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Abstract: In this study, a new feature selection algorithm, the neighborhood-relationship feature
selection (NRFS) algorithm, is proposed for identifying rat electroencephalogram signals and
recognizing Chinese characters. In these two applications, dependent relationships exist among
the feature vectors and their neighboring feature vectors. Therefore, the proposed NRFS algorithm
was designed for solving this problem. By applying the NRFS algorithm, unselected feature vectors
have a high priority of being added into the feature subset if the neighboring feature vectors have
been selected. In addition, selected feature vectors have a high priority of being eliminated if the
neighboring feature vectors are not selected. In the experiments conducted in this study, the NRFS
algorithm was compared with two feature algorithms. The experimental results indicated that the
NRFS algorithm can extract the crucial frequency bands for identifying rat vigilance states and
identifying crucial character regions for recognizing Chinese characters.
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1. Introduction

Sleep is a physiological state comprising multiple stages. Electroencephalogram (EEG) analysis
has indicated that typical patterns of activity are correlated with various stages of sleep, wakefulness,
and certain pathophysiological processes, such as seizures. For many researchers, identifying sleep
stages is important, for example, sleep stage identification is important sleep deprivation and seizure
studies [1–5]. Typically, sleep stages can be identified by combining EEG, electromyography (EMG),
electrooculography (EOG), and visual behavioral monitoring. However, scoring these vigilance states
manually is a time-consuming task, even when the analyzer is an expert.

The vigilance stages of rats are generally classified as three states [6–9]: the awake (AW) state,
slow wave sleep (SWS) state, and rapid eye movement (REM) sleep state [9]. During the AW state,
the rats produced high-frequency EEG results. Several researchers have distinguished active awake
from quiet awake based on high EMG activity. The spectrum of EEG in the AW state includes a
high-power alpha wave (8–13 Hz) and gamma wave (20–50 Hz). The SWS state, which is defined by
a high-amplitude and low-frequency EEG, begins with a sleep spindle and is dominated by a delta
(0.5–4 Hz) wave. In the REM state, the rats produced high-frequency EEG results, which were similar
to those produced in the AW state. However, the rats were atonic and demonstrated flat EMG activity.
Alpha and gamma waves that display high activity are also characteristics of the REM state.

In our previous study [9], we proposed a machine learning method to classify three vigilance
stages of rats with a high accuracy rate. However, biological researchers are typically concerned with
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the crucial frequency bands used to classify these three vigilance states. The intuitive method used to
extract crucial frequency bands is applying a feature selection algorithm to extract the features and
identify the corresponding frequency bands based on these extracted features. To extract features, the
EEG signal is first converted into frequency information by using fast Fourier transform (FFT) [10,11]
(Figure 1). The EEG spectrum is generated using the FFT method with a frequency range from 0
to 50 Hz; then the EEG spectrum is uniformly divided into 32 nonoverlapping frequency bands
(Figure 2). The frequency range of each frequency band is 1.6 Hz. The power of each frequency band
is normalized according to the sum of the power of the frequency bands, and 32 numerical feature
vectors are subsequently generated. A feature selection algorithm can then be used to extract a feature
subset for classifying vigilance states. Examining the selected feature vectors in the feature subset
reveals the crucial frequency bands.
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Although a feature selection algorithm can be used to extract the crucial frequency bands of EEG
signals, it creates a perplexed situation when applied to this problem. In the data set of EEG signals,
each frequency feature vector may have a dependent relationship with neighboring feature vectors.
For example (Figure 2), the power of the alpha wave is the main characteristic used to classify vigilance
states (e.g., the awake state), and the frequency bands A, B, and C belong to the alpha wave (8–13 Hz).
Although these feature vectors (A, B, and C) denote different frequency bands, biological researchers
have agreed that assuming that one feature vector is completely independent of the other two feature
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vectors is unreasonable. For example, if Feature B is selected as a crucial frequency band for identifying
EEG signals, most biological researchers would agree that Features A and C are likely to be crucial
frequency bands.

However, most feature selection algorithms are not designed for use in these types of scenarios;
therefore, using these algorithms might produce unreasonable selection results. According to one of
our simulation results, the information gain (IG) algorithm [12] can be applied as the feature selection
algorithm. Figure 3 shows the feature subset selected by the IG algorithm. Eight feature vectors
are selected. By examining the alpha wave, only Features A and C are selected by the IG algorithm,
whereas Feature B is not selected. This means that the 8–9.6 Hz and 11.2–12.8 Hz frequency bands are
important, but the 9.6–11.2 Hz frequency band is irrelevant. However, according the experience of
biological researchers, the result makes it difficult to determine whether the alpha wave is the crucial
frequency bands for identifying sleep stages.
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Regarding Chinese character recognition, a character image is typically normalized first using the
nonlinear normalization technique and is then divided into several subimages. For each subimage, a
numerical feature vector is obtained by calculating the specified image characteristics of this subimage.
Each numerical feature vector represents the image information of the corresponding subimage in a
character image. Similar to the feature vector of the EEG-signal data set, each Chinese-character feature
vector has a dependent relationship with neighboring feature vectors (additional details are described
in Section 4.2). This situation may create more difficulties for applying a feature selection algorithm.

The aforementioned observations were the motivations of this study in which a novel feature
selection scheme for EEG signal identification and Chinese character recognition is proposed. In the
two applications, dependent relationships exist among the feature vectors and neighboring feature
vectors. By applying the proposed algorithm, unselected feature vectors have a high priority of being
added into the feature subset if the neighboring feature vectors have been selected. In addition, selected
feature vectors have a high priority of being eliminated if neighboring feature vectors are not selected.
Additional details are described in Section 3. The remainder of this paper is organized as follows:
Section 2 presents a brief review of feature selection algorithms. In Section 3, the proposed feature
selection algorithm is presented. Section 4 introduces the method for generating experimental data sets.
In Section 5, the experimental results are presented to demonstrate the effectiveness of the proposed
algorithm. In Section 6, the discussions of the proposed algorithm are given. Section 7 concludes
the paper.

2. Brief Review of Feature Selection Algorithms

A successful feature selection algorithm can extract specific features with which users are
concerned [13–17]. For example, researchers can identify the genes that may lead to certain diseases by
using feature selection algorithms to analyze the microarray data [13]. In analyzing DNA sequences,
feature selection algorithms have been applied to locate segments on the sequence or identify types
of amino acids [14,15]. Feature selection algorithms also facilitate the extraction of keywords in text
classification [16,17].
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Researchers have proposed numerous feature selection methods in recent years [18–34].
Guyon and Elisseeff [18] categorized feature selection algorithms as wrappers, filters, and hybrid algorithms.
The following discussion provides a brief introduction on these feature selection algorithms.

1. Filters: In the filters method, the importance of the features is ranked according to statistical
criteria or information-theoretic criteria [19–22]. IG or the X2 statistic is typically used to extract
the features in text categorization [21,22].

2. Wrappers: The wrappers method involves the extraction of the optimal feature subset by adopting
a specific searching strategy and performing continual evaluations [23–26]. These strategies
include the sequential floating search [23], adaptive floating search [24], branch and bound [25],
and genetic algorithm [26] methods.

3. Hybrid: The hybrid method extracts several feature subsets by combining both filters and
wrappers using an independent feature evaluation method. In addition, the optimal feature subset
is extracted by processing the classification algorithm. This strategy is performed repeatedly until
obtaining any more favorable feature subsets is not possible [27,28].

Information Gain (IG) [12] is a general feature selection algorithm for evaluating the measurement
of informational entropy, it measures decreases in entropy when the feature value is given. This method
is widely applied in applications of text categorization and classification of microarray data. On the
other hand, the sequential forward floating search (SFFS) algorithm [23] is also a well-known method.
The SFFS algorithm starts with an empty feature set. In each step, the best feature that satisfies some
criterion function is included with the current feature set. In addition, while some feature is excluded,
the SFFS algorithm also verifies the possibility of improving the criterion. Therefore the SFFS algorithm
proceeds dynamically increasing and decreasing the number of features until the desired target is
reached. In this paper, we compared the IG and SFFS algorithms with our method.

3. The Proposed Neighborhood-Relationship Feature Selection Algorithm

This section presents the proposed neighborhood-relationship feature selection (NRFS) algorithm,
which consists of two main stages: adding features and eliminating features. The SFFS algorithm [23]
was applied to generate an initial feature subset from the original feature set. At Stage 1 of the NRFS
algorithm, the weight value of each unselected feature is calculated according to neighboring selected
features. Subsequently, unselected features are added into the feature subset iteratively based on their
weight value to generate a more favorable feature subset. At Stage 2 of the NRFS algorithm, a new
weight value for each selected feature is calculated, and selected features are subsequently eliminated
based on the new weight value. To evaluate the recognition rate of the selected feature subset, the
classification method used in this study for the authentication method was the k-nearest neighbor
(kNN) method [35,36]. The steps of the NRFS algorithm are described in detail as follows.

Step 1: Generate the Initial Feature Subset by Using the SFFS Algorithm

Use the SFFS algorithm to generate the initial feature subset for the NRFS algorithm.

Step 2: Calculate the Weight Values of the Unselected Features

To add the unselected features (the candidate features for being added) into the feature subset,
the weight value of each unselected feature should first be calculated to represent the number of
neighboring features that have been selected. Figure 4 shows the diagram of the weight values applied
in this study. The red block in this figure denotes a feature that has been selected in the feature subset,
and the neighboring unselected features are represented by the white blocks. The unselected features
are assigned weight values (1 or 2) when they are located in the neighborhood of the selected feature
(red block). Figure 5 shows an example calculation of the weight value of these unselected features.
In this example, four features (feature indices C, D, F, and H) were selected in the feature subset.
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Subsequently, each unselected feature accumulated weight values that were based on neighboring
selected features. As shown in Figure 5, Feature E obtained the highest weight value of 5 because it
accumulated the weight values of three neighboring selected features (Features C, D, and F), whereas
Feature J exhibited a weight value of only 1, which was obtained from the selected Feature H.Sensors 2016, 16, 871 5 of 14 
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Step 3: Sequentially Add a Single Feature

In this step, sequentially add unselected features to the feature subset according to their weight
values. An unselected feature with a high weight value has a high priority of being added. Table 1
shows the ranking of the unselected features in Figure 5. The example in Table 1 shows that Feature
E was the first feature to be added to the feature subset. If the recognition rate of the new feature
subset can be improved or remains equal to the original recognition rate, then Feature E is added to
the feature subset. Subsequently, proceed to Step 2 to recalculate the weight values. Otherwise, the
next unselected feature is added, depending on its ranking. If no features can be added at this step,
then go to Step 4.

Table 1. Weight value and ranking of unselected features of Figure 5.

Feature Index Feature Subset Weight Value Ranking of Adding a Single Feature

A 1 5
B 3 3
C Chosen
D Chosen
E 5 1
F Chosen
G 4 2
H Chosen
I 2 4
J 1 5

Step 4: Sequentially Add Two Features

At this step, to explore additional feature subset combinations, sequentially add two unselected
features to the feature subset in each trial. Following the example in Table 1, create all possible
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combinations of any two unselected features and calculate the sum of their weight values. Because the
amount of possible combinations of any two unselected features may be too numerous, we set
a threshold TAdd to filter the combinations. If the weight-value sum of two selected features is
larger than the threshold TAdd (the threshold TAdd was 7 in this study), then this combination of
two features is a candidate combination for being added. As Table 2 shows, the weight sums of
three combinations exceed the threshold TAdd. In this scenario, sequentially add the unselected
features of each combination to the feature subset. If the recognition rate of the new feature subset
can be improved, or remains the same as the original recognition rate, then add the two features
comprising the test combination to the feature subset. Subsequently, proceed to Step 2 to recalculate
the weight values. Otherwise, add the next combination, depending on its ranking. If no features can
be added at this step, go to Step 5.

Table 2. Weight sum of two unselected features and their ranking.

The Combination of Two
Unselected Features Sum of Weight Values Ranking of Adding

Two Features

Feature E and Feature G 9 1
Feature E and Feature B 8 2
Feature G and Feature B 7 3

Step 5: Calculate the Weight Values of the Selected Features

Before eliminating the selected features from the feature subset, recalculate the weight values
of these candidate features. At this step, calculate only the weight values of the selected features
for elimination in the following step. The calculation method applies the same diagram of weight
values shown in Figure 4. Figure 6 shows an example of the method used to calculate the weight
values of these selected features. In this example, five features (feature indices C, D, E, F, and H)
were selected in the feature subset. Each selected feature exhibited a weight value that was based on
neighboring selected features. For example, Feature D exhibited the highest weight value of 5 because
it accumulated the weight values of three neighboring selected features (Features C, E, and F), whereas
Feature H exhibited a weight value of only 1, which was obtained from the selected Feature F.
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Step 6: Sequentially Eliminate a Single Feature

At this step, sequentially eliminate selected features from the feature subset if they have low
weight values. Table 3 lists the ranking of the selected features shown in Figure 6. In the example shown
in this table, Feature H was the first candidate feature for elimination from the feature subset. If the
recognition rate of the new feature subset can be improved by eliminating this feature, then Feature H
is removed from the feature subset. Otherwise, the next selected feature is removed, depending on its
ranking, and the recognition rate is examined again. If no features can be eliminated in this step, go to
Step 7.
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Table 3. The weight values and ranking of selected features of Figure 6.

Feature Index Feature Subset Weight Value Eliminating a Single Feature

A
B
C Chosen 3 2
D Chosen 5 4
E Chosen 5 4
F Chosen 4 3
G
H Chosen 1 1
I
J

Step 7: Sequentially Eliminate Two Features

Similar to Step 4, sequentially eliminate two selected features from the feature subset in each trial
of this step. Following the example in Table 3, create all possible combinations of any two selected
features and calculate the sum of their weight values. Subsequently, examine whether the weight-value
sum of the two selected features is smaller than the threshold TDel (which was 3 in this study). In this
scenario, the sum of Features C and H was smaller than the threshold TDel. Attempt to eliminate
the selected Features C and H, and then examine the recognition rate. If the recognition rate of the
new feature subset can be improved, eliminate the two features comprising the test combination from
the feature subset and perform Step 5 to recalculate the weight values. If no other features can be
eliminated at this step, then end the NRFS algorithm.

4. Experimental Data Generation

This section introduces the method for generating a data set of rat EEG signals and a data set of
Chinese characters.

4.1. Rat EEG Signal Data Set

In this study, we use the same EEG signal data set in our previous study [9]. For continuous EEG
monitoring, recording electrodes were chronically implanted on the skull of the rat. In this experiment,
the EEG signal data is collected by only one single rat. For EEG recording, a parietal electrode was
implanted on the same level of bregma. The signal was referenced to a ground electrode implanted
over the cerebellum. The signal was connected to a personal computer using a connector. All of the
instruments were sealed and secured to the skull with dental cement, and the skin was sutured with
wound clips.

The EEG signals were recorded for 2 to 6 h at a sampling rate of 1 kHz, and were then transformed
into frequency information by using FFT, as described in Section 1. The power spectrum was calculated
using a 4-second window size and 1-second overlap. In general, the frequency of EEG signals is
distributed in the range of 1–50 Hz. Westbrook [6] divided the observed frequencies into several
groups: delta (0.5–4 Hz), theta (4–8 Hz), alpha (8–13 Hz), beta (13–20 Hz), and gamma (20–50 Hz)
frequency bands. The major difference in spectrum patterns among the three states involved the delta,
alpha, and gamma frequency bands.

Before constructing the classification system, an experienced expert accurately labeled the
corresponding vigilance states for the data patterns. These data patterns were categorized into
one of three states by examining the EEG, EMG, and locomotor behavior by using video files. Finally, a
total of 810 EEG epochs were collected and labeled as data patterns in this study, in which each EEG
epoch represented a 4-s period of stimulation. The data patterns were then partitioned into the training
data set and testing data set. A total of 540 and 270 EEG epochs were used as the training and testing
patterns, respectively. Table 4 lists the number of epochs in each state.
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Table 4. Number of epochs in each state.

Vigilance State Number of Training Epochs Number of Testing Epochs

REM (rapid eye movement) 56 41
SWS (slow wave sleep) 248 155

AW (awake) 236 74
Total Number 540 270

4.2. Chinese Character Data Set

In this study, the proposed NRFS algorithm was applied for recognizing Chinese characters.
Figure 7a shows examples of Chinese characters, “大” and “犬”, obtained from the ETL9b database [37].
The nonlinear normalization technique [38] was adopted to normalize each character image to a size
of 64 ˆ 64. Each character image was then divided into 16 ˆ 16 subregions (Figure 7b) to generate
256 feature vectors, the values of which ranged from 0 to 16. For this application, each feature vector
represents the information of a certain subregion in a character image. We believe that assuming
that each feature vector has a dependent relationship with neighboring feature vectors is reasonable.
However, the neighborhood relationship of a feature vector contains two-dimensional directions;
therefore, the diagram of weight values in Figure 4 is not suitable for use in this situation. To solve
this problem, as shown in Figure 8, a new diagram of weight values was applied for a feature vector
containing a two-dimensional neighborhood relationship.
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5. Experimental Results

Experimental simulations were conducted in this study to compare four feature-selection methods:
the IG [12], sequential floating search (SFS) [23], SFFS [23], and NRFS algorithms. To extract feature
subsets by using these methods, one half of the training data patterns were used to construct a
classifier by applying the kNN classification method. The remaining data patterns in the training data
set were used to estimate the accuracy rate as a criterion function of the feature selection method.
After extracting the feature subset by using these feature selection algorithms, all of the training data
patterns and the extracted feature subset were integrated to build a new classifier for testing and
obtaining validation results from the testing data set.

5.1. Experiments on the Data Sets of Rat EEG Signals

In this experiment, two data sets were used to conduct the simulation. The first data set was
the original data set, as described in Section 4.1. A total of 540 and 270 EEG epochs were used as the
training and testing patterns, respectively. In addition, to compare the robustness of the four feature
selection methods, a noisy data set was generated from the original data set. First, 20% of the data
patterns were randomly chosen from the original data set. For each chosen data pattern, six features
were randomly selected from the 32 features, and their values were modified. Finally, the resulting
data set consisted of 20% noisy data patterns and 80% original data patterns. A comparison of the
experimental results for this noisy data set can be performed to determine the robustness of the four
feature selection methods.

Experiment A-1: Original EEG Signal Data Set

Four feature selection algorithms were applied to extract a feature subset from the original EEG
signal data set. Table 5 lists the simulation results. The NRFS algorithm extracted more features
and obtained a higher accuracy rate than the IG, SFS, and SFFS algorithms did. Figure 9 shows the
feature subset selected by the four algorithms. The IG, SFS, and SFFS algorithms selected eight, five,
and six feature vectors from the original data set, respectively, as shown in Figure 9a–c. The NRFS
algorithm selected 11 feature vectors (Figure 9d), and the accuracy rate was higher than that of the
other algorithms. The feature vectors selected by the NRFS algorithm were concentrated in two main
regions. The frequency bands of the selected feature vectors were at 8–12.8 Hz and 22.4–35.2 Hz
for these two main regions. The 8–12.8 Hz frequency band was identified as the alpha band, and
the 22.4–35.2 Hz frequency band was identified as the lower gamma band. The simulation result of
applying the NRFS algorithm is in part agreement with that obtained by Westbrook [6] and Louis [8].
More discussions are given in Section 6.
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Table 5. Experimental results of original data set of EEG signals.

IG SFS SFFS NRFS

Number of Selected Feature Vectors 8 5 6 11
Accuracy of Testing Data (%) 89.26 91.85 93.33 94.81

Computational Time (s) 1.2 0.6 2.8 42.5

Experiment A-2: Noisy EEG Signal Data Set

A noisy data set was generated from the original data set to compare the robustness of the
four feature selection methods. The noisy EEG signal data set contained 20% noisy data patterns and
80% original data patterns. Table 6 lists the simulation results, and Figure 10 shows the feature subset
selected by the four algorithms. Once again, the NRFS algorithm obtained a higher accuracy rate
than the IG, SFS, and SFFS algorithms did. Although the data set contained noisy data patterns, the
NRFS algorithm could extract features that were comparable to those identified in Experiment A-1
(Figure 9d). However, the features extracted by the IG, SFS, and SFFS algorithms differed considerably
from the feature subset obtained in Experiment A-1 (Figure 9a–c). This experiment demonstrated that
the proposed algorithm is robust when the data set contains noisy data.
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Table 6. Experimental results of noisy data set of EEG signals.

IG SFS SFFS NRFS

Number of Selected Feature Vectors 11 10 15 13
Accuracy of Testing Data (%) 85.92 84.81 88.51 92.60

Computational Time (s) 1.3 0.8 3.1 68.8

5.2. Experiments on the Data Sets of Chinese Characters

In this experiment, two data sets were used for conducting the simulation. In the first data set,
two classes of Chinese characters were used, “犬” and “大”, and each class contained 200 character
images. As shown in Figure 11, the top-right area of the character image was the crucial area for
classifying the characters “犬” and “大” (Figure 11). In the data set, the number of training and testing
patterns were 266 and 134, respectively. The same process described in Section 5.1 was applied, and
a noisy data set was generated from the original data set of Chinese characters. The noisy data set
consisted of 20% noisy data patterns and 80% original data patterns. A comparison of the experimental
results obtained for this noisy data set was conducted to determine the robustness of the three feature
selection methods.Sensors 2016, 16, 871 11 of 14 

 

 
Figure 11. The crucial area for classifying the characters “犬” and “大”. 

Experiment B-1: Original Data Set of Chinese Characters 

In the experiment, the IG, SFFS, and NRFS algorithms were applied to extract a feature subset 
from the original data set of Chinese characters. For the recognition of Chinese characters, the two-
dimensional diagram of weight values (Figure 8) was applied in the NRFS algorithm. Table 7 lists the 
simulation results. The NRFS algorithm extracted more features and obtained a higher accuracy rate 
than the IG and SFFS algorithms did. Figure 12 shows the feature subset selected by the three 
algorithms. If a feature vector is selected by an algorithm, then the corresponding subregion of the 
character image is labeled in pink as shown in Figure 12. In Figure 12c, the NRFS algorithm selected 
more feature vectors in the top-right area of the character image, which was the crucial area used to 
classify the characters “犬” and “大”. However, in Figure 12a,b, the subregions selected by IG and 
SFFS were spread across various locations. Consequently, locating the crucial area for classifying the 
characters “犬” and “大” was difficult. The simulation result indicates that the NRFS performed 
favorably when the features exhibited a two-dimensional neighborhood relationship. 

 
(a) (b) (c) 

Figure 12. Feature vectors selected by (a) IG; (b) SFFS; (c) NRFS. 

Table 7. Experimental results of original data set of Chinese characters. 

 IG SFFS NRFS 
Number of Selected Feature Vectors 30 12 16 

Accuracy of Testing Data (%) 91.04 95.52 97.01 
Computational Time (s) 11 25 406 

Experiment B-2: Noisy Data Set of Chinese Characters 

In this experiment, a noisy data set was generated from the original data set to compare the 
robustness of the three feature selection methods. Table 8 lists the simulation results, and Figure 13 
shows the feature subset selected by the three algorithms. Although the data set contained noisy data 

Figure 11. The crucial area for classifying the characters “犬” and “大”.

Experiment B-1: Original Data Set of Chinese Characters

In the experiment, the IG, SFFS, and NRFS algorithms were applied to extract a feature subset
from the original data set of Chinese characters. For the recognition of Chinese characters, the
two-dimensional diagram of weight values (Figure 8) was applied in the NRFS algorithm. Table 7
lists the simulation results. The NRFS algorithm extracted more features and obtained a higher
accuracy rate than the IG and SFFS algorithms did. Figure 12 shows the feature subset selected by the
three algorithms. If a feature vector is selected by an algorithm, then the corresponding subregion
of the character image is labeled in pink as shown in Figure 12. In Figure 12c, the NRFS algorithm
selected more feature vectors in the top-right area of the character image, which was the crucial area
used to classify the characters “犬” and “大”. However, in Figure 12a,b, the subregions selected by IG
and SFFS were spread across various locations. Consequently, locating the crucial area for classifying
the characters “犬” and “大” was difficult. The simulation result indicates that the NRFS performed
favorably when the features exhibited a two-dimensional neighborhood relationship.
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Table 7. Experimental results of original data set of Chinese characters.

IG SFFS NRFS

Number of Selected Feature Vectors 30 12 16
Accuracy of Testing Data (%) 91.04 95.52 97.01

Computational Time (s) 11 25 406

Experiment B-2: Noisy Data Set of Chinese Characters

In this experiment, a noisy data set was generated from the original data set to compare the
robustness of the three feature selection methods. Table 8 lists the simulation results, and Figure 13
shows the feature subset selected by the three algorithms. Although the data set contained noisy data
patterns, the NRFS algorithm obtained a higher accuracy rate than the IG and SFFS algorithms did.
In addition, the NRFS algorithm extracted feature vectors that were comparable to those identified
in Experiment B-1 (Figure 12c). However, the features extracted by the IG and SFFS algorithms also
differed considerably from the feature subset obtained in Experiment B-1 (Figure 12a,b). Once again,
this experiment demonstrated that the NRFS algorithm is robust when the data set contains noisy data.
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6. Discussion

In Experiment A-1, the NRFS algorithm was applied to select the critical frequency bands in
classifying three vigilance stages of rats. Finally, the frequency bands of the selected feature vectors
were at alpha band (8–12.8 Hz) and lower gamma band (22.4–35.2 Hz) for these two main regions.
According to research results of Westbrook [6] and Louis et al. [8], they considered that the major
difference of spectrum pattern in the delta (0.5–4 Hz), alpha (8–13 Hz), and gamma (20–50 Hz) bands
were the key features for classifying three vigilance stages. In addition, they also suggest distinguishing
active awake from quiet awake by observing high EMG activity. Compared with their research results,
the NRFS algorithm selected feature vectors at alpha and gamma bands, however, it did not select any
feature vector at delta band. To explain this result, we have following observations.

1. The proposed NRFS algorithm uses the SFFS algorithm to generate the initial feature subset. If the
initial feature subset does not include any feature vector in the delta band, the NRFS algorithm
usually cannot have a change to extract any feature vector from the delta band. This means the
performance of the NRFS algorithm is sensitive to its initial feature subset.

2. By further examining the data patterns in the EEG signal dataset, in the REM state, the data
patterns have high amplitude in the lower gamma band. Additionally, in the lower gamma band,
the data patterns show median amplitude for the AW state and show lower amplitude for the
SWS state, respectively. It means that the feature vectors at the low gamma band can be the key
features to identify three vigilance stages. To our collected EEG-signal data set, when the NRFS
algorithm selects enough feature vectors from the lower gamma band into the feature subset, this
feature subset can usually achieve a high accuracy rate. This situation also reduces the possibility
to select feature vectors in the delta band for the NRFS algorithm.

Although the NRFS algorithm achieves good performance in identifying the crucial frequency
band for classifying vigilance stages, however, in this paper, the EEG-signal data set was collected by a
single rat. As a result, the generalizability of the NRFS algorithm is limited. In the future, we would
collect more EEG-signal data sets to further examine the performance of the NRFS algorithm.

7. Conclusions

This study proposes using the NRFS algorithm to identify crucial frequency bands for classifying
the vigilance states of rats, and for locating crucial areas in a character image for recognizing Chinese
characters. The proposed algorithm adopts the neighborhood-relationship concept when adding
and eliminating candidate features. The experimental results of this study indicated that the NRFS
algorithm achieves satisfactory accuracy and demonstrates robustness when analyzing noisy data.
Furthermore, the NRFS algorithm identifies crucial frequency bands and produces interesting results
akin to those that have been obtained by biological researchers. In addition, the simulation results of
Chinese character recognition indicate that the NRFS performs favorably when the features exhibit a
two-dimensional neighborhood relationship.
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