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Abstract: For the past few decades, action recognition has been attracting many researchers due
to its wide use in a variety of applications. Especially with the increasing number of smartphone
users, many studies have been conducted using sensors within a smartphone. However, a lot of
these studies assume that the users carry the device in specific ways such as by hand, in a pocket,
in a bag, efc. This paper investigates the impact of providing an action recognition system with
the information of the possession-way of a smartphone, and vice versa. The experimental dataset
consists of five possession-ways (hand, backpack, upper-pocket, lower-pocket, and shoulder-bag)
and two actions (walking and running) gathered by seven users separately. Various machine
learning models including recurrent neural network architectures are employed to explore the
relationship between the action recognition and the possession-way recognition. The experimental
results show that the assumption of possession-ways of smartphones do affect the performance of
action recognition, and vice versa. The results also reveal that a good performance is achieved when
both actions and possession-ways are recognized simultaneously.

Keywords: action recognition; possession-way recognition; artificial neural networks

1. Introduction

With the advances in technology, a lot of research efforts have been put into developing
autonomous systems for convenient human lifestyles [1-3]. Developing such systems involves effective
modeling of human behavior as the systems are required to conduct many things for humans. Action
recognition is one of these techniques, and has been utilized in diverse applications such as health-care
monitoring systems [4,5] and surveillance systems [6,7].

Although there are many existing studies on developing action recognition systems using
wearable sensors, most of them are not so practical as the wearers may find it troublesome to wear and
carry the sensors around with them. In order to meet practical needs, along with the growing number
of smartphone users, many studies in action recognition have been conducted using smartphones,
which are equipped with various types of sensors such as accelerometers, gyroscopes, light sensors, etc.
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Since many users carry their phones closely with them all the time, utilizing the devices for action
recognition seems more practical than wearing extra sensors.

However, many existing works in action recognition using smartphones are somewhat limited
in the sense that they commonly assume that the users possess or carry the devices in certain ways,
for example, by hand, in a pocket, in a bag, etc. This assumption is difficult to hold in the real world
as different users carry their phones in different ways. Furthermore, even the same user may carry
the phone differently in various situations. For example, a user may prefer to use the phone while
walking, in which case he/she holds the phone with a hand; however, while running, the user may
prefer to put the device in a pocket or a bag.

In this paper, we extend our previous work [8] to investigate the relationship between the action
recognition and possession-way recognition using smartphones, adopting a larger dataset than the
previous work and additionally utilizing state-of-the-art algorithms that are designed to learn the
temporal dependencies among the sensed data. Seven users were recruited to gather the sensor data
separately; they are asked to perform two actions (walking and running) while carrying their phones in
five different ways (by hand, in a backpack, in an upper-pocket, in a lower-pocket, and in a shoulder-bag).

Experiments with the larger dataset confirm our previous findings that simultaneously
recognizing both actions and possession-way improves the overall performance. In addition, we closely
investigate how the performance varies in accordance with the length and the number of time intervals
(windows) that features are computed for, as well as with various machine learning algorithms.

The remainder of the paper is organized as follows. Section 2 outlines the background for this
study, while Section 3 describes the proposed approaches in detail. We illustrate the experiments and
present the results in Section 4, and discuss the experimental findings in Section 5. Finally, the paper is
concluded in Section 6 with some directions for future works.

2. Background

Over the past few decades, a lot of studies have been conducted in the field of action recognition.
These works can be arranged into three categories according to the form of data they employ:
(1) images [9-11]; (2) videos [12-14]; and (3) a variety of sensor data [15-20]. This paper comes
under the third category: action recognition using sensor inputs. Typically, the input streams utilized
in such works are obtained from wearable sensors in the form of wrist-type, pad-type, or necklace-type
sensors. Such studies that make use of these wearable sensors have demonstrated high accuracy in
action recognition.

However, one major drawback of using these wearable sensors in everyday application is that the
users often feel uncomfortable wearing them. In addition, having to remember to wear the devices
can be troublesome as well. This issue is especially critical in the health-care domain; an effective
sensor device does not only refer to a device with technical and clinical advantage, but also the one
that the end-consumers find acceptable to wear [21]. In other words, designing a good wearable sensor
requires a careful assessment of user wearability (usability), which is another important topic but quite
different to the topic of improving the technical performance of sensor applications.

In this work, we instead focus on an alternative device that most people do not live without—the
smartphone. In South Korea, it is estimated that 83.0% of Koreans own a smartphone, and on average,
spend 3 h and 39 min a day purely on using smartphones [22]. Smartphones have become so integral
to our life that most people find it natural to carry them around all the time. Furthermore, as they
are equipped with various types of sensors (e.g., accelerometer, gyroscopes, proximity sensor, etc.),
exploring diverse combinations of sensor inputs is possible.

As a matter of fact, much research has been done on action recognition using the sensors of
smartphones over the past few years. For example, Dai et al. [23] proposed a pervasive fall detection
system on mobile phones called PerFallD, utilizing the accelerometer sensor and magnetic field sensor
of smartphones, and an additional magnetic field accessory.
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More recently, He et al. [24] developed another fall detection system solely on smartphones, which
notifies the caregivers of the fall accidents through Multimedia Messaging Service (MMS) containing a
map of suspected location and time. Using the built-in tri-accelerometer, their system classifies five
body motions—vertical activity, lying, sitting or standing, horizontal activity, and fall. However, it
assumes that the smartphone is mounted on the user’s waist.

Song et al. [25] analyzed users’ daily behaviors in terms of movements (e.g., sit down, run), actions
(e.g., phone call, read mail), and situations over time (e.g., home, car, subway). An HMM (Hidden
Markov Model)-like model is trained from users” activities over a series of days, and utilized to extract
behavior patterns by time-movement correlation, time-action correlation, etc.

The aforementioned studies have shown the possibility of action recognition using the
smartphones. However, they commonly assume that the possession-way of a smartphone is fixed,
for example, by hand, in a pocket, in a bag, etc. In reality, users carry their phones differently in
various situations; thus, it is necessary to develop action recognition systems that are invariant to the
possession-ways. Inspired by such a viewpoint, this paper investigates the following questions:

1. “How much impact does the information of possession-way of smartphones have on the
action recognition?”

2. “Likewise, how much does the recognized action influence the recognition of the possession-way
of a smartphone?”

3. “If each task does indeed influence the other, which one should be carried out first
(performance-wise)?”

To the best of our knowledge, our published conference paper [8] was the first study to delve
into these questions. We hope that our findings can help the other related tasks that involve action
recognition using smartphones, as the results provide information in dealing with the possession-ways
of the device.

3. Proposed Method

3.1. Overall Approach

The purpose of this study is to investigate the relationship between the action recognition and
the possession-way recognition using the smartphones. To do so, we propose three experimental
approaches, and compare the results:

1.  Conducting the possession-way recognition followed by the action recognition.
2. Conducting the action recognition followed by the possession-way recognition.
3.  Conducting both of the recognition tasks simultaneously.

Let us assume that there are A actions and P possession-ways. Given an unseen piece of data X,
these approaches aim to find which action is performed (action recognition), and how the smartphone
is carried by the user (possession-way recognition). Figure 1 summarizes these approaches.

The first approach, possession-action recognition, consists of two steps. In the first step, it recognizes
the possession-way of the unseen data X without considering the action. This step is simply a
classification task over P classes. The second step is to recognize the action given the recognized
possession-way;, so it can be seen as a classification task over A classes. Note that if the recognized
possession-way in the first step is incorrect, then it may deteriorate the performance of the action
recognition in the second step.

The second approach, action-possession recognition, also has two steps. The first step refers to
the classification over A classes, and the second step, the classification over P classes. If one wishes
to develop only an action recognition system, then the second step is not necessary as the action is
recognized in the first step.

The third approach, concurrent recognition, involves classifying the action and the possession-way
simultaneously. Therefore, it is a one-step classification over A x P classes.
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Figure 1. Three proposed approaches.

One may argue that the action recognition using smartphones is inherently a challenging task as
it involves dealing with the direction or the angle of the smartphone carried by the user. Fortunately,
advances in hardware have equipped the phones with gyroscope sensors which compute the angle of
the device, making it easy to access the angular data.

3.2. Feature Definitions

Let us denote the number of sensor dimensions to be S. The exact number may vary with different
models of smartphones, as well as the versions of Android API (Application Programming Interface);
we describe the details of the sensor types in Section 4.3.

Given a window size of W seconds, we compute the mean, minimum, maximum, and variance
values for each window. Therefore, for each window, we have 4 x S distinct features for S sensor
dimensions. The feature engineering is kept simple as the main focus is on the verification of the
relationship between the action recognition and possession-way recognition using the smartphones.

3.3. Classification Algorithms

We employ five classification algorithms: naive Bayes (NB), random forests (RF), support vector
machine (SVM), deep neural networks (DNN), and recurrent neural networks (RNN) to compare the
performances of the three approaches. Note that, in our previous work, we utilized three classification
algorithms: naive Bayes, decision trees (DT), and artificial neural networks with one hidden layer.
However, we empirically found that the extended dataset of this study required more powerful
machine learning algorithms to effectively learn the greater variances in the data gathered by the
seven users. Therefore, we added RF instead of DT, along with SVM, DNN, and RNN models. The
hyper-parameter settings of these algorithms, which were determined by grid searching, are as follows:

e NB: Gaussian.
e  RF:100 decision trees, Gini impurity.
e  SVM: Liblinear, 12 penalty, hinge loss, tolerance of 0.0001.

The structure of DNN and RNN models are depicted in Figure 2. The input layer of the DNN
model takes 1 feature windows, each consisting of 4 x S distinct features as described in Section 3.2.
Note that an experimental analysis on this parameter # is conducted in Sections 4.4—4.6, where we
observe the changes in the performance of each approach when 7 is varied.

The DNN model has two fully connected hidden layers with a hyperbolic tangent (tanh) as
the activation function. The dimensions of the first and the second hidden layers are w and %,
respectively. The softmax output layer classifies the instances as one of L class labels, where L can be
A, P or A x P depending on the classification tasks.

The RNN model consists of a gated recurrent unit (GRU) [26] layer and two fully-connected layers.
A GRU works in a similar fashion to its older cousin, long short-term memory (LSTM) units [27], in
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the sense that it adaptively updates or resets its memory content via gating mechanism. Nevertheless,
the GRU has a slightly simpler structure than LSTM, often reducing the overall time in training. For
this reason, we chose to employ GRU, and it indeed converged faster than LSTM without sacrificing
the performance.

—
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Figure 2. The proposed structures of (a) DNN and (b) RNN.

The GRU layer is structured in a many-to-one fashion, meaning that only the last hidden state is
passed on to the next layer. Similar to the input dimension of the DNN model, n feature windows are
fed in as n time steps. The fully connected hidden layer outputs a vector of %W‘ dimensions, which is,
in turn, classified into one of A, P or A x P class labels.

4. Experiments

4.1. Dataset Construction

As there are no publicly available dataset for this study, we have gathered a dataset by
implementing an Android application that continuously logs the sensor values of a smartphone. We
target two actions, walk and run and five possession-ways of a smartphone: hand, backpack, upper-pocket,
lower-pocket, and shoulder-bag (Figure 3).

Backpack
Upper-pocket
Lower-pocket Shoulder-bag
c , Hand

Figure 3. The five possession-ways of a smartphone targeted in the experiments.

In our previous study [8], the dataset is collected for a single user only, using a Samsung Galaxy
Nexus smartphone, (Samsung Electronics, Suwon, South Korea); in this study, the new dataset
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is gathered by seven users, using various Android-based smartphones. We note that the seven
participants were volunteers from the department of computer science. The participants had a wide
range of physical attributes in terms of gender, age (23 to 33 years old), height (167 cm to 182 cm), and
weight (45 kg to 101 kg), which we believed to be relevant factors in our tasks as these attributes may
influence the frequency and amplitude of the gathered sensor data.

Identical to the previous study, each user performed each action for 10-11 min. However, in this
study, each sensor value is recorded at the sampling rate of 40 Hz instead of 10 Hz.

The statistics of the raw dataset are described in Table 1 where the values represent the number of
gathered samples; as each action is performed for 10-11 min by seven users, the number of gathered
samples is approximately 40 x 60 x 10 x 7 for each action-possession combination.

Table 1. Statistics of the raw dataset.

Hand Backpack Upper-Pocket Lower-Pocket Shoulder-Bag

Run 147,283 143,511 162,167 178,689 167,862
Walk 184,256 185,572 157,273 177,308 172,180

4.2. Preprocessing the Dataset

Prior to generating features, the raw dataset has undergone three preprocessing steps. Firstly, the
sensor values from the eight sensors are interpolated with 100 millisecond intervals. Although the
sensors are programmed to measure a value every 40 Hz, in reality, all measurements are not perfectly
synchronized. Therefore, we take the initial time stamp of the very last sensor that begins to measure
as our starting time stamp for all sensors. Similarly, the earliest final time stamp of a sensor is taken
as the finishing time stamp for all sensors as well. Given the time intervals, linear interpolation is
conducted for all sensors that measure continuous real values. The three sensors, light, proximity, and
pressure, provide two discrete values, either 0 or a fixed integer smaller than 10. For the three sensors,
the nearest neighbor approach is taken to fill the missing values in the time range.

Secondly, the raw values are normalized by min-max normalization where the values (v;4) are
linearly transformed to fit a given range, [r1, 72]:

(Umw - min(vmw))
max(Vrgy) — Min(Vray))

Oscaled = 1 x (r1—r2)+r 1)
The minimum and maximum values of each sensor are obtained by consulting the relevant
materials on the Android API documentations.
Lastly, we disregard the first and the last 15 s of the data, as users generally took such time to
begin or end the data logging. At the end of preprocessing, the normalized values from the eight
sensors (19 distinct values in total) are lined up on one coherent time line with 100 millisecond interval.

4.3. Feature Generation

In Section 3.2, we explained that the four features, (mean, minimum, maximum, and variance), are
computed using the S sensor dimensions for each window W. We employ eight sensors that are
equipped in a typical smartphone: light, proximity, pressure, gravity, accelerometer, linear accelerometer,
gyroscope, and rotation sensors (we mention that two sensors, orientation and magnetic, are no longer
utilized in this study due to API mismatch between the Android application and the different phones).
The light, proximity, and pressure sensors generate a one dimensional real value, while the rotation
sensor generates four dimensional real values. The other remaining sensors produce three dimensional
real values. In total, we have S = 19 sensor dimensions, and 76 features (4 x 19) obtained based on the
feature definition.

We experiment with varying the length of window |W| for which the 76 features are computed,
and the window sizes are 0.3, 0.5, 1, 3, 5, and 7 s. For example, when |W| = 0.3, the features are
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computed using the three rows of the data as each row is 100 milliseconds apart. The statistics of
the generated feature samples are summarized in Table 2, where the values represent the number of
samples after the feature generation. The number of generated feature samples decreases as the length
of the window increases.

Table 2. Statistics of the generated feature samples.

Hand Backpack Upper-Pocket Lower-Pocket Shoulder-Bag
Run 14144 14546 13554 15070 14291
|[W| =03
- Walk 17769 15637 15880 15126 15380
IW| =05 Run 8484 8728 8130 9039 8573
e Walk 10661 9381 9526 9074 9227
W] =1 Run 4240 4361 4062 4518 4283
- Walk 5328 4689 4761 4534 4612
|W| =3 Run 1409 1451 1349 1502 1424
- Walk 1774 1561 1583 1508 1534
|W| =5 Run 845 868 808 900 852
B Walk 1061 933 950 903 920
W| =7 Run 601 619 577 641 607
B Walk 756 666 676 644 655

In addition to varying the length of the time window, we experiment with varying the number of
windows while fixing the length of the window as 1 s (|W| = 1). We clarify that the number of windows

refers to how many consecutive sets of generated features are taken as the input, while the length of

the window represents how many seconds of the raw data are used to generate one set of features.
Evidently, varying the number of windows will produce input vectors with different lengths. For each
classification task, experiments are performed by setting the number of windows n as 1, 3, 5, and 7.

0.8
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04
03
02

0.8
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06
05
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02

(a) Linear accelerometer values of a user while running with the phone placed in the lower-pocket
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(b) Linear accelerometer values of a user while walking with the phone placed in the lower-pocket
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Figure 4. Linear accelerometer values of a user while (a) running and (b) walking with the phone

placed in the lower-pocket.

Besides the two experiments, we also look at the performance of each model when applied to a
new user who has not been considered by the model in the training process, i.e., one-user-out cross
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validation (CV). The data gathered by six users are utilized in the training process, while the data from
the remaining one user is used as the testing data. Since there are seven users in total, we have seven
rounds of validation, and the results are averaged for each model. Note that for the one-user-out CV,
we set the length of window |W| to be 1 and the number of window # to be 3.

Figure 4 illustrates two sample graphs of the linearized tri-accelerometer values of a user while
(a) running and (b) walking with the phone placed in a lower-pocket. The graphs are plotted with
50 samples, where each sample represents the mean value of a 0.5 s interval. We can observe that the
amplitude of running is greater than that of walking.

While differentiating the two actions from a single user seems to be apparent, the task gets harder
when more users are involved. For example, some of the users were fast-walkers, and their patterns
were closely akin to the running patterns of slow runners.

4.4. Possession-Action Recognition

The first approach, possession-action recognition, consists of two steps: (1) possession-way
recognition, and (2) action recognition. The five classification algorithms described in Section 3.3 are
employed to compare the performances under fivefold (Tables 3 and 4) and one-user-out (Table 5) CV
after shuffling the dataset. Table 3 presents the experimental results for the different lengths of the
windows, while Table 4 shows the results for the different number of windows. The results for the
one-user-out CV are presented in Table 5. Step 1 and Step 2 in both tables indicate the accuracies of
possession-way recognition and action recognition, respectively. For example, Step 2 (hand) shows the
accuracies of action recognition when the possession-way is by hand.

We specify that the following abbreviations are used in the subsequent tables: support vector
machine (SVM), random forests (RF), naive Bayes (NB), deep neural network (DNN), and recurrent
neural network (RNN).

Table 3. Accuracies of possession-action recognition for different lengths of windows.

|[W| =03 |W| = 0.5 wW|=1
SVM RF NB DNN RNN |[SVM RF NB DNN RNN |[SVM RF NB DNN RNN
Step 1 61.06 82.67 46.12 76.64 76.02 | 62.75 8257 4761 7814 7728 | 63.76 8245 4920 7839 78.33

Step 2 (backpack) 75.70 8297 7373 8024 80.74 | 76.70 8292 77.45 80.20 80.81 | 7843 8270 7959 81.65 80.68
Step 2 (upper-pocket) | 78.17 8297 6941 8140 81.26 | 80.11 8299 7417 8185 8212 | 81.60 8294 78.05 81.88 8216
Step 2 (lower-pocket) | 77.02 8248 69.53 7883 7958 | 7876 82.60 7283 8055 80.10 | 7942 82.69 7577 80.85 79.78
Step 2 (shoulder-bag) | 7417 83.08 7191 8219 8231 | 7659 8295 7658 8226 81.71 | 79.55 82.83 80.72 8197 82.04

Step 2 (hand) 81.28 8294 7712 8190 8229 | 81.74 8292 79.71 81.88 8229 | 8238 8298 81.16 82.66 8254

Overall 4718 68.52 3336 62.01 6176 | 4943 6843 36.26 6357 6291 | 51.18 68.29 3890 61.12 63.79
Wl =3 Wl =5 wi=7

SVM RF NB DNN RNN | SVM RF NB DNN RNN | SVM RF NB DNN RNN

Step 1 64.51 8214 5140 7924 7793 | 6498 8171 50.57 7850 76.79 | 65.68 8173 51.19 77.65 76.49

Step 2 (backpack) 80.76 82.23 80.26 8148 81.06 | 81.16 81.85 80.56 81.02 81.30 | 81.19 8230 80.80 81.58 81.45
Step 2 (upper-pocket) | 82.59 82.94 80.60 8242 8234 | 8257 8276 80.39 8239 8243 | 8240 8280 8047 82.07 82.60
Step 2 (lower-pocket) | 80.90 8248 77.63 81.17 8051 | 8121 8236 7839 81.62 8190 | 81.06 82.68 7892 8191 8191
Step 2 (shoulder-bag) | 82.04 8271 82.01 81.87 8133 | 8225 8253 8188 8202 8155 | 8234 8261 8195 8221 82.08

Step 2 (hand) 82.78 8294 8145 8273 8223 | 8272 8285 8132 8294 8294 | 8278 8290 81.43 8290 83.03
Overall 5278 67.90 4132 6492 6351 | 5327 6739 40.71 6437 6299 | 53.83 67.56 4132 63.78 62.89

Notably, under the fivefold CV, the random forests (RF) model works consistently well,
outperforming the two deep learning approaches on almost all settings. However, as we have not
sufficiently explored the many possible layouts and hyper-parameter settings of the deep learning
models, we cannot decide the superiority of one model over another in terms of accuracy. Moreover,
it is often acknowledged in the literature [28,29] that a machine learning model typically requires
training data for at least 10 times its degree of freedom. As the deep learning models consisted of a
greater number of weight parameters than the other machine learning models, a lot more data samples
would have been necessary for effective learning.

Nevertheless, it is important to note that the RF model only took a few seconds to train, while the
deep learning models took considerably longer time (from a dozen minutes to hours depending on the
number of inputs).
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Table 4. Accuracies of possession-action recognition for different number of windows.

n=1 n=3
SVM RF NB DNN RNN | SVM RF NB DNN RNN
Step 1 63.76 8245 4920 7839 7833 | 59.44 81.95 50.57 79.38 78.32

Step 2 (backpack) 7843 8270 7959 81.65 80.68 | 80.35 8231 7996 8126 80.71
Step 2 (upper-pocket) | 81.60 8294 78.05 81.88 82.16 | 82.06 82.77 80.18 8237 8225
Step 2 (lower-pocket) | 79.42 82.69 7577 80.85 79.78 | 8046 8231 77.03 8145 81.65
Step 2 (shoulder-bag) | 79.55 82.83 80.72 8197 82.04 | 7950 82.69 8178 8215 8142

Step 2 (hand) 82.38 8298 81.16 82.66 8254 | 82.68 82.84 8155 8278 82.71

Overall 51.18 68.29 3890 64.12 63.79 | 4815 67.68 4051 65.09 64.03
n=>5 n="7

SVM RF NB DNN RNN | SVM RF NB DNN RNN

Step 1 5753 8145 5122 7578 76.72 | 56.46 81.41 5158 74.65 75.70

Step 2 (backpack) 80.28 8227 7987 7871 81.02 | 80.35 8243 79.77 7944 81.13
Step 2 (upper-pocket) | 82.53 82.81 80.21 82.81 82.67 | 8240 8293 80.74 8280 82.60
Step 2 (lower-pocket) | 80.47 81.81 77.60 8195 79.78 | 8048 82.04 78.02 81.65 81.65
Step 2 (shoulder-bag) | 79.29 82.86 81.78 79.62 8131 | 7846 8254 81.62 7819 8142

Step 2 (hand) 82.81 8272 8132 8277 8259 | 8290 8278 81.13 82.66 83.03
Overall 46.64 6719 4106 6151 6251 | 4569 6720 4140 6043 62.05

As depicted in both tables, the accuracies of Step 1 are less than that of Step 2. This implies that
the action recognition task (Step 2) becomes easier when the possession-way is given or assumed, as
many existing studies have done so. The overall performance of action recognition is calculated by
multiplying each (possession-way) accuracy of Step 1 by the corresponding accuracy of Step 2, and
computing the mean of the multiplied accuracies:

Licp Step1 (i) X Step (i)
5
In the case of RF models, we can roughly see that the overall accuracy is 66 to 68.
Table 3 shows the accuracies of the five algorithms at varying lengths of the window. Each
classification algorithm exhibits a slightly different pattern; however, in general, the accuracies are
increasing as the window length reaches 3 s, and slightly deteriorate afterwards. The exception is RF

)

accuracyoverall =

models where the accuracies are consistently high at 82, reaching its best at |W| = 0.3.

Table 4 shows the accuracies of the five algorithms for the different number of windows. Again,
each classifier behaves differently with the increasing number of windows. For example, the accuracy
of possession-way recognition (Step 1) of SVM decreases as n increases, in contrast to that of NB.
Overall, the best performance is achieved by RF when n = 1.

Table 5. Accuracies of possession-action recognition under one-user-out cross validation.

SVM RF NB DNN RNN
Step 1 4958 5148 5229 51.00 48.66

Step 2 (backpack) 88.22 7337 7747 82.68 7827
Step 2 (upper-pocket) | 87.50 8143 7533 9047 89.55
Step 2 (lower-pocket) | 86.77 8441 80.81 85.22 83.70
Step 2 (shoulder-bag) | 91.83 8143 93.68 73.22 75.12
Step 2 (hand) 94.75 9249 9414 9798 92.38
Overall 4453 4254 44.07 43.82 40.78

As shown in Table 5, the results of the one-user-out CV show quite a different trend. Firstly,
the overall performance of the top three classification models, RE, RNN, and DNN, has dropped
significantly due to the sharp decrease in the performance for Step 1, possession-way recognition. On
the contrary, the performance for Step 2, action recognition, has actually increased by a small amount
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compared to the results obtained from the fivefold CV. The results show that the task of possession-way
recognition for an unseen user is not a trivial one.

Currently, the process of our feature engineering is kept simple (Section 3.2) as the aim of the
study is to explore the relationship between the three approaches. Improving the accuracy of the
recognition tasks would require more thoughtful feature definitions. For example, as each participant
carried his/her phone in an arbitrary orientation, it is possible that the some specific orientations of
the phones, rather than their more general representation, could have been reflected on the models’
learning process. Therefore, a rotation-invariant feature [30] would be a good solution here.

It is also worth mentioning that the overall performance by the models on this dataset is lower than
the performance on the previous dataset [8]. This is because the previous dataset only consisted of data
from a single user, while this dataset is contributed by seven users. Therefore, the action recognition
models learned from this dataset is more general than the models learned in the previous work.

4.5. Action—Possession Recognition

The second approach, action-possession recognition, also consists of two steps: (1) action
recognition, and (2) possession-way recognition. Similar to the previous subsection, the five
classification algorithms are employed and evaluated under both fivefold and one-user-out CV. The
results are summarized in Tables 6-8.

Step 1 in the tables represents the accuracies of action recognition, while Step 2 shows the accuracies
of possession-way recognition when the action is known. For instance, Step 2 (walk) shows the
accuracies of possession-way recognition when the user is walking.

As shown in Table 6, the performance of action recognition (Step 1) generally gets better as the
window length increases. Again, the RF is marked as an exception as its performance stays quite
consistent throughout the experiments under fivefold CV.

Similar to the results of possession-action recognition (Section 4.4), the overall accuracies of
one-user-out CV are lower than the ones obtained from fivefold CV, despite the increases in accuracy
for Step 1, action recognition.

Under both evaluation criteria, most classifiers (with the exception of RF in fivefold CV) found
it easier to recognize the possession-way of a smartphone when a running action is assumed. One
possible explanation is that the influence from the surroundings of the smartphone is maximized when
the user is running rather than walking, hence producing sensor values with richer information.

Table 6. Accuracies of action-possession recognition for different lengths of windows.

W[ =03 W[ =05 Wi=1
SVM RF NB DNN RNN [ SVM RF NB DNN RNN | SVM RF NB DNN RNN
Step 1 7242 8245 66.72 79.19 79.12 | 7470 8250 70.54 80.10 7948 | 7746 82.44 73.71 80.16 80.02

Step 2 (run) | 67.46 8259 5391 7755 7746 | 69.04 82.60 5874 7877 7815 | 7233 8256 63.98 7945 79.16
Step 2 (walk) | 62.87 8299 4945 7891 77.69 | 6259 8288 5090 79.64 78.09 | 63.19 8275 5328 79.85 79.09
Overall 4719 6826 3448 6195 6138 | 49.16 68.26 38.67 63.44 62.09 | 5249 68.14 4322 6385 63.32
W] =3 Wi =5 W=7
SVM  RF NB DNN RNN | SVM RF NB DNN RNN | SVM RF NB DNN RNN
Step 1 80.71 8229 7651 80.65 8094 | 81.42 8239 76.68 8020 8135 | 81.77 8243 7690 8147 81.28
Step 2 (run) | 7571 82.02 6790 79.99 79.58 | 7637 8179 69.02 79.82 79.08 | 76.82 81.42 68.58 79.45 79.15
Step 2 (walk) | 63.09 8233 5488 79.71 78.00 | 61.90 8221 5526 7814 77.07 | 61.18 8203 5552 7727 77.57
Overall 56.01 67.62 4697 6440 63.77 | 56.29 67.56 47.65 6334 6351 | 56.42 67.37 47.72 63.84 63.69

Similar to the possession-action recognition, the best performance is achieved by RF when the
length of windows |W| = 0.5 and the number of windows n = 1.

Another important point to note is that the accuracies of Step 1 (action recognition) are generally
lower than that of Step 2 (action recognition) in the possession-action recognition shown in Section 4.4.
This is because Step 1 of action-possession recognition involves directly classifying the actions
regardless of the various possession-ways in which the actions are blended.
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Table 7. Accuracies of action-possession recognition for different number of windows.

n=1 n=3
SVM RF NB DNN RNN | SVM RF NB DNN RNN
Step 1 7746 8244 7371 80.16 80.02 | 7894 8220 76.04 7991 7992

Step2 (run) | 7233 8256 6398 79.45 79.16 | 70.62 81.83 6690 79.32 78.50
Step 2 (walk) | 63.19 8275 5328 7985 79.09 | 56.19 82.31 56.43 79.27 77.79
Overall 5249 68.14 4322 6385 6332 | 50.05 6746 46.89 6336 6245

n=>5 n="7
SVM RF NB DNN RNN | SVM RF NB DNN RNN
Step 1 79.09 8211 7630 8043 80.74 | 79.10 81.77 76.68 79.42 80.80

Step2 (run) | 67.77 81.33 6561 7922 7946 | 65.85 80.77 6452 77.68 79.92
Step 2 (walk) | 51.88 81.92 5745 7758 76.13 | 4926 81.59 5770 7591 75.10
Overall 4732 67.02 4695 63.06 6281 | 4553 66.38 46.86 6099 62.63

Table 8. Accuracies of action-possession recognition under one-user-out cross validation.

SVM RF NB DNN RNN
Step 1 90.46 88.05 89.67 86.31 88.60
Step 2 (run) | 50.81 59.78 5149 56.11 56.02
Step 2 (walk) | 4341 4476 47.56 40.80 45.46
Overall 42,62 46.02 4441 41.82 4496

4.6. Concurrent Recognition

The third approach, concurrent recognition, aims to classify both actions and possession-ways
of a smartphone simultaneously. The five classification algorithms are used again, and the results
are described in Tables 9-11. In all tables, Conc., P-A, and A-P refer to the overall accuracies of the
concurrent, possession-action, and action-possession recognitions, respectively.

Table 9. Accuracies of concurrent, possession-action, and action-possession recognition for different
lengths of windows.

Wl =03 W[ =05 Wi =1
SYM RF NB DNN RNN |SVM RF NB DNN RNN|SVM RF NB DNN RNN
Conc. | 60.07 8240 4332 7538 7446 | 61.65 8236 4837 7655 7659 | 64.64 8227 5414 78.00 78.08
P-A | 4718 6852 3336 6201 6176 | 4943 6843 3626 6357 6291 | 5118 6829 3890 6412 6379
A-P 4719 68.26 3448 6195 6138 | 49.16 68.26 38.67 6344 62.09 | 5249 68.14 43.22 63.85 63.32

W[ =3 W[ =5 W=7
SVM RF NB DNN RNN | SVM RF NB DNN RNN | SVM RF NB DNN RNN
Conc. | 6785 8175 5852 7825 7779 | 6792 8136 5937 7816 7742 | 6790 8151 5855 7784 7653
P-A 52,78 67.90 4132 6492 6351 | 53.27 67.39 40.71 6437 6299 | 53.83 67.56 41.32 63.78 62.89
AP | 5601 67.62 4697 6440 6377 | 5629 67.56 47.65 6334 6351 | 5642 67.37 4772 6384 63.69

As the concurrent approach classifies A x P classes, the accuracies of most classifiers are lower
than that of individual steps in the previous approaches, where A or P classes are recognized separately.
Therefore, for a fair comparison, the mean values of the combined accuracies of the possession-action
and action-possession recognitions are presented in the tables. Comparing the overall performance, the
concurrent approach performs better than the rest of the two approaches even under the one-user-out
CV (Table 11).

In general, the results show a similar trend with the previous two approaches: the performance
increases with the lengths of windows, and decreases with the number of windows. The RF produces
consistently high performance while the other algorithms are hindered by the increased number of
class labels.

Similar to the previous two approaches, the extended dataset of this study results in lower
performance than the single-user dataset from the previous study [8]. We also need to point out
that the results of concurrent recognition in this study are slightly different to what we found in
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the previous study using the single-user dataset. In the previous study, the accuracy of concurrent
recognition was as good as, or just slightly lower than, the accuracies of the separate tasks (Step 1 and
Step 2) in the two approaches. In this study, however, the concurrent recognition does indeed seem to
be a harder task than the two tasks.

Table 10. Accuracies of concurrent, possession-action, and action-possession recognition for different
number of windows.

n=1 n=3
SVM RF NB DNN RNN | SVM RF NB DNN RNN
Conc. | 64.64 8227 5414 78.00 78.08 | 61.70 81.43 5858 7880 78.04
P-A 51.18 68.29 3890 64.12 63.79 | 48.15 67.68 4051 65.09 64.03
A-P 5249 68.14 4322 63.85 6332 | 50.05 67.46 4689 63.36 62.45
n=>5 n=7
SVM RF NB DNN RNN | SVM RF NB DNN RNN
Conc. | 58.59 81.27 5931 7788 76.80 | 55,55 80.85 5894 7690 76.05
P-A 46.64 67.19 41.06 6151 6251 | 45.69 67.20 4140 6043 62.05
A-P 4732 67.02 4695 63.06 6281 | 4553 66.38 4686 60.99 62.63

Table 11. Accuracies of concurrent, possession-action, and action-possession recognition under
one-user-out cross validation.

SVM RF NB DNN RNN
Conc. | 4473 4819 44.82 4488 4748
P-A | 4453 4254 44.07 43.82 40.78
A-P | 4262 46.02 4441 41.82 4496

We believe that this was due to the fact that the single-user dataset had made all three of the tasks
very easy. In the single-user dataset, the data samples for each action or possession are coherent to each
other as they are from one user. In contrast, the samples gathered by the seven users are not necessarily
coherent, as different users have their own style of walking, running, holding the phone, etc. Such
difference in the datasets is illustrated clearly by the results of the one-user-out CV where the learned
models had difficulty in recognizing the possession-ways of the smartphone for an unseen user.

5. Discussion

From the experiments, we have explored how the performance of a classifier varies according to
the length and the number of windows for each classification task. Although the detailed patterns are
a little different among classifiers, a few remarks about the general trend can be made:

e  The length of windows (|W|) seems to be a more important factor in improving the performance
than the number of windows (n). In other words, for the tasks of recognizing individual action
and possession-way of a smartphone, the independent features computed from each time interval
play a bigger role than a series of n features that represent the sequential patterns.

e In general, the performance of action recognition increases as the classifiers observe data for
longer period of time, i.e., greater n and |W/|. In contrast, the performance of possession-way
recognition is not so much affected, perhaps because the differences in patterns of possession-ways
are not very significant to each other. For example, the sensor patterns obtained from placing the
smartphone in a shoulder-bag may actually be similar to the pattern gathered by placing the device
in a backpack; and increasing the length and number of windows would not affect the classification
performance significantly.

e  The concurrent approach seems to work best when n and |W| are around 3 to 5.

e However, the RF remains an exception to these trends. While consistently producing the best
results under the fivefold CV, it particularly works well when |W| is 0.3 to 0.5. This is probably
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due to the inner workings of the RF; similar to tree bagging, the RF repeatedly selects a random
sample from the training set, and fits trees to these samples. When |W| is small, many data
samples are available for the random sampling. We suspect that sampling from this larger pool
results in the increased overall performance of the RF.

e  The RNN performs the second best in the tasks under the fivefold CV. It is interesting to see that
when |W| or n are 1, its performance is as high as the model learned with longer data samples,
illustrating the RNIN’s capability to learn temporal patterns even with the shorter inputs.

e  However, under the one-user-out CV, the performance of these top three models have decreased
significantly for all three tasks. We suspect that, as these models tend to have a greater number of
weight parameters to adjust, they had been overfitted to the training data. A greater number of
training samples along with more careful feature definitions would be required to achieve a more
stable performance.

e  Nevertheless, under both one-user-out and fivefold CV, the concurrent approach produces better
results than the other two approaches—possession-action and action-possession recognition.

6. Conclusions

We investigated the relationship between the action recognition and possession-way recognition
using smartphones. In order to further investigate our previous findings [8], we extended the
previous dataset to encompass sensor data from seven users rather than a single one. We proposed
the three approaches—possession-action recognition, action-possession recognition, and concurrent
recognition—and experimentally verified that the assumption of possession-way of the smartphone
does affect the performance of action recognition, and vice versa. We observed that the concurrent
recognition, which classifies both action and possession-way simultaneously, produces good results
compared to the overall accuracies of the two other approaches.

For future work, conducting the same experiment with additional actions such as cycling would
be interesting. Moreover, a series of user actions (i.e., a long term behavior) rather than a single one
could be learned, possibly taking full advantage of the power of RNN architectures or conditional
random fields. However, we would need to utilize more advanced methods in feature engineering to
stabilize the performance of both action and possession-way recognition for unseen users.
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