## Supplementary Materials: Label-Free Fluorescence Assay of S1 Nuclease and Hydroxyl Radicals Based on Water-Soluble Conjugated Polymers and WS<sub>2</sub> Nanosheets

Junting Li, Qi Zhao and Yanli Tang



Figure S1. The TEM image of WS2 nanosheets.



**Figure S2.** (a) The fluorescence spectra of PFVCN/ssDNA/WS<sub>2</sub>, PFVCN/ssDNA/ S1/WS<sub>2</sub>, PFVCN/ssDNA /·OH/WS<sub>2</sub> and PFVCN/WS<sub>2</sub> in Tris-HCl buffer solution (20 mM, pH 7.4); (b) The fluorescence intensity of PFVCN in the presence of S1 or Fenton reagent; (c) The fluorescence intensity of PFVCN in the presence of ssDNA; (d) The fluorescence intensity of PFVCN/WS<sub>2</sub> in the presence of S1 or Fenton reagent. [PFVCN] =  $1.0 \times 10^{-6}$  M, [WS<sub>2</sub>] =  $1 \mu$ g/mL, [S1] = 0.5 U/mL, [Fe<sup>2+</sup>] =  $5 \mu$ M. The excitation wavelength is 470 nm.



**Figure S3.** (a) The absorption and emission spectra of WS<sub>2</sub>; (b) The fluorescence intensity of PFVCN in the presence of WS<sub>2</sub> in Tris-HCl buffer solution. [PFVCN] =  $1.0 \times 10^{-6}$  M, [S1] = 0.7 U/mL, [Fe<sup>2+</sup>] =  $5 \mu$ M. The error bars represent standard deviations three parallel measurements. The excitation wavelength is 470 nm.



**Figure S4.** Fluorescence intensity of PFVCN/ssDNA in the presence of S1 nuclease incubated for different periods in Tris-HCl buffer solution (20 mM, pH 7.4). The error bars represent standard deviations three parallel measurements. [PFVCN] =  $1.0 \times 10^{-6}$  M, [WS<sub>2</sub>] = 1 µg/mL, [S1] = 0.5 U/mL, [ssDNA] = 10 nM. The excitation wavelength is 470 nm.



**Figure S5.** Inhibition efficiency of hydroxyl radical by thiourea in Tris-HCl buffer solution (20 mM, pH 7.4). [PFVCN] =  $1.0 \times 10^{-6}$  M, [WS<sub>2</sub>] =  $1 \mu g/mL$ , [Fe<sup>2+</sup>] =  $5 \mu M$ , [ssDNA] = 10 nM. The error bars represent standard deviations three parallel measurements. The excitation wavelength is 470 nm.