)

where M1 ´ pk ą pk and M2 ´ pk ą pk must be satisfied. It is easy to be proved that the matrices Brxsc,k ,

Brzxs
c,k , Brysc,k and B

rzys

c,k are of rank pk, which is a precondition for estimating the DOA and polarization

parameters of the coherent sources correctly. Therefore, Brxsc,k , Brzxs
c,k , Brysc,k , and B

rzys

c,k can be used in place

of Ârxsc,k , Ârzxs
c,k , Ârysc,k , and Â

rzys

c,k that defined in Equations (21)–(24) respectively for the derivation of
coherent coarse estimates and fine estimates with cyclical ambiguity, which is similar to what we did
for the uncorrelated sources, and hence it is omitted here. In addition, it should be noted that the pk
direction-cosines along x-axis and the pk direction-cosines along y-axis with respect to the kth coherent
group must obey one-to-one relationship, thus we resort to a simple pair matching method outlined
in [8].

The main steps of the proposed method are summarized in Table 2.
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Table 2. The main steps of the proposed method.

Input: xp1q, xp2q, ¨ ¨ ¨ , xpNq

1. Obtain X according to Equation (7)

Distinguish Uncorrelated Sources from Coherent Sources:

2. Calculate the covariance matrix R of X via Equation (8)
3. Divide Es into four submatrices according to Equation (10)

4. Calculate
´

Erxs1s

¯†
Erxs2s according to Equation (18)

5. Distinguish uncorrelated sources from coherent sources based on the moduli of the eigenvalues

Parameter Estimation for Uncorrelated Sources:

6. Coarse estimates of DOA and polarization

6-1. Estimate Au via Equation (19) and obtain Ârxsu,k , Ârzxs

u,k , Ârysu,k and Ârzys

u,k from Equations (21)–(24)

6-2. Compute êrxsu,k{ê
rzs
u,k and êrysu,k{ê

rzs
u,k via Equations (25) and (26)

6-3. The coarse estimates of DOA and polarization are obtained from Equations (27)–(30) and the
corresponding direction-cosines along x-axis and y-axis are acquired.

7. Fine estimates of DOA with cyclical ambiguity
7-1. Estimate the x-axis and y-axis spatial phase factors via Equations (31) and (32)
7-2. Estimate fine but cyclically ambiguous x-axis and y-axis direction-cosines using Equations (37)–(40)
8. Disambiguate the fine estimates by using the coarse estimates

Parameter Estimation for Coherent Sources:

9. Estimate Âc,k via Equation (45) and then partition it into four submatrices: Ârxsc,k , Ârzxs

c,k , Ârysc,k , and Ârzys

c,k
10. Construct four Hankel matrices according to Equations (46)–(49) for “decorrelating”
11. For the coherent sources, the coarse estimates and the fine estimates with cyclical ambiguity are obtained

by utilizing four Hankel matrices, and then the coarse estimates serve as references for disambiguating the
fine estimates.

4. Discussion

To describe the proposed method more comprehensively, several individual properties,
computational complexity analysis, and the extension of the proposed method are discussed in
this section.

4.1. Individual Properties

Unlike the existing DOA estimation methods for a mixture of uncorrelated and coherent sources
with vector sensor array, such as the PAS method [13] and the IPAS method [14], the proposed method
has some individual properties that should be highlighted.

(1). Estimation of both DOA and polarization parameters. Different from the PAS and the IPAS
methods, the proposed method can provide not only the DOA estimates, but also the polarization
estimates which can be further utilized for target classification and recognition.

(2). Extended array aperture. The proposed method extends the effective array aperture from two
aspects: (1) separating the uncorrelated sources from the coherent sources; (2) extending the
inter-sensor spacings beyond a half-wavelength. By contrast, the PAS and IPAS methods are
restricted to the spatial Nyquist sampling theorem, that is, the inter-sensor spacing must be no
more than a half-wavelength. Thus, the proposed method has a comparatively extended array
aperture which enhances the estimation accuracy accordingly.

(3). Reduction in mutual coupling effects and antenna hardware costs. Compared with the spatially
collocated six-component vector sensor array used in the existing methods, the number of
collocated antennas of the proposed L-shaped SD-VS array is reduced from six to two, which
significantly reduces the mutual coupling effects. In addition, the antenna hardware costs
are reduced.
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(4). Adaptation to SD-VS array with different antenna compositions. The proposed method is
applicable to four different antenna compositions as shown in Table 1, not limited to a unique
antenna composition, which makes it more suitable for the practical situations.

4.2. Computational Complexity

To demonstrate the computational efficiency of the proposed method, we discuss the
computational complexities of the proposed method, PAS method, and IPAS method. Note that
a large portion of the computational burden is occupied by the multiplication operations as compared
to the addition operations, thus here we only consider the multiplication operations during the
discussion of the computational complexities.

Table 3 presents the comparison of computational complexity of the three methods, wherein
the main computational burden such as the calculation of covariance matrix, EVD, or singular value
decomposition (SVD), Moore-Penrose and peak search are considered. L denotes the snapshot number.
∆s denotes the number of spectral points of the total angular domain, which can be determined by
∆s “ ∆θ∆φ with ∆θ and ∆φ being the sample points of elevation and azimuth angles, respectively.

Table 3. Comparison of computational complexity of three methods.

Methods Covariance Matrix EVD/SVD Moore-Penrose Peak Search

Proposed M2L M3 ` 4p3
k

pKu `Dq3 ` 2 pKu `Dq2 M1 ` 4p3
k `

2p2
k pM´ 2pk ´ 2q ` 2p2

k pM´ 2pkq `

4M´ 4
without

PAS 6M2L M3 without ∆s pM` 1q ˆ
pM´ Kq

IPAS M2L` 6 p0.5Mq3 M3 ` 2 pKu `Dq3 `
p0.5Mq3 ` 2p3

k

2
”

pKu `Dq3 ` 2 pKu `Dq2 p0.5M´ 1q
ı

`

2
“

p3
k ` 2p2

k p0.5M´ 1q
‰

without

As can be seen from Table 3, the total computational complexities of the three methods are
approximately given by (For convenience comparison, M1 “ 0.5M)

CPro « M3 `M2L` 4M
D
ÿ

k“1

p2
k ` pKu `Dq2 M (50)

CPAS « M3 ` 6M2L` ∆s

´

M2 ´MK
¯

(51)

CIPAS « 1.875M3 `M2L` 2M
D
ř

k“1
p2

k ` 2 pKu `Dq2 M

“ 0.875M3 ´ 2M
D
ř

k“1
p2

k ` pKu `Dq2 M` CPro

(52)

It is seen that the proposed method and the IPAS method have the similar computational
complexity, which is much lower than that of the PAS method. Note that the PAS method involves
intensive 2-D spectral search operation, in which the inequality ∆s " M holds, hence it requires more
computational burdens than the proposed method and the IPAS method. Furthermore, the advantage
of the proposed method in terms of computational complexity becomes increasingly obvious with the
increase of M and ∆s.
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4.3. Extension to the Coexistence of Correlated and Coherent Sources

The proposed method can be extended to the scenario where correlated and coherent sources
coexist. In such a scenario, the array output vector defined in Equation (4) can be rewritten as

x ptq “
Kpc
ÿ

k“1

a pθk, φk, γk, ηkq sk ptq `
Ku`D
ÿ

k“Ku`1

pk
ÿ

p“1

a
´

θk,p, φk,p, γk,p, ηk,p

¯

ςk,psk ptq ` n ptq (53)

where Kpc denotes the number of partially correlated sources. The partially correlated sources can
be distinguished from the coherent sources based on the moduli of the eigenvalues, which is similar
to the separation method used for a mixture of uncorrelated and coherent sources. Afterwards, the
partially correlated sources and the remaining coherent sources are resolved in accordance with the
methods in Sections 3.2 and 3.3 respectively.

5. Simulation

In this section, several simulations are presented to illustrate the performance of the proposed
method. Consider an L-shaped SD-VS array which contains a total of M “ p5` 5q ˆ 2 dipoles and/or
loops, i.e., 20 dipoles and/or loops all altogether. For the sake of convenience, we consider ∆x “ ∆y and
M1 “ M2. Two hundred independent Monte Carlo trials are conducted for the following simulations,
and the root mean squared error (RMSE) is chosen as a performance metric, which is defined as

RMSE “

g

f

f

e

1

200rK

200
ÿ

i“1

rK
ÿ

k“1

`

θ̂k ´ θk
˘2
`
`

φ̂k ´ φk
˘2 (54)

where θ̂k and φ̂k are the estimates of θk and φk in the kth Monte Carlo trial, rK denotes the number of
uncorrelated or coherent sources.

In the first simulation, we evaluate the DOA and polarization estimation performance of the
proposed method. Assume that the three far-field narrowband completely polarized electromagnetic
wave sources are composed of one uncorrelated source and two coherent sources impinge on this
array. The uncorrelated source is parameterized by t20.5˝, 70.3˝, 40˝, 50˝u, and the coherent sources
are parameterized by t60.0˝, 120.6˝, 18˝,´54˝u and t45.2˝, 20.7˝, 62˝, 84˝u with the fading coefficients
r1, ´0.5280` 0.6010js. The SNR, snapshot number and the inter-sensor spacings are set to be 15 dB,
500 and ∆x “ ∆y “ 3λ, respectively. The coarse estimates of azimuth-elevation angles, the estimates of
polarization parameters and the refined estimates of azimuth-elevation angles are shown in Figures 2–4
respectively. It can be seen from Figures 2–4 that the proposed method is able to estimate the DOA and
polarization parameters of impinging sources efficiently, and the accuracy of the refined estimation has
been improved significantly as compared to that of the coarse estimates. The polarization parameters
are obtained from the coarse estimates of azimuth-elevation angles, and hence they share the same
estimation accuracy with the coarse estimates ofazimuth-elevation angles.
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In the second simulation, the RMSE of the proposed method versus the inter-sensor spacings is
investigated. The simulation settings are the same as those of the first simulation, except that the
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inter-sensor spacings in this simulation are ranged from 0.5λ to 20λ. Figure 5 plots the RMSE versus
the inter-sensor spacings with the fixed SNR 15 dB and snapshot number 500. It can be seen from
Figure 5 that the RMSE tends to decrease with the increase of inter-sensor spacings under the condition
that ∆x “ ∆y ď 14.5λ, which is consistent with the foregoing theoretical analysis. However, when
further increasing the inter-sensor spacings to ∆x “ ∆y ą 14.5λ, the RMSEs of both uncorrelated
and coherent sources begin to increase. The reason for this phenomenon is that the increase of the
inter-sensor spacings means the extension of array aperture, which helps to enhance the estimation
accuracy. On the other hand, as the inter-sensor spacings increase, the grid sizes for fine estimates
tend to decrease, but the coarse estimates remain unchanged. This implies that the probability that the
coarse estimates may identify the wrong grid point will increase accordingly, thus the corresponding
estimation performance would degrade seriously.
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The third simulation compares estimation performance of the proposed method with that of
the PAS and IPAS methods versus SNR and the snapshot number. For comparison purposes, an
11-element L-shaped six-component vector sensor array is adopted, which contains a total of 11ˆ 6
dipoles or loops. Obviously, the antenna hardware cost of the SD-VS array required by the proposed
method is significantly less than that of six-component vector sensor array required by the PAS and
IPAS methods. Considering one uncorrelated source parameterized by t30.5˝, 69.7˝, 30˝, 53˝u and two
coherent sources are parameterized by t53.6˝, 108.6˝, 18˝,´54˝u and t41.2˝, 16.5˝, 61˝, 79˝u with the
fading coefficients r1, ´0.3358´ 0.7261js. The inter-sensor spacings along the x-axis and y-axis are set
to be ∆x “ ∆y “ 3λ for the proposed method, while those are set to be ∆x “ ∆y “ 0.5λ for the PAS
and IPAS methods in accordance with the spatial Nyquist sampling theorem. The RMSE versus SNR
with fixed snapshot number of 500 for uncorrelated and coherent sources are presented in Figures 6
and 7 respectively, while Figures 8 and 9 present the RMSE versus snapshot number with fixed SNR of
15 dB for uncorrelated and coherent sources.
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The results from Figures 6–9 demonstrate that the proposed method yields more accurate DOA
estimates than the PAS and IPAS methods. The reason is that both the PAS and the IPAS methods
are restricted to the spatial Nyquist sampling theorem, while the proposed method can extend the
inter-sensor spacing beyond a half-wavelength. That is to say, the proposed method has a larger
array aperture as compared to the PAS and IPAS methods, and hence the estimation accuracy is
improved accordingly. Moreover, the PAS method deals with the uncorrelated and coherent sources
simultaneously, which leads to a low utilization of the array aperture, while the proposed method and
the IPAS method estimate the uncorrelated and coherent sources separately. It should also be noted
that the modulus property principle is exploited to eliminate the uncorrelated sources in the proposed
method, which causes no power loss of coherent sources. However, the power loss of coherent sources
may occur in the IPAS method due to the spatial differencing theory.

In the last simulation, the proposed method is extended to the scenario where partially
correlated and coherent sources coexist. There are two partially correlated sources parameterized by
t32.2˝, 40.3˝, 34˝, 67˝u and t45.9˝, 54.7˝, 40˝,´15˝u with the correlation coefficient ρejα “ 0.3ej117.93˝

and two coherent sources parameterized by t82.7˝, 30.6˝, 19˝,´45˝u and t21.2˝, 66.7˝, 31˝, 74˝u with
the fading coefficients r1, 0.2891´ 0.7567js. The inter-sensor spacings along the x-axis and y-axis are
set to be ∆x “ ∆y “ 3λ, and the RMSE of DOA estimates for partially correlated sources are defined in
a similar way as for the uncorrelated and coherent sources (Equation (53)). Figure 10 shows the RMSE
versus SNR with the fixed snapshot number of 500, and Figure 11 plots the RMSE versus snapshot
number with the fixed SNR of 15 dB. The results from Figures 10 and 11 illustrate that the proposed
method can be extended to deal with the coexistence of correlated and coherent sources.
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6. Conclusions

In this paper, we develop an L-shaped sparsely-distributed vector sensor (SD-VS) array with four
different antenna compositions, with which a novel 2-D DOA and polarization estimation method
is developed for a mixture of uncorrelated and coherent sources. On the basis of the moduli of the
eigenvalues, the uncorrelated sources are separated from the coherent sources. Subsequently, the
coarse estimates of uncorrelated sources are achieved, and then used as coarse references for the fine
estimates with cyclical ambiguity. Finally, four Hankel matrices are constructed for the purpose of
“decorrelating”, with which the coherent sources are resolved in a similar way as for the uncorrelated
sources. For the proposed L-shaped SD-VS array, the number of collocated antennas of each sensor is
two and the inter-sensor spacings can be far larger than a half-wavelength, which reduces the mutual
coupling effects and meanwhile extends the array aperture. Moreover, the proposed method has a low
computational burden. Simulation results show that the proposed method can estimate both the DOA
and polarization parameters of the mixed sources efficiently and has better estimation performance
than the PAS and IPAS methods in terms of estimation accuracy.
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