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Abstract: The study aims to integrate the image sensor for a three-axial pneumatic parallel
manipulator which can pick and place objects automatically by the feature information of the image
processed through the SURF algorithm. The SURF algorithm is adopted for defining and matching
the features of a target object and an object database. In order to accurately mark the center of target
and strengthen the feature matching results, the random sample and consensus method (RANSAC)
is utilized. The ASUS Xtion Pro Live depth camera which can directly estimate the 3-D location
of the target point is used in this study. A set of coordinate estimation calibrations is developed
for enhancing the accuracy of target location estimation. This study also presents hand gesture
recognition exploiting skin detection and noise elimination to determine the active finger count
for input signals of the parallel manipulator. The end-effector of the parallel manipulator can be
manipulated to the desired poses according to the measured finger count. Finally, the proposed
methods are successfully to achieve the feature recognition and pick and place of the target object.

Keywords: image recognition; parallel manipulator; pneumatic servo system; speed up robust feature
algorithm; random sample and consensus algorithm; hand gesture recognition

1. Introduction

In recent years, more and more countries have developed various kinds of robots to render
human’s lives much more convenient. Abundant literature on robots has been published and used
for several decades. For instances, robots are widely adopted in automobile, mechanical, aerospace,
medical applications. In this research, the industrial manipulator, the parallel manipulator, will be
presented and implemented. This kind of manipulator possesses a high ratio of rigidity to weight,
high stiffness, high accuracy and high response, so parallel manipulators have become more popular
in diverse industries to handle complex and harsh tasks. In most robot application research, the
interaction in the workspace between robots and workpieces is a critical issue. Especially, position
mismatch may cause a failure of the functioning. In recent years, visual systems have become the most
outstanding method applied in the robot-vision system. To achieve such vision-guided system, the
robot should be able to recognize the target object and determine the pose of the object so as to grasp it.
In 1988, the Harris corner detector was suggested for the feature detector [1]. Furthermore, the robot
needs to modify its motion trajectory according to the target object’s poses. In 2011, the 3D parallel
mechanism robot with a stereo vision measurement system was presented by Chiang et al. [2,3]. The
stereo vision measurement system is a noncontact measuring strategy using two parallel CCDs to
capture the 3D poses of the end-effector instead of the contact displacement sensors. The system can
determine the location of the end-effector in the three-dimensional Cartesian coordinate system. In
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2016, the 3D visual data-driven spatiotemporal deformations for non-rigid object gasping using robot
hands was introduced by Mateo et al. [4]. The experiments show that the proposed method can grasp
several objects in various configurations.

Recently, ASUS (Taipei, Taiwan) launched the ASUS Xtion Pro Live camera, a 3D camera system
which consists of both an RGB sensor and a depth sensor for capturing color images and per-pixel
depth information simultaneously. This device can largely resolve the major problem which is using
the images from a 2D camera system to reconstruct the 3D object information in the vision-guided
robot. Furthermore, Human-Robot Interaction (HRI) plays a critical role in accomplishing interactive
tasks between human and robots. Many researches focus on kinematics, communication, computer
vision and control systems, making HRI an inherently interdisciplinary endeavor. Gesture-based
interfaces hold the promise of making HRI more natural and efficient [5,6].

This paper combines the depth camera and the 3-DOF pneumatic parallel manipulator, instead of
the stereo vision system which is more expense and time consuming, for estimating the 3D location of
objects. In addition, the gesture is used as a signal for the manipulator to grasp the desired bodies. The
HRI renders the entire system friendly. In a nutshell, a 3-DOF pneumatic parallel manipulator with an
image sensor system is successfully developed and implemented.

2. System Overview

2.1. Mechanism

The proposed parallel manipulator is a 3-DOF parallel manipulator by the pneumatic servo
system. Figure 1 shows a photograph of device. Three limbs driven by rod-less pneumatic actuators are
assembled and connected to the fixed base in the way that the geometric structure of the manipulator
is in an inverted pyramidal shape. The three sliders are translated along the linear guide-ways by
three 1-DOF prismatic joints driven by the pneumatic rod-less cylinders. The moving platform is
linked to each slider by 3-DOF spherical joints. Mobility analysis by the Grübler-Kutzbach formula
verifies that the proposed manipulator is a 3-DOF mechanism with its moving platform possessing
only translational motion. Furthermore, the 3D camera system, an ASUS Xtion Pro Live depth camera,
is set up on the A axis of the parallel manipulator for non-contact measurements. The camera system
can directly capture the 3D information of the object by color images and the depth position of each
pixel [7].
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parallel manipulator developed in this research is shown in Figure 3. The upper Figure 3 indicates
the pneumatic servo system for driving the 3-DOF parallel manipulator. The overall pneumatic
servo system mainly contains an air pump, three proportional directional flow control valve (model
MPYE-M5, Festo, Esslingen am Neckar, Germany) and three pneumatic rodless cylinders (Festo model
DGC-25-500). In addition, for gauging the real position information of each slider, the position sensor
with 1 µm resolution is utilized and attached to each pneumatic actuator. Two pressure sensors are
also installed on each cylinder to measure the pressures of the two cylinder chambers.
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Figure 2. The structure of the 3-DOF parallel manipulator.
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Figure 3. Test rig layout of the 3-DOF pneumatic parallel manipulator. 1: Air Pump; 2: Air Preparation
Unit; 3: Air Reservoir; 4: proportional directional control valve; 5: pneumatic rod-less cylinder;
6: optical linear encoder; 7: pressure sensor; 8: interface card; 9: PC-based controller; 10: 3-DOF
pneumatic parallel manipulator.
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Both the measured position signals (yA, yB, yC) and chamber pressure signals (P1,A, P2,A, . . . P2,C)
are back to a PC-based controller through the counters and A/D converters on the DAQ card. The
input command voltage for the servo valve is given from the analogue output ports on the DAQ
card via the D/A converters. The control hardware system which adopts the Matlab Simulink and
Mathworks can easily design and realize in the real-time system. The overall algorithms are built up
using Matlab Simulink through embedded Matlab function blocks. Furthermore, in Mathworks the
Real Time Windows Target (RTWT) can automatically translate the Simulink model into C codes. Also,
the control system is implemented on a Windows-based personal computer with 1 kHz of sampling
frequency to implement the real-time control system.

3. Object Recognition

In this paper, a SURF algorithm, a fast detector and descriptor, is utilized and developed to
compute and detect in reducing the feature complexity and enhancing the robustness.

3.1. Interest Point Detection

The points of interest are detected by the Hessian-matrix approximation technique. The
“Fast-Hessian” detector proposed by Viola and Jones can largely reduce the computational time
to detect the object rapidly [8]. Also, Simard proposed a fast convolution algorithm for integral images
into the general framework of boxlets [9].

3.1.1. Integral Image

At X = (x,y)T, the integral image is the sum of all pixels in a rectangular area set up by the origin
and X. The integral images are easily and quickly to compute in the box type convolution filters.
Choosing positions in the scale, a constant number of entries in a single integral image should be
focused on. Also, the image size will mainly dominate the calculation time.

3.1.2. Hessian Matrix Based Interest Points

The advantage of the SURF feature detector with the Hessian matrix is its accuracy performance.
The Hessian matrix H(X,σ) in a location X = (x,y)T of an image I with the scale σ can be expressed as:

H pX, σq “

«

GxxpX, σq GxypX, σq

GxypX, σq GyypX, σq

ff

(1)

where Gxx(X,σ), Gxy(X,σ) and Gyy(X,σ), the convolution of the Gaussian second order derivative

with the image I in a location X, are B2

Bx2 g pσq , B2

BxBy g pσq , and B2

By2 g pσq . When Gxx(X,σ) and Gyy(X,σ)
are positive, and Gxy(X,σ) is negative, the maximum will occur. In addition, Dxx, Dyy and Dxy are
9 ˆ 9 box filters. The determinant of approximation is expressed as:

detpHapproxq – DxxDyy ´ p0.9Dxyq
2 (2)

where 0.9 is the relative weight of the filter responses for balancing the Gaussian kernel errors.

3.1.3. Scale Space Representation

Feature of interest points are located in various scales and an image pyramid can realize scale
spaces. Lowe [10] proposed that cutting pyramid layers can find the edges and blobs of images. The
scale space can separate into octaves which denote filter response maps from convolving the same
image in different size filter. Each octave has a constant ratio for scale levels, so the layer can be
determined by calculating determinant of approximated Hessian matrix of the same input image in
growing size filter. Figure 4 shows the relation between each octave and various filter sizes. Note that
the octaves are overlapping in order to cover all possible scales seamlessly. The layer denotes a series
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of filter response maps obtained by calculating determinant of approximated Hessian matrix of the
same input image with a filter of increasing size in each octave.Sensors 2016, 16, 1026 5 of 17 
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If the intensity of the central pixel (marked with a cross) is higher than the intensities of its
surrounding pixels, including eight pixels around feature point and nine pixels in first and third layer
(27 pixels totally), it is considered as a local maximum [11].

3.1.4. Point of Interest Localization

Finding the point of interest, the blob responses of the same neighborhood (denoted as H) be
taken in each dimension around the detected maximum as described above. Then, locating the maxima
to sub-pixel/ sub-scale accuracy through a 3D quadratic to the scale space blob-response map.

HpXq “ H ` p
BH
BX
q

T
X`

1
2

XT B
2H
BX2 X (3)

where X = (x,y,σ)T are the coordinates of the scale-space. H(X) means the blob-response at the location
X. The quadratic coefficients can be approximated by a 2nd order Taylor series approximation of the
neighboring samples:

X̂ “

»

—

–

x̂
ŷ
σ̂

fi

ffi

fl

´ p
B2H
BX2 q

´1
BH
BX

(4)

Substituting the above expression into Equation (3):

HpX̂q “ H `
1
2

”

BH
Bx

BH
By

BH
Bσ

ı

X̂ (5)

HpX̂q ě 0.03 we regard it as high contrast point and update best interest points Xbest “ X ` X̂.
However, HpX̂q ą 0.03 has to be discarded because of low contrast.

3.2. Feature Points Matching

Matching interest points of two images will occur in the smallest Euclidean distance:

dpPi, Qiq “ minp
64
ÿ

i“1

ˇ

ˇ

ˇ

ˇPi ´Qi
ˇ

ˇ

ˇ

ˇ

2
q

1
2

(6)

Pi and Qi are two feature points in two images. However, there are still some mismatches in two
images. For image transformation, mapping each xi to x1

i , the homography matrix H can be written in
Equation (7):
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X1 “

¨

˚

˝

x11
x12
x13

˛

‹

‚

“

»

—

–

h11 h12 h13

h21 h22 h23

h31 h32 h33

fi

ffi

fl

¨

˚

˝

x1

x2

x3

˛

‹

‚

“ HX (7)

According to [12] the RANSAC algorithm is the robust estimation technique to attain the estimated
parameters for homographies. The putative correspondences and the inlier correspondences can be
adopted in the RANSAC algorithm [13]. Four correspondences are to define a homography and
the sample numbers are based on the outliers from each consensus state. The detail process can be
described as follows:

1. Randomly chose four matching correspondences.
2. Check whether these points are collinear, if so, redo the above step.
3. Compute the homography Hcurr by normalized DLT from the four points pair.
4. For each putative correspondence, calculate Euclidean distance between two points

di “ d
`

x1

i , Hcurrxi
˘

` d
`

xi, H´1
currx1

i
˘

by the above Hcurr.
5. Count the number of inliers m which has the distance di ă T (threshold).
6. Repeat above steps until sufficient number of inlier pairs are counted.
7. Update best H “ Hcurr and record all the inliers.
8. Using normalized DLT algorithm to recompute the homography from all consistent

correspondences (inliers).

After applying the RANSAC algorithm, we can see that this efficiently eliminates those inaccurate
correspondences. Because homography has the property of being scale- and rotation-invariant, we
can highlight precisely the targets in the current image plane. Once the correct homography H be
calculated, we can find the desired object in complicated backgrounds by averaging four corners of the
reference image after applying a homogenous transformation.

4. Gesture Recognition

Figure 5 shows the hand gesture recognition process. The gesture can be determined via finger
numbers for controlling the manipulator to grasp the specified objects.
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4.1. Skin Color Classification

Although the RGB model can reduced the large time needed for computer graphics design, it
is still hard to execute image processing algorithms due to the fact the RGB color components are
extremely correlated. In order to enhance the allowance for image intensity, RGB images can be
transformed into a HSI color space, so intensity and chromaticity can be separated. Equation (8) is for
RGB image transfer to HSI color space [14]:

H “ cos´1

«

rpR´Gq`pR´Bqs{2
b

pR´Gq2`pR´BqpG´Bq

ff

S “ 1´ 3
R`G`B rminpR, G, Bqs

I “ 1
3 pR` G` Bq

I f B is greater than G, then H “ 360o ´ H

(8)
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The RGB model of the image from the webcam can be converted to HSI color space because skin
color is easily identified. The hue value should be between 0.4 and 0.6 and the saturation value also
should be between 0.1 and 0.9. Figure 6 shows the results of skin color segmentation.

0.4 ă H ă 0.6 and 0.1 ă S ă 0.9 (9)
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4.2. Noise Rejection

In a general environment situation, we can’t guarantee the image background will be clear. There
will be some skin-like objects in the image, which produce unexpected noise. In that case, we use an
area condition to filter out noises. First, we calculate the pixel area of each connected component B pi, jq
by Equation (10) as follows:

Area “
N
ÿ

i“1

M
ÿ

j“1

Bpi, jq (10)

After applying area filter method, the result is shown in Figure 7.
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4.3. Distance Transform

The distance transform means that the distance from the boundary to a pixel in the hand region
increases as the pixel is away from the boundary [15]. Using this distance value, the centroid of the
palm region can be calculated. Figure 8 (left) shows the image of the hand after applying the distance
transform. The right image of Figure 8 demonstrates the enlarged view of the region within the
red rectangle.
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The white color in the center is intense and the color fades when the distance increases. The pixels
near the boundary have lower values for distance and the pixels away from the boundary have higher
values for distance. This middle region which has the highest value for the distance is considered as
the centroid.

4.4. Morphology

The width of the hand region will be approximately twice the distance from centroid to the nearest
boundary pixel as shown in Figure 9.

Sensors 2016, 16, 1026 8 of 17 

 

4.4. Morphology 

The width of the hand region will be approximately twice the distance from centroid to the 
nearest boundary pixel as shown in Figure 9.  

 
Figure 9. Image of the hand width. 

The width of each finger is approximately one fourth of the width of the hand. Now a suitable 
structuring element  that can erode the fingers completely is chosen and erosion is performed on 
the segmented hand region. 

1pR I S   (11) 

After erosion only a part of the palm region  is left behind and the finger region is completely 
eroded. Further the palm region which remains after erosion  is dilated using the same 
structuring element and this give the region  which is larger than the dilated palm region. The 
result of  is shown in Figure 10: 

2 1p pR R S   (12) 

 
Figure 10. Left image is hand region binary image, the right image is . 

The dilated palm region  is from the original binary image  to the finger area  alone as 
shown in Figure 11. 

2R pF I R   (13) 

The finger numbers represent the gesture is found by the image . 

Figure 9. Image of the hand width.

The width of each finger is approximately one fourth of the width of the hand. Now a suitable
structuring element S that can erode the fingers completely is chosen and erosion is performed on the
segmented hand region.

Rp1 “ I a S (11)

After erosion only a part of the palm region Rp1 is left behind and the finger region is completely
eroded. Further the palm region which remains after erosion Rp1 is dilated using the same structuring
element and this give the region Rp2 which is larger than the dilated palm region. The result of Rp2 is
shown in Figure 10:

Rp2 “ Rp1 ‘ S (12)
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Figure 10. Left image is hand region binary image, the right image is Rp2.

The dilated palm region Rp2 is from the original binary image I to the finger area FR . alone as
shown in Figure 11.

FR “ I ´ Rp2 (13)

The finger numbers represent the gesture is found by the image FR.
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Figure 11. The image processing results.

5. 3D Object Localization

After applying the image processing algorithm described in the previous sections, we can
recognize desired feature points in RGB color images and depth images. The problem we are
dealing with is how to estimate the feature point location in 3D world coordinates (the manipulator
end-effector frame).

5.1. Calibration of Depth Camera

Bouguet adapted the calibration method of Zhang [16] which employs a chessboard to be the
calibration pattern. Figure 12 shows the corner extraction process. “+” is for image points and “o” is
for re-projected grid points.

Sensors 2016, 16, 1026 9 of 17 

 

 

Figure 11. The image processing results. 

5. 3D Object Localization 

After applying the image processing algorithm described in the previous sections, we can 
recognize desired feature points in RGB color images and depth images. The problem we are dealing 
with is how to estimate the feature point location in 3D world coordinates (the manipulator end-
effector frame). 

5.1. Calibration of Depth Camera 

Bouguet adapted the calibration method of Zhang [16] which employs a chessboard to be the 
calibration pattern. Figure 12 shows the corner extraction process. “+” is for image points and “o” is 
for re-projected grid points. 

 
Figure 12. Corner extraction process. 

After obtaining the depth camera’s image, the intrinsic parameters can be calculated by the 
camera calibration toolbox. Table 1 illustrates the depth camera’s intrinsic parameters. 

O

X

YZ

100 200 300 400 500 600

50

100

150

200

250

300

350

400

450

Figure 12. Corner extraction process.

After obtaining the depth camera’s image, the intrinsic parameters can be calculated by the
camera calibration toolbox. Table 1 illustrates the depth camera’s intrinsic parameters.
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Table 1. The depth camera’s intrinsic parameters.

Depth Camera

Focal Length (pixel) Horizontal fx = 577.55158
Vertical Fy = 579.65506

Skew γ = 0 (not considered)
Principle Point (pixel) 317.47191 243.0783

Distortion (Radial) k1 = –0.01425 k2 = 0.001
Pixel Error e = [0.21365, 0.22484]

5.2. Object 3D Location via Depth Camera

The depth camera returns a raw depth data x which has 11 bits resolution, and depth information
ranges from 0 to 2047. The depth distance Z can be obtained from the raw depth data converted into
depth image by the camera. The following equations show the depth distance as [17]:

Z “ a1 ˆ expp´ppx´ b1q{c1q
2
q ` a2 ˆ expp´ppx´ b2q{c2q

2
q (14)

where:
a1 “ 3.369ˆ 104 a2 “ 6.334ˆ 1018

b1 “ 1338.0 b2 “ 2.035ˆ 104

c1 “ 140.4 c2 “ 3154.0

Once the depth distance from the camera and the intrinsic parameters of the camera model are
known, we can estimate 3D location of desired feature points in depth images. According to [16], the
accuracy of 3D object localization can be determined as follows:

X “ Zpu´cxq
fx

Y “ Zpv´cyq

fy

(15)

where (X, Y, Z) is the 3D location of the feature point, (cx,cy) is the distance from the optic axis, and
(u,v) is the homogenous pixel coordination.

5.3. Hand-Eye Coordinates Calibration

Figure 13 shows the relation coordination between the end-effector and the depth camera. This
calibration requires a red color maker as feature point attached to the end-effector.

The transformation between the the Xtion Pro Live depth camera coordinates and the manipulator
end-effector reference frame can be written as follows:

Hcam
end´e f f Pcam “ Pend´e f f (16)

where Pcam “ rxc yc zc 1sT is a position frame of the maker in the depth camera. Thus, the parameter

Pend´e f f “
”

Xend´e f f Yend´e f f Zend´e f f 1
ıT

, is a position of the maker attached on end-effector in the
end-effector reference frame. Then, the maker are attached at the center of the gripper. A homogeneous
matrix, Hcam

end´e f f includes 12 parameters from the depth camera coordination to the robot end-effector
reference frame. Therefore, we can rewrite the Equation (16) as follows:

Hcam
end´e f f Pcam “

»

—

—

—

–

r11 r12 r13 t1

r21 r22 r23 t2

r31 r32 r33 t3

0 0 0 1

fi

ffi

ffi

ffi

fl

»

—

—

—

–

xc

yc

zc

1

fi

ffi

ffi

ffi

fl

“ Pend´e f f “

»

—

—

—

–

Xend´e f f
Yend´e f f
Zend´e f f

1

fi

ffi

ffi

ffi

fl

(17)
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For solving the twelve unknown parameters, nine rotational operators and three translational
operators, ten different end-effector positions will be considered and mapped in Equation (17) in the
experiments. Also, the Hcam

end´e f f , the fixed relationship between the depth camera coordinates and
the end-effector reference frame, is definitely the time invariant matrix, so altering the manipulator
to desired poses and using the Xtion Pro Live to extract red feature points on the end-effector, the
following transition matrix is described according to least squares method computation:

Hcam
end´e f f “

»

—

—

—

–

´0.002 ´0.994 0.001 ´29.981
0.584 ´0.000 0.811 201.185
0.815 ´0.005 ´0.587 557.213

0 0 0 1

fi

ffi

ffi

ffi

fl

(18)

6. Experiments

In the previous chapter, the Speed-Up Robust Feature detection with RANSAC algorithm and
the finger counting Human-Robot Interaction as well as the coordinate transformation have been
analyzed and derived. In this chapter, the SURF object recognition algorithm will be confirmed before
finding the desired pokers and estimating their location of each center of pattern in the manipulator
reference frame. In next step, we use finger counting HRI to command the manipulator to grasp the
selected target. After knowing location of targets and placing locations where we set, the program
will automatically generate a 5th order trajectory for the end-effector to pick and place in a three
dimensional system. The equation of the 5th order trajectory is as follows:

xd ptq “ a0 ` a1t` a2t2 ` a3t3 ` a4t4 ` a5t5 (19)

where a0 “ xd0 ; a1 “
.
xd0 ; a2 “

1
2

..
xd0 ; a3 “

1
2t3

f
r20xd f

´ 20xd0 ´

´

8
.
xd f

` 12
.
xd0

¯

t f ´ 3
´ ..

xd0 ´
..
xd f

¯

t2
f s;

a4 “ 1
2t4

f
r30xd0 ´ 30xd f

`

´

14
.
xd f

` 16
.
xd0

¯

t f ` 3
´ ..

xd0 ´ 2
..
xd f

¯

t2
f s; a5 “ 1

2t5
f
r12xd f

´ 12xd0 ´

´

6
.
xd f

` 16
.
xd0

¯

t f ´
´ ..

xd0 ´
..
xd f

¯

t2
f s.

xd0 ,
.
xd0 and

..
xd0 are the position, the velocity and the acceleration at t = 0. xd f

,
.
xd f

and
..
xd f

are the
position, the velocity and the acceleration at t = tf and tf is the terminal time of the 5th order trajectory.
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The whole experiment process is illustrated in Figure 14 and the overall manipulator control scheme is
illustrated in Figure 15.
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We use poker K, Q and J patterns to construct the database and applied six scale levels in the
3th octave for feature extraction. The king of hearts result is shown in Figure 16. The green crosses
denote feature points locations and circles are feature points found in different scale space with 6 s
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radius. Figures 17 and 18 illustrate the results of the RANSAC algorithm applied to find the inlier
correspondences and recognized patterns.Sensors 2016, 16, 1026 13 of 17 
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The king of diamonds and the jack of spades are chosen, so the finger counting result must be one
and two to select the desire patterns. By using the coordinate transformation, the center points of the
poker cards are shown as:

»

—

–

197.9668 189.4207
31.3695 ´120.7430
´293.3998 ´323.8801

fi

ffi

fl

After grasping the target, we need to determine the location to place it. The placment location is
as follows:

»

—

–

100 ´150
200 ´100
´150 ´150

fi

ffi

fl

After the poker pattern is recognized by the SURF feature point detection with the RANSAC
algorithm and the user selects the targets for grasping by counting active fingers, the depth camera will
estimate the center of each targets in the end-effector frame by the coordinate transform from the camera
frame. Once the pick and place locations are calculated, the program will automatically generate the
customized 5th order trajectory of the end-effector for path tracking control. The experiments are from
(X, Y, Z) = (´150, ´100, ´150) mm back to (0, 0, 0) mm in 2 s. The red line of Figure 19 illustrates the
estimated trajectory of the end-effector calculated by the forward kinematics and experimental tracking
responses of three actuators. Figure 20 demonstrates the trajectory tracking error of the end-effector for
3-DOF pneumatic parallel manipulator. Figures 21–23 show the experimental results of each actuator’s
responses, respectively.
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Figure 19. The desired and calculated trajectory.
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Figure 20. Calculated end-effector trajectory tracking error.
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Figure 21. Experiments for A axis cylinder (a) tracking responses (b) tracking errors.
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Figure 22. Experiments for B axis cylinder (a) tracking responses (b) tracking errors.
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Figure 23. Experiments for C axis cylinder (a) tracking responses (b) tracking errors.
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7. Conclusions

In this paper, the developed SURF and HRI image algorithm is integrated with a 3-DOF pneumatic
parallel manipulator so that manipulator can define objects by the feature information of the image
through the SURF algorithm with scale- and rotation-invariants, and then it can automatically move to
the object, grasp it, and finally move to the desired location.

In the feature matching, we match all feature correspondences by means of image plane
transformation (homography) solved by RANSAC outlier rejection. Therefore, the center of object in
the image coordinates can be estimated by the average of the four corners of the reference image.

Xtion Pro Live was introduced and implemented for measuring the 3-D locations of target points.
Furthermore, we developed a coordinate transform calibration method for eye-to-hand calibration
using the least squares and pseudo inverse methods.

The gesture recognition for counting active fingers was used to select the desired object to be
grasped. When each pick and place location is confirmed in the end-effector reference frame, the
program will generate the 5th order trajectories for the path tracking control.

All of the theorems in this paper are derived and verified in the experiments. The three-axial
pneumatic parallel manipulator can recognize each target pattern in a workspace then pick and place
it successfully.
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