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Abstract: With increasing adulteration, food safety analysis has become an important research field.
Nanomaterials-based biosensing holds great potential in designing highly sensitive and selective
detection strategies necessary for food safety analysis. This review summarizes various function
types of nanomaterials, the methods of functionalization of nanomaterials, and recent (2014–present)
progress in the design and development of nanobiosensing for the detection of food contaminants
including pathogens, toxins, pesticides, antibiotics, metal contaminants, and other analytes, which are
sub-classified according to various recognition methods of each analyte. The existing shortcomings
and future perspectives of the rapidly growing field of nanobiosensing addressing food safety issues
are also discussed briefly.
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1. Introduction

Food safety is a significant public concern, directly impacting human health worldwide.
Contaminants, such as harmful bacteria, chemicals, natural toxins, or heavy metals in food can
cause several diseases, including gastrointestinal, neurological, immunological diseases, multi-organ
failure, and even cancers. Therefore, supervision and addressing the issues related to food safety need
to exploit multifarious strategies to minimize the risk of contamination being transferred through the
chain. Moreover, for contaminants generally present in trace quantities in food, qualitative approaches
are less significant and positive/absence tests are sufficient. Hence, sensitive and quantitative
techniques accompanying simple, rapid, and cost-effective approaches would be necessary to detect
these trace substances. Traditionally, several technologies, such as enzyme-linked immunosorbent
assay (ELISA), mass spectrometry (MS), chromatography, and capillary electrophoresis (CE) have been
extensively applied to develop different sensing techniques for the determination of food contaminants.
Despite possessing the merits of sensitivity and accuracy, these technologies have many disadvantages,
including complication in execution, are time-consuming, require expensive instrumentation and
professional skills, which greatly limits them from broader applications.

Biosensing, combining a biological component with a physicochemical detector, is an approach
used to detect various analyte. The high sensitivity and specificity that come out of shapely specific
recognition are the greatest advantages of biosensing. Advances in nanomaterials have facilitated
development of biosensing for detection of hazards associated with foods [1–3], where application
of nanomaterials in biosensing has several key advantages including (1) better target identification;
(2) enhancement in signal output through rapid recognition; (3) increase in selectivity and sensitivity;
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and (4) decrease in analysis time. Different nanomaterials, including zero-dimensional (0D)
nanoparticles (NPs, including nanodots), 1D nanorods (containing nanowires and nanotubes),
2D nanosheets, and even 3D metal organic frameworks (MOFs), have been effective in meeting
the challenges to establish advanced nanobiosensing methods. Examples of these nanomaterials
can be stratified into following categories: metallic NPs (nanoclusters, nanorods), metal compound
nanomaterials, carbon materials, non-metallic nanomaterials, nanostructures, and composite
nanomaterials. Among these materials, graphene (including graphene oxide (GOx)) and gold NPs
(AuNPs) have been found to have more applications so far. Graphene is a type of 2D carbon material
comprising a single layer of sp2-hybridized carbon atoms that covalently forms a flat hexagonal
lattice [4]. AuNPs possess high surface-to-volume ratio and unique optoelectronic properties that can
be readily regulated by altering the size, shape, or surrounding environment and, thus, making them
excellent scaffolds for application in novel chemical and biological sensors [5,6].

This review discusses the recent advances (2014 to present) in nanomaterial-based biosensing
methods for addressing the food safety issue. We will begin with a brief discussion on various
functions of nanomaterials in food safety risk analysis as well as different functionalization methods
of nanomaterials, followed by a detailed discussion on the applications of nanomaterials in biosensing
focusing on some significant advances. Especially, one type of analyte will then be subdivided into
several subcategories according to its various recognition elements. In addition, the review summarizes
the limitations of current nanobiosensing detection systems and proposes a few suggestions for
prospective development.

2. Different Functional Roles of Nanomaterials in Food Safety Analysis

Nanomaterials can play various roles in different nanobiosensing-based methods. They may
function as a carrier or enhancer, or as a catalyst, reporter, quencher, or separator.

Carrier. Nanomaterials (such as graphene and metallic NPs), owing to their relatively large surface
area and porous nature, have usually been used as a carrier to load multifarious substances [7–9].
For example, GOx has been utilized as a nanocarrier to load both AuNPs-coated SiO2 nanocomposites
(Au@SiO2) and thionine [10], electrodeposited nanoAu can act as the carrier for fluorescence-decorated
DNA probe [11], and MOFs can encapsulate Eu3+ cations into their pores [12]. Furthermore, AuNPs
are often utilized as the supporting materials of silver enhancement [13].

Enhancer. An enhancer is a nanomaterial that, because of the high surface-to-volume ratio and
high conductivity, can be used to enhance the physical signal of biosensing. Metal NPs and carbon
materials have commonly been used in electrochemical sensors to enhance electrochemical signal and
sensitivity [6,14–16]. Nanomaterials have also been reported for enhancing sensitivity in the sensors
based on surface plasmon resonance (SPR), quartz crystal microbalance (QCM, mass effect), and
metal-enhanced fluorescence (MEF effect) [17–19]. Inherent low-efficiency inelastic photon scattering
severely limits application of surface-enhanced Raman spectroscopy (SERS) in sensitive detection of
analytes; however, plasmonic NPs can significantly improve Raman scattering intensity up to billions
of times, thereby increasing sensitivity, i.e., lowering the limit of detection (LOD) [20–23].

Catalyst. Many nanomaterials exhibiting high peroxidase activity, such as noble metal NPs [24–26],
metallic oxide NPs and composite NPs [27,28], have been reported to detect food contaminants.
Horseradish peroxidase (HRP) mimicking NPs can catalyze the degradation of H2O2, thus leading
to either direct generation of changed electric signal or indirect oxidization of hydroquinone
(electrochemistry), luminol (chemiluminescence), 3,31,5,51-tetramethylbenzidine (TMB), or 2,21-azino-
bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS, colorimetric methods).

Reporter. A reporter nanomaterial is a nanomaterial that can be used as electrochemical,
colorimetric, fluorescent, or other types of signal molecule. Metal NPs [29], metallic oxide NPs [30,31]
and QDs [32,33] are known to function as electrochemical reporter (stripping voltammetry). On the
other hand, metal nanoclusters [34,35], QDs [36,37] and up-conversion NPs [38] can emit fluorescence
that can influenced by quencher, change in structure or environment [39]. The aggregation of metal
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NPs (especially, AuNPs and AgNPs) of appropriate sizes induces interparticle surface plasmon
coupling, generating visible color change—from red to blue for AuNPs and from yellow to brown for
AgNPs) [40,41].

Quencher. Fluorescence or electrogenerated chemiluminescence (ECL) quenching is a commonly
observed consequence when fluorescent substances or luminophores are appended onto/near some
nanomaterials. Quenching occurs when the emission spectrum of chromophore overlaps with the
surface plasmon band of nanomaterials, known fluorescence resonance energy transfer (FRET) or inner
filter effect (IFE) [38,42,43]. Interestingly, the small AuNPs exhibit higher quenching efficiency than
the large AuNPs [6,44].

Separator. Magnetic NPs (MNPs), commonly consisting of magnetic elements such as Fe, Ni, and
Co and their chemical compounds, have been used for pretreatment of different materials as well as
for separation of target analytes from complicated compositions. Studies have shown importance of
MNPs in rational nanobiosensing design [45,46].

Although this section discusses separately individual functions of nanomaterials in sensors
designed to detect trace food contaminants, nanomaterials can also function in multimodal way, i.e.,
one type of nanomaterials may involve in more than one function (Table 1). For example, graphene
not only works as a carrier (such as for loading DNA), it also acts as a quencher (such as for quenching
the fluorescence of the QDs labeled with DNA) [47]. Trifunctional Au doped Fe3O4 (Au@Fe3O4) NPs
are another example of NPs those works in multimodal way—while Fe3O4 core involves in magnetic
separation, gold shell takes part in dual function, carrying aptamer (oligonucleotide or peptide that
specifically bind to a target molecule), and catalyzing H2O2 [28].

Table 1. Summary of types and functions of commonly used nanomaterials.

Category Nanomaterial Size * (Shape) Main Function

Metallic nanomaterial

AuNPs <100 nm (sphere) Carrier, enhancer, reporter, quencher
Silver NPs (AgNPs) <100 nm (sphere) Enhancer, reporter

Platinum NPs (PtNPs) <100 nm (sphere) Catalyst
Metal nanoclusters <10 nm (sphere) Reporter

Metal compound nanomaterials
Quantum dots (QDs) 1–10 nm (sphere) Carrier, reporter
Upconversion NPs <100 nm (sphere) Reporter

Fe3O4 NPs 5–500 nm (sphere) Separator
CuO NPs <100 nm (sphere) Enhancer, catalyst

Non-metallic nanomaterials SiO2 nanomaterials Dozens of nm (sphere) Carrier
Polyaniline NPs <100 nm (sphere) Enhancer

Carbon materials
Graphene Various (sheet) Carrier, quencher

Carbon nanotube (CNTs) Various (tube) Carrier, enhancer, quencher
Carbon dots (C dots) <10 nm (sphere) Reporter

Nanostructures DNA nanostructures Various (polyhedron) Carrier

* The size of nanomaterials depends on reaction conditions.

Functionalization of Nanomaterials

Functionalization is one of the approaches that prepare nanomaterials suitable for a definite function
or purpose. Nanomaterials can be functionalized through various routes, non-covalent or covalent
to obtain complex hybrid systems. Non-covalent interactions include electrostatic adsorption
(e.g., multi-charged AuNPs) [48], π-π stacking (e.g., carbon nanotubes and graphene with delocalized
π-bond) [47], embedding [16,49], and specific affinity interactions (e.g., aptamer-target, biotin-streptavidin,
and antigen-antibody) [50,51]. Covalent interactions play increasingly important role in functionalization
of nanomaterials. Amino-carboxyl compounds (based on 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide/
N-hydroxysuccinimide (EDC/NHS)) are most commonly used to functionalize variety nanomaterials [52,53],
while metal-S is prevalent to functionalize metal NPs and QDs [23,54]. Other approaches of
functionalization include metal-ligand [55], efficient click chemistry [56], and SN2 mechanism [57].
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3. Recent Development in Nanobiosensing for Food Safety Analysis

This section focuses on the recent developments in the field of nanobiosensing for sensitive
detection of food contaminants. We have divided this section into six sub-sections based on the type
of contaminant detected by those nanobiosensing. Each type of contaminant were then classified to
several subcategories based on the identification methods towards analytes.

3.1. Pathogens

Several foodborne infections are commonly caused by microorganism such as bacteria, viruses,
and protozoa. Counting with colony-forming units (CFU) is the traditional and culture-based
method for detecting such substances; however, this method is time-consuming, expensive, as well
as laborious [58]. In addition, not all microbes can be cultured under laboratory conditions, thereby
increasing the demand for non-culture-based techniques. Nanobiosensing with high sensitivity and
selectivity are good for initial screening of food microorganisms and could be a better alternative to
colony counting [5].

(1) Recognized by complementary DNA (cDNA). One of the detection routes for microbial
pathogens involves analyzing its genomic DNA (gDNA) [10,59–62] which can be specifically
recognized by its cDNA. Since only a trace amount of target DNA is present in microbial
pathogens, nanomaterials and amplification techniques (such as polymerase chain reaction
(PCR, a non-isothermal and enzymatic process based on using DNA polymerase to synthesize
new strands complementary to the offered template strand), rolling circle amplification (RCA, an
isothermal and enzymatic process in which long single-stranded DNAs (ssDNA) are synthesized
on a short circular ssDNA template by using a single DNA primer), DNAzyme) are concurrently
recruited to amplify target DNA or signal. Recently, a metallic nanowire based electrical
Escherichia coli (E. coli) genomic DNA detection method has been developed using RCA to
generate long ssDNA with abundant repetitive sequences [59]. DNA modified AuNPs of
10 nm diameter is aligned along long ssDNA via DNA hybridization, followed by enhancing
conductivity of AuNPs string using silver or gold solutions to form wide silver or gold nanowires,
resulting a high signal-to-noise ratio and low limit of detection (LOD) towards E. coli gDNzA.
In addition, GOx-HRP mimicking DNAzyme nanocomposites, AuNPs-magnetic Fe3O4 NPs,
and DNA functionalized AuNPs-asymmetric PCR system have been employed for the detection
of gDNA of microbial pathogens [10,60,61]. However, this strategy is hampered by cumbersome
pretreatment of pathogen and extraction of gDNA.

(2) Recognized by antibody. Antibodies with affinity towards the pathogens (immunologic
approach) is a more convenient approach than analysis of gDNA [63–67]. A novel, sensitive,
amplified detection of E. coli O157:H7 in food at real-time has been developed based on Pt–Au
bimetal NPs with peroxidase activity using immunochromatographic assay (ICA) [27]; E. coli
O157:H7 is one of the most notorious pathogens with low infectious dose commonly found
in beef, raw milk, and vegetables. Indirect immunofluorescence assay, designed using FITC
(fluorescein isothiocyanate)-doped silica NPs synthesized by W/O microemulsion method,
demonstrated rapid detection of E. coli O157:H7 in beef [53]. In addition, polydiacetylene
liposomes incorporated with antibody can be used for specific detection of Salmonella;
the using of small liposomes can help in enhancing sensitivity [68]. Portable and automated
paper-based detection methods are being rapidly developed in recently [69]. Merkoçi and
co-workers have invented a lateral flow immunoassay for highly sensitive paper-based E. coli
detection [70]. This design includes CdSe@ZnS QDs decorated with antibody (Ab-QDs) and
GOx as photoluminescent probes and revealing-agent. The proposed device demonstrates highly
specific and sensitive performance, detecting pathogen 10 CFU¨ mL´1 in standard buffer and
100 CFU¨ mL´1 in bottled water and milk. The similar portable and paper-based principle
has been adopted using Pt–Au bimetal NPs and TMB as catalyst and colorimetric substrate,
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respectively [27], therefore, the pathogen detection can directly be observed by naked eyes.
This proposed device exhibits a lower LOD of 100 cells/mL, which is 1000-fold lower than the
AuNPs-based colorimetric method.

(3) Recognized by aptamer. Using antibodies as a part of a sensing system has some serious
drawbacks such as rigorous production and purification processes and limited applicability
(not work in harsh conditions, e.g., high temperature) [71]. These weaknesses can be neglected
when using aptamer as recognition element. Many aptasensings based on nanomaterials
(MNPs, silver NPs, nanorods, carbon quantum dots, and so on) have been designed for
the quantification of microbial pathogen in various real samples [23,72–75]. Employing
aptamer-conjugated fluorescent NPs and multicolor upconversion NPs as reporters, the LODs for
Staphylococcus aureus, Vibrio parahemolyticus, and Salmonella typhimurium can lower to 25, 10, and
15 CFU¨ mL´1, respectively [76,77]. Alternatively, monitoring and measuring beta-galactosidase
(β-gal) activity is another approach to detect E. coli. In the presence of β-gal released from E. coli,
the substrate p-aminophenyl β-D-galactopyranoside is hydrolyzed to produce p-aminophenol.
Reduction of Ag+ by p-aminophenol generates a silver shell on the surface of gold nanorods
(AuNRs), resulting in the blue shift of the longitudinal localized surface plasmon resonance peak
and multicolor change of the solution from light green to orange-red (Figure 1) [78].
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3.2. Toxins

Due to improper storage, agricultural produce and animal feedstuffs are easily contaminated
with toxins produced by filamentous fungi or bacteria as their secondary metabolites. For example,
mycotoxins contaminate about a quarter of worldwide grains [79]. Even a trace quantity of toxin
can cause serious health problems including nephritic, hepatic, nervous diseases, carcinogenicity,
or even death [80,81]. Therefore, the detection and prevention of foodborne toxins are of prime
importance to maintain a healthy society. Compared to detecting producing cells, detecting toxins
show several advantages, such as no requirement of cultivation, relative high analyte concentration
(hence, more sensitive), and undemanding detection environment. Nanomaterials show great potential
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to be incorporated in diverse biosensing strategies for the rapid, sensitive, and specific detection of
contaminants over the existing conventional methods.

(1) Recognized by antibody. The majority of nanobiosensing techniques have been developed based
on immunoassay. Tang et al. have developed an antibody-functionalized mesoporous carbon
(MSC) NPs-based competitive-type biosensor for the detection of AFB1 (aflatoxin B1, classified
as the first class carcinogen by WHO) [82] in peanuts. Recognition of AFB1 by antibody on
MSC results in a departure of thionine—MSC from the electrode accompanying a decrease of
current signal. Another competitive immunosensing strategy for the detection of AFB1 in peanut
using mesoporous silica nanomaterial loaded with glucose and AuNPs as a lock (Figure 2) [8].
Interestingly, this low-cost, sensitive immunosensing platform can also be used with a portable
personal glucometer (PGM) as the readout device [83]. The immune displacement reaction can
open the lock and release glucose from the mesoporous silica to the solution, which can then
be assayed by PGM. Other NPs, such as QDs, MNPs, and GOx, have also been used to develop
nanobiosensors to detect toxins, including ochratoxins, aflatoxins, and deoxynivalenol (DON) in
crops [52,84,85].

(2) Recognized by aptamer. Another significant mechanism is the interaction of a toxin with its
aptamer. Ochratoxin A (OTA) was the first mycotoxin targeted by aptamer-based assay in 2008.
Since then, several nanomaterials and aptamer-based methods have been developed. Recently, a
novel strategy based on fluorescent nitrogen-doped carbon dots (N,C-dots) on AuNPs have been
proposed for the detection of AFB1 in peanut and corn samples [86]. The chemically-inert
N,C-dots provides excellent resistance to photobleaching. This N,C-dots/AuNPs-based
aptasensor shows high selectivity against other normally-coexisted mycotoxins, such as OTA,
DON, fumonisin B1, and zearalenone. Various metal compound nanomaterials, involving iridium
oxide NPs [87], AuNPs doped Fe3O4 NPs [28], CdTe QDs-GOx [47], nanoceria tagged GOx [88],
silver nanoclusters (AgNCs) [89] and have also been used to assay toxins. Nonetheless, the
association constants of small molecules with their aptamers are low in general; therefore,
to obtain a lower LOD, various amplification methods have been employed. Wei et al. have used
GOx and DNase I to achieve target recycling, resulting in high sensitivity in OTA detection with a
LOD of 20 nM in real red wine samples [90]. Combining unique properties of QDs and MNPs
with high efficiency of RCA amplification, an optimized detection for OTA can attain an ultra-low
LOD of 0.13 ppt, a 10,000-fold improvement compared with the traditional methods [45].

(3) Others. In addition to being recognized by antibodies and aptamers, many other nanomaterial-based
mechanism were reported. (a) Nano-extraction with mass spectrometry (MS) [91]. Utilizing
magnetic separation properties of MNPs, a magnetic solid phase extraction of aflatoxins
from liquid samples has been developed using polydopamine-coated MNPs as the adsorbent.
Coupled with HPLC-MS/MS quantification, LOD of 0.0012 ng/mL for AFB1, AFB2, and AFG1,
and 0.0031 ng/mL for AFG2 can be achieved [92]; (b) NPs based molecular imprinting.
An electrochemiluminescence sensor, based on Ru(bpy)3

2+-doped silica NPs combined with
molecularly imprinted polymer, has exhibited efficient detection of OTA in corn with a LOD of
0.027 pg/mL [93].
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3.3. Pesticides

To protect plants from damaging influences from insects, pests, fungi or weeds and to ensure
good crop health, pesticides are used. Pesticides are a class of biocide containing harmful chemical
substances. The commonly-used pesticides include organophosphorus, pyrethroids, carbamates, and
organochlorines. Although pesticides have beneficial effects, high neurotoxicity, and widespread use
of pesticides beyond permissible limit have become a matter of grave concern considering the harmful
aftereffects of pesticides on environment, food safety, and health. The accumulation of pesticides in
animals and humans leads to serious diseases or even death. Hence, appropriate measures should be
taken to control the use of pesticide, making more stringent rules over the permissible limit.

(1) Enzyme inhibition by pesticide is the most mature and widely used technology for the rapid
detection of pesticide residues. Organophosphorus compounds and carbamates can specifically
inhibit the activity of acetylcholine esterase (AChE). Zhang and coworkers developed a novel
nanobiosensing for organophosphorus pesticides. Thiocholine generation by AChE catalysis
leads to the aggregation of AuNPs, resulting in the recovery of fluorescence resonance energy
transfer (FRET) between AuNPs and NaYF4:Yb, upconversion NPs (Figure 3) [38]. However,
AChE is unstable in solution. Immobilization of AChE in fenugreek hydrogel-agarose matrix
with AuNPs results in high enzyme retention efficiency of 92% and a significantly prolonged
half-life of the AChE (55 days) [94]. Apart from AChE, pesticides can also inhibit other enzyme
activity such as trypsin and tyrosinase [95,96]. Trypsin easily hydrolyzes protamine covered on
the surface of AuNPs, leading to fluorescence quenching of QDs. Conversely, the fluorescence
could be recovered by adding methyl parathion as it inhibits trypsin activity [96].

(2) Organophosphorus hydrolase-based strategies involve direct detection mechanism than enzymes
inhibition strategies. Organophosphorus hydrolase is a homodimeric enzyme that catalyzes
the hydrolysis of organophosphorus pesticides. As uniform porous channels, large surface
area and well-defined pore topology, ordered mesoporous carbons was used to immobilize
cell surface-displayed organophosphorus hydrolase on electrode for direct determination of
organophosphates such as paraoxon, parathion, and methyl parathion [97]. Similar direct
detection method has also been developed using single-walled CNTs as carrier to support
recognition material [7].
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(3) Electrochemical and photochemical properties of pesticides themselves are commonly used to
develop nanobiosensing. For example, omethoate, malathion, lindane, carbofuran, and carbaryl,
etc. possess electrochemical properties. Therefore, nanobiosensors based on electrochemical
analysis would be suitable for detecting those pesticides. Many such nanobiosensors,
based on copper oxide nanowires-CNTs, AgNPs decorated polyaniline-nanocrystalline
zeolite organic-inorganic hybrid material, cobalt oxide (CoO)-reduced GOx, zirconia-ordered
macroporous polyaniline, and other nanosystems, have already been reported to improve the
sensitivity [98–102]. In addition to electrochemical methods, a few NPs-enhanced SERS methods
have been developed; however, low affinity limits the application of such methods. Such problems
can be overcome by optimizing metal NPs, for example, the type, molecular linker, surface
coverage, and laser excitation wavelength of NPs [103]. It is worth mentioning that, inspired
by conductive ink pens for electronic devices on paper, Polavarapu et al. have developed a
“pen-on-paper” approach for making SERS substrates [104]. The design involves employing an
ordinary fountain pen filled with plasmonic inks comprising metal NPs with arbitrary size and
shape; hence, no professional training is needed to manufacture SERS arrays on paper. This
simple design lowers LOD of thiabendazole to 20 ppb. In spite of such progress in research, there
is a limited translation of technology from laboratory to real life because of economic viability
and operational simplicity.

(4) Recognized by antibody. In addition, immunoassay based nanobiosensing are most common
for detecting pesticides in food [105–107]. The application of nanometal organic framework and
other materials can greatly reduce the LOD [55]. As pesticides are known to impede certain
photophysical as well as photochemical functions of nanomaterial, through specific recognition
of pesticides by antibodies decorated on nanomaterial, several excellent phenomena have been
discovered: pentachlorophenol obstructs electrochemiluminescence of Au nanoclusters/graphene
hybrid [108], acetamiprid decreases enhanced photocurrent produced by electron donor of
quercetin in Co-doped ZnO diluted magnetic semiconductor, thiram quenches blue luminescence
of Cu2+ decorated NaYF4:Yb/Tm upconversion NPs fixed on filter paper (monitored by the
smartphone camera through a self-written Android program) [109].
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Since the discovery and application of antibiotics, we have got a powerful weapon to combat
against diseases and death. To enhance growth in animals, antibiotics are routinely used in husbandry.
However, inappropriate use of antibiotics in animals will increase the incidence of antibiotic resistance
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and bring various side effects. The addition of some kinds of antibiotics into animal feed is strictly
prohibited in some countries (e.g., enrofloxacin in USA). However, driven by the stakes, some farms
illegally raise animals with excessive antibiotic for high profit, which will result in the antibiotic
residues in produce, especially in meat and milk. Therefore, sensitive and infallible assays are
imperative to assure the control of vestigial antibiotics in the products of farm animals (such as in milk
and meats).

(1) Recognized by aptamer. Aptamer-based nanobiosensing methods are the most common used for
the detection of antibiotics. The upconversion NPs (anti-Stokes)-based aptasensor has shown good
specificity towards kanamycin without being disturbed by other antibiotics [110]. Nanomaterials,
such as GOx and AuNPs, are used as quenchers in assays based on aptamers of targets and
fluorescence-labeled single-stranded DNA to detect antibiotics [111,112]. Simultaneous detection
of multiple chemical contaminants in a food sample is a challenging task since each one functions
in different microenvironment. Using GOx as quencher, Zuo et al. developed a low-cost
paper based microfluidic device for detecting multiple chemical contaminants (antibiotics
and heavy metal ions) simultaneously in food samples (Figure 4) [111]. Interestingly, other
functions of antibiotics, for example, protecting nature (protecting AgNPs against salt-induced
aggregation [113]) of kanamycin, can also be utilized to develop new biosensing methods.

(2) Recognized by antibody. Alternatively, immunization is another strategy to detect antibiotics,
though it is not popular than the aptamer method. Metallic nanomaterials (gold nanoflower,
AuNPs)-based electrochemical immunosensing methods have frequently been employed to
assess chloramphenicol, ofloxacin, and tetracycline in multifarious foods, including milk, honey,
and other samples [48,50]. In addition to electrochemistry, a competitive chemiluminescent
immunoassay based on new luminol functionalized silver NPs was reported to determine
chloramphenicol in milk and honey [114].

(3) Recognized by liposome. Liposomes were often used in molecular biology and pharmaceutics,
but rarely used in other fields. Phospholipid liposomes containing R6G dyes on their surface
have been utilized to develop a self-signaling sensing platform to detect neomycin—selective
recognition of the target by phospholipid displaces R6G dyes from the surface and turns on
fluorescence [115].
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3.5. Metal Contaminants

Heavy metal ions, such as lead, mercury, cadmium, chromium, and arsenic, are hazardous,
contributing to water and soil pollution [116–122]. Through water and soil, these metal residues reach
daily foods. Heavy metals are known to cause irreversible changes in protein structures, affecting
cell functions. Excessive intake of such substances can result in adverse health conditions including
neurological disorders, renal degradation, and bone lesions [123].

The nanobiosensing methods for the detection of heavy metal ions can be divided into several
subcategories according to recognition biomolecule. (1) Nucleotides. Chen has developed an AuNPs-based
dual labeling colorimetric method for Hg2+ detection using a specific thymine–Hg2+–thymine
(T-Hg-T) [57,124] as a recognition system and dual-labeling strategy for signal amplification;
without using any instruments, they obtained an LOD of 0.025 nM, competitive to other rapid
detection methods [125]. Using the same mechanism, a triple Raman label-encoded AuNPs trimer has
been designed for simultaneous Hg2+ and Ag+ (cytosine–Ag+–cytosine, C–Ag+–C) [126] detections.
The target ions aid in assembling AuNPs modified with different Raman labels, leading to different
enhancements of Raman signal [127]; (2) DNAzyme: some heavy metal ions, such as Pb2+ and
Ag+ [128], act as a co-factor of DNAzyme. Based on DNA-stabilized AgNCs (signal reporter) and
DNAzyme (recognition group and amplifier), a label-free catalytic biosensing platform was developed
for selective assay of Pb2+ [129]; (3) amino acid: several metal ions can specifically identified by
amino acid because of the functional side chain (such as cysteine). Based on the graphene-enhanced
electrochemical signal, the recognition of heavy metal ions (Cd2+ and Pb2+) can be characterized via
the change of electrochemical signal [130]; (4) antibodies: in general, an antibody for ion is hard to
screen. An antibody was obtained through the interaction of Cd2+ with EDTA, which was used to
develop Cd2+ biosensing based on core-shell Au@Ag nanoparticles enhanced Raman scattering [131];
(5) others: a mechanism that arsenate displaces the chromophore-labelled DNA adsorbed on the
surface of FeO NPs was reported [132].

3.6. Other Analytes

Some manufacturers and farms engage in food fraud for increasing profit margin, and such ill
practices often lead to devastating results. Melamine, a chemical adulterant, is sometimes illegally
added into milk powder to improve the apparent protein content [133]. A melamine aptamer
derived from an abasic-site-containing triplex molecular beacon (tMB) has been proposed for sensitive
recognition of melamine by integrating tMBs and fluorescent AgNCs [134]. Nitrite is harmful to
humans and is widely used as an additive and preservative in food service industry. A biosensor
towards nitrite was developed based on the direct electrochemistry of myoglobin on a reduced
GOx-multi-walled CNTs-platinum NPs nanocomposite [135]. ZnO NPs are frequently considered to
design biosensing strategies for the detection of bisphenol A, a ubiquitous environmental contaminant
found in food products and aquatic ecosystems [136,137]. As H2O2 is a kind of unlawful decolorizer
for food, a biosensing method towards H2O2 was developed based on the H2O2 enlarging AuNPs
induced significant fluorescence quenching of BSA-AuNCs [42].

4. Conclusions and Future Perspectives

Table 2 lists several samples of the nanobiosensing reported in various literatures for food
safety analysis. From all the above-mentioned literatures, AuNPs, QDs, and carbon nanomaterials
are commonly used nanomaterials to develop nanobiosensing strategies. For one analyte, several
nanobiosensing methods were developed to cater to different demands of food safety analysis.
For the pursuit of sensitivity, fluorescent nanomaterials-based biosensing may be suitable. However,
for the pursuit of portable approaches, electrochemical and colorimetric, rather than fluorescent
nanomaterials-based, methods can be employed.
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Table 2. Samples of nanobiosensing for the assay of food contaminants.

Type of Contaminant Contaminant Recognition Biomolecule Nanomaterials Used Functions of Nanomaterials Detection Format LOD Ref.

Pathogens E. coli O157:H7 cDNA GOx, Au@SiO2 Carrier, enhancer Electrochemical 0.01 nM [10]

E. coli cDNA AuNPs, Fe3O4 Reporter, seperator Electrochemical 1.8 aM [60]

C. sakazakii Antibody Fe3O4, liposomes Carrier, seperator Fluorescent 103 CFU/mL [64]

Mycoplasma suis Antibody AuNPs Carrier, reporter Colorimetric 100 ng/mL [65]

S. aureus, V.
parahemolyticus,
S. typhimurium

Aptamer Upconversion NPs Reporter Fluorescent 25, 10, 15 CFU/mL [76]

E. coli BL21 β-galactosidase Ag-AuNRs Reporter Colorimetric 104 CFU/mL [78]

Toxins Aflatoxin B1 Antibody AuNPs, SiO2 Carrier Electrochemical 5 ppt [8]

Shiga-like toxin 1 Antibody Al2O3-Fe3O4 Carrier, seperator Mass spectrometry 44 pM [91]

Ochratoxin A Aptamer Au doped Fe3O4 Carrier, catalyst, seperator Colorimetric 30 pg/mL [28]

Aflatoxin B1 Aptamer N-doped C dots, AuNPs Carrier, reporter Fluorescent 16 pM [86]

Ochratoxin A Aptamer Nanoceria, GOx Carrier, catalyst Electrochemical 0.1 nM [88]

Pesticides
Methyl parathion,
monocrotophos,
dimethoate

AChE inhibition Upconversion NPs, AuNPs Reporter, quencher Fluorescent 0.67, 23, 67 ng/L [38]

Carbofuran, oxamyl,
methomyl, carbaryl AChE inhibition AuNPs Enhancer Colorimetric 2, 21, 113, 236 nM [94]

Methyl parathion Trypsin inhibition QDs, AuNPs Reporter, quencher Fluorescent 18 ng/L [96]

Paraoxon, parathion
methyl parathion

Organophosphorus
hydrolase Mesoporous carbon Carrier Electrochemical 9.0, 10, 15 nM [97]

Parathion Antibody nanoMOF Carrier, enhancer Electrochemical 0.1 ng/mL [55]

Antibiotics Kanamycin Aptamer Upconversion NPs, GOx Reporter, quencher Fluorescent 18 pM [110]

Streptomycin Aptamer AuNPs Quencher Colorimetric and
fluorescence 73.1 nM, 47.6 nM [112]

Chloramphenicol Antibody AgNPs Carrier, enhancer Electrochemical 7.6 ng/mL´1 [114]

Neomycin Receptor Liposome Carrier Fluorescent 2.3 nM [115]

Metal ions Hg2+, Ag+ Nucleotide AuNPs Carrier, reporter SERS 8.4, 16.8 ˆ 10´12 M [127]

Pb2+ DNAzyme DNA-stabilized AgNCs Reporter Fluorescent 17 µM [129]

Cd2+, Pb2+ Amino acid Graphene Carrier Electrochemical 0.45, 0.12 µg/L [130]

Ni2+ Antibody Au@Ag core-shell NPs Carrier, reporter SERS 0.05 ng/mL [131]
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The plenitude of the available literatures related to the application of nanomaterials (including
NPs and nanostructures) in biosensing clearly indicates the successful utilization of nanomaterials
in food safety analysis for pathogens, toxins, antibiotics, pesticides, metal contaminants, and other
analytes. Of the large number of literature available, we have selected only those reports that either
have substantial impacts on the progress of nanobiosensing or have genuine potential for future
applications; for example, paper-based detection methods or portable devices. In spite of substantial
progress, nanobiosensing for food safety analysis suffers from some limitations. (1) Diversity:
complicated synthetic procedures, expensive reagents, and non-commercialization impede application
of nanomaterials beyond AuNPs, QDs, and carbon nanomaterials. Therefore, simple, inexpensive
and efficient synthetic methods might promote application of other nanomaterials; (2) universality:
nanomaterials have yet to spread to all areas of food safety, such as the usage of DNA polyhedral and
DNA origami nanostructures [138–140], synergy with bispecific monoclonal antibodies, and peptide
aptamers [141,142]. Moreover, not all the food contaminants can be detected by nanobiosensing
approaches because of the lack of recognition biomolecules; (3) practicability: some detection methods
involve multi-step procedures, thus increasing analytical cost and difficulty in implementation.
In addition, due to inherent complexity in real food samples, sample separation procedures are required
to eliminate interferences. Rapid and cost-effective analytical methods integrating sample separation
units may greatly improve practicability of nanobiosensing; (4) miniaturization: development of
portable sensing kit would not only be cost effective but more convenient. Nanomaterials decorated
screen-printed electrode and paper as well as development of new portable devices or employment
of available devices (e.g., glucometer, piezometer, and smartphone) need to be explored to achieve
miniaturization; and (5) application: the development of sensitive and specific biosensing devices
is one of the approaches to verify food safety. The slow adoption of biosensors in the food industry
is related to the need for AOAC approved methods or recognized by regulatory bodies. Therefore,
introduction of new regulations might increase the demand for biosensing devices. In conclusions,
for a scientist, research should be focused on the design and development of cost effective,
sensitive, novel detection protocols by integrating advanced nanomaterials and nanotechnologies with
traditional detection methods further.
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