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Abstract: This paper presents the design of a fiber-coupled self-mixing laser diode (SMLD) for
non-contact and non-destructive measurement of Young’s modulus. By the presented measuring
system, the Young’s modulus of aluminum 6061 and brass are measured as 70.0 GPa and 116.7 GPa,
respectively, showing a good agreement within the standards in the literature and yielding a
much smaller deviation and a higher repeatability compared with traditional tensile testing.
Its fiber-coupled characteristics make the system quite easy to be installed in many application cases.

Keywords: fiber-coupled; self-mixing laser diode; self-mixing interferometry; fundamental resonant
frequency; Young’s modulus

1. Introduction

Young’s modulus is defined as the ratio of stress to strain during the elastic loading, which
plays a vital role for investigation of the stability and reliability of devices and to evaluate the
performance and longevity under certain pressure or tension. Conventional methods for modulus
measurement are more based on tensile test [1], three-point bending test or indentation [2]. However,
these methods usually need a dedicated test setup and might not be feasible to carry out in a time
and cost effective way. In addition, it is difficult to inspect the changes of modulus on a test specimen
during storage under stress conditions as further degradation progresses the specimen would risk an
irreversible deformation.

Resonant methods recently have attracted a large amount of researchers for measurement of
Young’s modulus and material related property. As Young’s modulus influences the vibration behavior
of material structures, the vibration behavior of a specific specimen can provide the materials’ modulus.
Impulse excitation method is one kind of these techniques, which are based on measurement of
resonant frequency in terms of longitudinal or flexural vibration of the test specimen with simple
geometry (basically a circular plate, a cylinder or a prism with uniform rectangular cross-section) [3–6].
The test specimen can be impacted to vibrate at the resonant frequency by a singular mechanical
strike [4] or by a driver that persistently varies the frequency of the output signal [5], or even in a
photothermic or acoustic way [3,6]. Comparing with the traditional modulus measuring methods,
which are often destructive and cost consuming, impulse excitation approach presents its superiority,
because of its ease of specimen preparation, a variety of test specimen shapes, high accuracy, and even
measurement in a hostile environment [7]. It has been extensively used for measurement of various
kinds of materials [5–10], even for human or animal organs [11].
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Recently, optical techniques have been attractive for measuring mechanical properties, such
as the application of the laser sensor [12–14], the interference of light beams [15], atomic force
microscope [16], and electronic speckle pattern interferometry [17] and so on. Optical feedback
self-mixing interferometry (SMI) technique, a new kind of laser interferometry, is an effective way to
measure the vibration period and displacement of the external target, even some important useful
material parameters. When the laser emitted by the laser diode (LD) is reflected or backscattered from
the external target and re-enter into the laser cavity again, it will mix and interfere with the original laser,
thus generating a modulated signal, whose frequency and amplitude will change [18]. Thus, based on
SMI signal, the system can be used to retrieve the useful information about the external target, such as
Young’s modulus. Unlike most optical methods that separate the laser source and interferometer to
split and combine the beam, self-mixing is based on the interaction between cavity field and the one
backscattered from the target. Because of its simplicity, convenience, feasibility of operation on many
diffusive surfaces and the high sensitivity of the scheme, being a sort of coherent detection that easily
attains half-wavelength resolution, even a few tens nm resolution [19], the SMI technique is considered
an effective solution for non-contact measurement of vibration and displacement [20].

Previously, we have done preliminary work on feasibility of using self-mixing laser diode (SMLD)
for measuring Young’s modulus, including basic experimental system set-up and signal processing
method [21,22]. In this paper, we introduced fiber to the system, which makes the installation of
measuring system more flexible. The details on the overall system design and signal analysis method
are presented. Section 2 gives the principle in terms of the formula used, the generation and the
acquisition of the vibrating signal. Then, we elaborate the design procedures of the measuring
system in Section 3 regarding to the support needed for the specimen and the size of the impulse
tool that is used to excite the specimen, as well as the optical requirements for fiber-coupled SMLD
system. Simulations and experiments are performed in Sections 4 and 5, respectively. An experimental
comparison is also conducted between current SMI technique and the traditional tensile testing.
Section 6 concludes the paper.

2. Measurement Principle

2.1. Measurement Formula for Young’s Modulus

Young’s modulus (denoted by E) can be calculated based on the geometry dimension of a
specimen and its fundamental resonant frequency (denoted by fRO) [4]. A rectangular specimen
(L: length, b: width, h: thickness) is shown in Figure 1. According to the standard released by ASTM
E187621, the calculation formula of E is expressed as below while L{h ě 20:

E “ 0.9465 ¨
m fRO

2L3

bh3 ¨ T (1)

where
T “ 1` 6.585ph{Lq2 (2)

m is the mass of the specimen and T is the correction factor.
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2.2. Vibrating Signals Generated by the Test Specimen

The fundamental resonant frequency in Equation (1) is carried in a vibrating signal generated by
the test specimen. A rectangular specimen can be stimulated and vibrated at its fundamental vibration
mode. If setting the coordinate system shown in Figure 1, the vibration waveform ypx, tq at any point
along x-axis varying with time t can be described by the following differential equation [23].

EI
B4ypx, tq
Bx4 ` ρA

B2ypx, tq
Bt2 ` γ

Bypx, tq
Bt

“ 0 p0 ď x ď Lq (3)

where γ
Bypx,tq
Bt models for internal energy loss mechanism of the specimen, and I, ρ and A, respectively,

represent for the area moment of inertia, the density and the cross section area of the specimen. After
separating the variable of x and t, and solving Equation (3), we can express ypx, tq as below:

ypx, tq “ ynpxq ¨ e´ζωntcospωn

b

1´ ζ2t` ϕq pn “ 1, 2, 3...q (4)

where

ynpxq “ ´A0

#

cosh
`

pβnLq x
L
˘

` cos
`

pβnLq x
L
˘

´
coshpβn Lq´cospβn Lq
sinhpβn Lq´sinpβn Lq

“

sinh
`

pβnLq x
L
˘

` sin
`

pβnLq x
L
˘‰

+

(5)

In Equation (4), n stands for order of the vibration mode; ζ is the damping ratio (typically
ζ “ 0.001 „ 0.002); ωnp“ 2π fnq describes the natural angular frequency of the nth order; and
ϕ depicts the initial phase of the displacement of the vibration. In Equation (5), A0 is the initial
maximum vibration amplitude; βnL = 4.73, 7.85, 11.00 . . . (while n equals to 1,2,3 . . . , respectively).
When considering the vibration is in fundamental mode (that is 1st order mode), then we have
n “ 1, β1L “ 4.73. In this case, 2π fRO “ ω1

a

1´ ζ2, so the relationship between fRO and f1 is
fRO “ f1

a

1´ ζ2. Supposing ϕ is 0, the vibration signal at the position with x “ 0 can be expressed
as below

yptq “ ypx, tq |x“0 “ A0e
´

ζ?
1´ζ2 ¨2π fROt

cosp2π fROtq (6)

This is the vibrating signal that will be picked up by a fiber-coupled SMLD. The output signal from
the fiber-coupled SMLD will be used to retrieve the fundamental resonant frequency fRO contained
in yptq.

2.3. Capture yptq Using Fiber-Coupled SMLD

The fiber-coupled SMLD system for capturing the vibration signal y(t) from the test specimen
and obtaining fRO is shown in Figure 2. The system mainly consists of a LD, coupling fiber and the
tested specimen. The LD is at DC biased with the LD controller. The temperature controller is used
to stabilize the temperature of the LD. The emitting laser from the LD is focused onto the left end of
specimen. A small portion of the light will be back-scattered or reflected by the specimen and re-enter
the LD internal cavity. Both the amplitude and frequency of the LD power are modulated by the
movement of the specimen. This modulated LD power (denoted by Pptq) is referred to as an SMI
signal which is detected by the photodiode (PD) packaged in the rear of the LD and amplified by a
trans-impedance amplifier, then recorded by an oscilloscope or collected by personal computer via
analog–digital data acquisition (DAQ) card.
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The widely accepted mathematical model for an SMLD is presented below [24–26]. The physical
meanings of the parameters used in the model are presented in Table 1.

φFptq “ φ0ptq ´ Csin rφFptq ` arctanpαqs (7)

Gptq “ cospφFptqq (8)

Pptq “ P0r1`mGptqs (9)

Table 1. Physical meanings of Parameters.

Parameters Physical Meaning Unit

t Time index. s
φFptq Laser phase with feedback rad
φ0ptq Feedback level factor rad

C Line-width enhancement factor -
α Interference function which indicates the influence of the optical feedback -

Gptq Interference function which indicates the influence of the optical feedback -
m Modulation index for the laser intensity (typically m « 0.001) -
P0 Laser intensity emitted by the free running LD -

Pptq Laser intensity when LD with optical feedback -

where φ0ptq is linked to the vibrating signal yptq generated by the test specimen via

φ0ptq “ 4πyptq{λ0 (10)

where λ0 is the wavelength of the laser at free running.
Equations (7)–(10) describe the relationship between the signal yptq (input to the SMLD) and

Pptq (output of the SMLD). Typically, if yptq exhibits an oscillation of frequency fRO, Pptqwill exhibit
periodic waveform of the same frequency. Therefore, by applying Fast Fourier Transform (FFT) on Pptq,
fRO can be retrieved by the first peak from the amplitude spectrum of signal from Pptq. In the next, we
will present how to design the system so that to achieve an optimal measurement for Young’s modulus.

3. System Design

In order to have the vibrating signal y(t) detected effectively by the self-mixing signal, attentions
must be paid to the following points during the system design. Firstly, the specimen should vibrate in
the fundamental mode. Second, the maximum vibration magnitude must fall into the range required
by the fiber-coupled SMLD. Furthermore, the SMLD should be insured to work in stable operation [27].

3.1. Mechanical Supporting for the Specimen

It can be seen from Figure 3a that the two points with x{L “ 0.224 and x{L “ 0.776 are zero-cross
points. They are called “nodes”. Thus, the two nodal lines indicated in Figure 3b on the specimen are
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chosen as the mechanical supporting position in order to have it vibrate only in 1st-order. The points
with x{L “ 0 and x{L “ 1 in Figure 3a are called “anti-nodes”. One of the anti-nodes on anti-nodal
line was chosen as the reference point at which the laser hits so that to pick up the vibrating signal yptq
and then generate the corresponding SMI signal Pptq.
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3.2. Steel Ball for Stimulation

A steel ball is used as the stimulator for exciting the specimen in vibration. For a given specimen,
A0 in Equation (6) is determined by the radius (Rsteel) of the ball meanwhile limited by the detection
range of the fiber-coupled SMLD. Hence, we need to build the relationship between Rsteel and
system-associated parameters. The detection range is mainly limited by the bandwidth of PD, its
associated electronics and the DAQ card. Normally, PD’s maximum detection frequency is around
10 MHz, the detection circuit currently used in our experiment has bandwidth of 4 MHz and the DAQ
card we used is NI USB-6361 with 2 MHz sampling rate. We denote the overall detection bandwidth
of the SMLD as BD. Thus, the sampling frequency ( fs) in DAQ should be fs “ 2BD at least. Then
we consider the bandwidth of an SMI signal (denoted by BS). BS can be estimated according to the
feature of SMI signals [25,26,28]. Since each fringe in an SMI signal corresponds to half wavelength
displacement of the external target, A0 means the number of fringes is about 8A0{λ0 during the first
vibration period (1{ fRO) in yptq. Hence, we can roughly estimate the fringe frequency as 8A0 fRO{λ0.
Further considering the SMI fringe is saw-tooth-like, the harmonics of the fringe frequency can go up
at least 30th-order. Thus, we can express Bs roughly as:

Bs “ 240A0 fRO{λ0 (11)

The signal bandwidth must not exceed the one of the system, that is, we should have BS ď BD.
Thus, the maximum A0 can thus be approximately determined by

A0 ď
fsλ0

480 fRO
(12)

Next, we will consider the relationship between A0 and the ball’s size Rsteel . In our design, the
ball moves down along a guided tube and hits onto the center of the specimen. The set-up for the
mechanical excitation part is shown is Figure 4. The tube is installed with a tilt angle with respect
to the specimen’s plane. When the ball hits onto the specimen, an impulsive force (denoted by F)
will be generated and thus cause a corresponding A0. For the given specimen with the dimension
shown in Figure 1 and A0 determined above, F is expressed as below by solving the bending moment
equations [29],

F “
45.432 ¨ m fRO

2L3 IA0
bh3 ¨ p1.000` 6.585h2

L2 q ´ 2qapa3 ` 6a2L´ 6aL2 ` L3q

3apL´ 2aq2
(13)
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where I is the inertia moment of the specimen and equals to bh3{12; q is the uniformly distributed load
and equals to m{L; a “ 0.224L. Equation (13) tells that F is determined by A0, fRO and the parameters
related to the specimen.
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F is also determined by the initial height h0 for relieving the ball and the ball related parameters.
Let us denote m0 as the mass of the ball. According to Theorem of Momentum and Impulse and
Newton’s Second Law, we have:

pF´mogqtd “ mo
a

2gh0 (14)

where mo “
4
3 πρsteel Rsteel

3; td is the time of collision and can be determined as 0.004 s. Thus, the radius
of the steel ball can be expressed as

Rsteel “
3

d

3Ftd

4πρsteel
`

gtd `
a

2gh0
˘ (15)

After combining Equations (12), (13) and (15), a suitable Rsteel can be worked out. A ball with this
size can generate a yptqwith A0 meeting the detection requirement of an SMLD.

3.3. Requirements for SMLD

The stability of an SMLD is studied in work [27]. It shows that the stability boundary is determined
by the injection current, feedback level and the external cavity length. An SMLD is stable only when
it operates below the stability boundary. In our system, the LD is L785P090 (785 nm, 90 mW) with
injection current 52.5 mA, which is 1.5 times the threshold value (35 mA). We measured the system
stability boundary using the experimental method presented in [27] by varying the system feedback
level and the external cavity length, as shown in Figure 5. We choose the cavity length as 0.5 m so that
the SMLD can be stable over a wide feedback level.
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Note that it is better to use an attenuator to adjust the feedback level C to be around 3, in this case
SMI signals can be clear without relaxation oscillation.

In summary, the following three steps are important for designing a suitable fiber-coupled SMLD
system for Young’s modulus measurement.

‚ Step 1: Measure the stability boundary of the SMLD system and from which to determine a
suitable external cavity length to place the tested specimen.

‚ Step 2: Estimate the maximum magnitude A0 by Equation (12). Note that a low fRO, e.g., can be
used for the estimation.

‚ Step 3: Calculate the size of the steel ball Rsteel using Equations (13) and (15) and A0.

4. Simulations

In order to verify the concept presented above, we firstly perform simulations with the aim to
show the feasibility for measuring Young’s modulus by the fiber-coupled SMLD.

The specimen we used is a rectangular brass bar (with L = 138.35 mm, b = 12.06 mm, h = 2.23 mm,
m = 30.65 g) and its Young’s modulus is estimated as 120 Gpa from the literature [30]. Thus, its fRO is
calculated as 444 Hz by Equation (1).

For simulations, the parameters associated to the SMLD are set as fs = 3 MHz (considering the
bandwidth of the detection circuit used for experiments is 3 MHz), λ0 = 785 nm, and we choose C = 3,
α = 3, and the external cavity length is h0 = 0.5 m.

Based on above design procedure, we have maximum A0 = 11.05 um using Equation (12).
According to Equation (6), if we let ζ = 0.0015, yptq generated by the brass specimen is expressed as

yptq “ 11.05 ¨ e´4.6tcos p2π ¨ 444 ¨ tq (16)

From yptq, we can obtain φ0ptq through Equation (10), then φFptq by Equation (7), and finally, we
can get Gptq using Equation (8) Note that in the simulation, we use Gptq to replace Pptq. In practice,
Gptq can be gained by normalizing Pptq through Equation (9).

Since the FFT frequency resolution (denoted by Rdata), the sampling data length for FFT (denoted
by Ldata) and fs have a relationship; that is, Rdata “

fs
Ldata

. To measure fRO = 444 Hz, the frequency
resolution should be at least 1 Hz, so Ldata should be equal to 3,000,000 at the same time. We firstly
generated yptq by Equation (16) with 5 million specimens as shown by Figure 6a. The corresponding
SMI signal Gptqwas simulated using Equations (7), (8) and (10) and plotted in Figure 6b. We applied
FFT on Gptq and gained its amplitude spectrum shown in Figure 6c. Figure 6d,e shows the zoomed-in
area indicated in Figure 6a,b,f, which shows the details of the spectrum around 444 Hz.

From the time domain in Figure 6b, it can be observed that the period (noted by 1{ fRO in Figure 6d)
of damping vibration yptq equals to the fundamental period (noted by 1{ fF Figure 6e) of SMI signal
Gptq. The fundamental frequency can be easily found from the spectrum of Gptq by detecting the
first peak.

We also performed the simulations by considering the SMLD under different feedback levels
C, which are 1.8, 3.6 and 5.4. Part of signal from 0.8 s for four periods is shown in Figure 7a. Other
parameters for simulations are same as the ones used in Figure 6. The spectrums of corresponding
Gptq under different feedback levels are shown in Figure 7b.

From Figure 7, decrease in the amplitude of the dominant fundamental frequency component
was found in each feedback level, but it is still very clear as long as C was chosen larger than 1, i.e.,
the moderate or strong feedback regime. However, it is found that when the system is working at
weak feedback level, the fundamental frequency component cannot be separate from other frequency
components. Thus, the system must be kept working in a moderate or relatively strong feedback level,
but within the range where system can stably work, i.e., around 5.8, according to the requirement
of SMLD in Figure 5. In practice, it is very rare in the experiments C exists smaller than 1 until an
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attenuator was used. Thus, the fundamental resonant frequency in input signal can finally smoothly
be retrieved from the output of the SMLD measuring system through FFT.
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5. Experiments

5.1. Experimental Set-up and Results

The overall experimental set-up is shown in Figure 8. The experiments were conducted on two
different material specimens, one of which is a rectangular brass bar with L = 138.35 mm, b = 12.06 mm,
h = 2.23 mm and m = 30.65 g and the other one is an aluminum alloy 6061 specimen with L = 132.43 mm,
b = 12.24 mm, h = 2.00 mm and m = 8.70 g. The radius of the steel ball for experiments was set as
Rsteel = 3 mm within the maximum limit calculated by using Equations (12), (13) and (15). Then
experiments can be performed using the following steps.
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‚ Step 1: Install the LD onto a laser mount; set the bias current on the laser controller (LTC100-B
from THORLABS) as 52.5 mA and the temperature on the temperature controller (TED200C from
THORLABS) is stabilized to 25 ˘ 0.1 ˝C.

‚ Step 2: Install a specimen to be tested and use a coupler (PAF-X-2-B from THORLABS) connected
with a step-index multimode fiber optic patch cable (M67L02 from THORLABS) with an adjustable
aspheric FC collimators (CFC-2X-B from THORLABS) at the other end to adjust the distance
between the specimen and the LD to form an external cavity with 0.5 m long.

‚ Step 3: Adjust the LD mount so that the fiber-coupled SMLD can be operated in a moderate
feedback level by observing the waveform of the SMI signal.

‚ Step 4: Place the steel ball on the up end of the guided tube and release it. As a result, the
specimen is stimulated into vibration. Correspondingly, an SMI signal is produced by the SMLD
and recorded by the oscilloscope and the computer through the DAQ card. A LabVIEW script
programmed for sampling the SMI signal is set to wait for collecting the signal.
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For each specimen, Step 4 was repeated 10 times. Thus, 10 pieces of SMI signals were collected
and the corresponding spectrums are calculated by applying FFT. For illustration, we show one pair
of the experimental results for each specimen in Figure 9a–d. The sampling rates were all set as
200 KHz during the experiments. The data length for each piece of signal is 200,000 points. Hence,
the resolution of each spectrum can reach to 1 Hz. From the spectrums in Figure 9d, the first peak
is detected as the fundamental resonant frequency fRO. It is characterized as the highest peak in the
spectrum. The Measurement details of fundamental resonant frequency fRO for the two spectrums
(aluminum 6061 and the brass) are shown in Table 2.

For the aluminum 6061 specimen, the measured resonant frequency values vary from 597 Hz
to 599 Hz and it is from 450 Hz to 452 Hz for the brass. It can be seen that the proposed method
can achieve the measurement for fRO with high repeatability. We then use the obtained fRO and
Equations (1) and (2) to calculate the Young’s modulus and the results are also presented in Table 2.
We use standard deviation to describe the measurement accuracy, which is calculated by

σ “

g

f

f

e

1
N

N
ÿ

i“1

pxi ´ µq2 (17)

where xi refers to each measurement result of fRO, or the calculated E shown in Table 2. N = 10. µ

is the mean value over the measured 10 values. From the standard deviation given in Table 2, the
measurement accuracy for fRO and E are respectively calculated by (σ/µ) % as 0.23% and 0.25%. The
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Young’s moduli are 70.0 GPa and 116.7 GPa, respectively, for aluminum 6061 and the brass specimen.
The two results fall in the ranges of 69–72 GPa and 102–125 GPa reported in the literature [31].
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Table 2. Measurement results.

Times (N)
Specimen Aluminum 6061 Brass

fRO (Hz) E (GPa) fRO (Hz) E (GPa)

1 599 70.2 451 116.6
2 598 70.0 450 116.1
3 599 70.2 451 116.6
4 598 70.0 451 116.6
5 597 69.7 452 117.1
6 598 70.0 451 116.6
7 599 70.2 451 116.6
8 598 70.0 452 117.1
9 599 70.2 451 116.6
10 598 70.0 451 116.6

Mean (µ) 598 70.0 451 116.7

Standard deviation (σ) 0.68 0.16 0.57 0.29

5.2. Comparison with Tensile Testing

Six standard dog-bone shaped flat specimens with gauge length 25 mm, width 10 mm and
thickness 2 mm were taken from the above mentioned aluminum 6061 and brass respectively [32].
Tensile tests were performed on an Instron 5566 testing machine at room temperature with an initial
strain rate of 10´3/s. The load values were recorded by the load cell of the Instron machine. To ensure
the measurement accuracy of Young’s modulus, DANTEC digital image correlation (DIC) system
was adopted to record the displacement of tensile specimens during the tests. Before testing, random
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speckle patterns were generated on the specimen surfaces by spray painting. The overall displacement
of the entire gauge regions of the specimens was recorded by two high speed cameras facing the
speckled surfaces at a frame rate of 5 Hz. The images were 2448 by 2448 pixels with an 8-bit dynamic
range. ISTRA 4D software was used to analyze the images and obtain extension values of the gauge
regions. The load obtained from the Instron machine and the extension obtained from the DIC system
were used to calculate stress and strain values. The stress–strain curves were plotted afterwards.
Young’s modulus was obtained from the elastic deformation region of the stress–strain curves.

Figure 10 is the schematic experimental setup for tensile testing. As an example, Figure 11 shows
one of the stress–strain curves obtained for aluminum 6061. The Young’s modulus can be read by the
slope of the linear region on the curve. It can be seen that the linear region can be fitted by a linear
equation y = 66789x + 12.52, whose slope is around 66.79 GPa, which is the Young’s modulus value.
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By comparing the results in Tables 2 and 3, it can be seen that the Young’s modulus obtained by 
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6. Conclusions 

An optical method based on SMLD is developed for Young’s modulus measurement. Detail 
design procedures are presented. Both simulation and experiments show that the proposed 
measurement method can achieve Young’s modulus with accurate results. The Young’s modulus for 
material aluminum 6061 and brass are measured using the proposed fiber-coupled SMLD as 70.0 
GPa and 116.7 GPa, showing a good agreement with the standards reported in the literature and 
yielding a much smaller deviation (0.16 GPa and 0.29 GPa) and a higher accuracy (0.23% and 0.25%) 
in contrast to the traditional tensile testing. In addition, unlike tensile method, the proposed 
approach only acquires one sample for experiments, and can be performed in a non-destructive 
way. The proposed fiber-coupled SMLD system for Young’s modulus measurement is characterized 
as compact structure, fast measurement and non-contact technique. By cooperating advanced signal 
processing and fast DAQ card, this method can achieve very high measurement accuracy. With the 
fiber-coupled SMLD, the system is quite easy to be installed and can be used in many application 
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SMLD Self-Mixing laser diode 
LD Laser Diode 
PD Photodiode 
SMI Self-mixing interferometry 

Figure 11. Stress–strain curve for an aluminum 6061 specimen obtained from tensile testing.

The results of the measured Young’s modulus are presented in Table 3.

Table 3. Results of Young’s modulus (GPa) by tensile testing.

Specimen)
Times (N)

1 2 3 4 5 6 Mean (µ) Standard Deviation (σ) Accuracy (σ/ µ%)

Aluminum 6061 60.6 64.4 76.2 67.0 73.9 63.0 67.6 6.2 9.2

Brass 120.3 125.6 133.4 118.6 109.6 119.4 121.1 7.9 6.5

By comparing the results in Tables 2 and 3, it can be seen that the Young’s modulus obtained
by the fiber-coupled SMLD for the two different materials are quite close to the results measured
by the traditional method—tensile testing. However, relative large deviations are found from the
tensile testing with 6.2 GPa for aluminum 6061 and 7.9 GPa for brass, and the corresponding accuracy
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are 9.2% and 6.5%, while the proposed fiber-coupled SMLD system is able to measure the Young’s
modulus with a satisfied accuracy, 0.23% for aluminum 6061 and 0.25% for the brass. In addition, the
SMLD system needs only one specimen for each material to obtain the Young’s modulus but multiple
specimens are required by tensile testing for higher accuracy.

6. Conclusions

An optical method based on SMLD is developed for Young’s modulus measurement. Detail design
procedures are presented. Both simulation and experiments show that the proposed measurement
method can achieve Young’s modulus with accurate results. The Young’s modulus for material
aluminum 6061 and brass are measured using the proposed fiber-coupled SMLD as 70.0 GPa and
116.7 GPa, showing a good agreement with the standards reported in the literature and yielding a
much smaller deviation (0.16 GPa and 0.29 GPa) and a higher accuracy (0.23% and 0.25%) in contrast
to the traditional tensile testing. In addition, unlike tensile method, the proposed approach only
acquires one sample for experiments, and can be performed in a non-destructive way. The proposed
fiber-coupled SMLD system for Young’s modulus measurement is characterized as compact structure,
fast measurement and non-contact technique. By cooperating advanced signal processing and fast
DAQ card, this method can achieve very high measurement accuracy. With the fiber-coupled SMLD,
the system is quite easy to be installed and can be used in many application cases.
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