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Abstract: Localisation in wireless networks faces challenges such as high levels of signal attenuation
and unknown path-loss exponents, especially in urban environments. In response to these challenges,
this paper proposes solutions to localisation problems in noisy environments. A new observation
model for localisation of static nodes is developed based on hybrid measurements, namely angle of
arrival and received signal strength data. An approach for localisation of sensor nodes is proposed
as a weighted linear least squares algorithm. The unknown path-loss exponent associated with
the received signal strength is estimated jointly with the coordinates of the sensor nodes via the
generalised pattern search method. The algorithm’s performance validation is conducted both
theoretically and by simulation. A theoretical mean square error expression is derived, followed
by the derivation of the linear Cramer-Rao bound which serves as a benchmark for the proposed
location estimators. Accurate results are demonstrated with 25%–30% improvement in estimation
accuracy with a weighted linear least squares algorithm as compared to linear least squares solution.

Keywords: hybrid localisation; received signal strength; angle of arrival; generalised pattern search

1. Introduction

Localisation of wireless devices has become exceedingly important in many applications.
These include logistics, robotics and surveillance [1]. Range based approaches are favoured for accurate
localisation. Two main groups of techniques for estimating the range between sensor nodes are based
on the time of arrival (ToA) and the received signal strength (RSS) approach. Location coordinates
of nodes can also be estimated by utilising the angle of the impinging signal, this is known as the
angle of arrival (AoA) technique. Individual analysis and optimisation of these techniques have
been widely studied [2,3]. For range based models, the localisation problem can be solved via high
complexity maximum likelihood techniques [4]. A low complexity linear least squares (LLS) approach
has also been proposed for ToA based systems [5], its performance is analysed and enhanced in [6].
Similar approaches are adapted for RSS based localisation [3]. On the other hand, the AoA of the signal
can be estimated using an array of antennas as in [7] or a rotating beam of radiation [8], and using
techniques such as Multiple Signal Classification [9] or estimation of signal parameters via rotational
invariance techniques [10].
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Related work

With the increasing demand of high accuracy positioning, hybrid signal based localisation is
becoming more and more popular. A highly celebrated hybrid AoA-ToA signal model is proposed
in [11] which produces biased estimates of the location vector. An improved and unbiased version of
which is presented in [12] where a weighted solution is presented. In [13], an angle based localisation
model is presented, where the angles are derived from RSSs from different beacons. The algorithm
works on a fingerprinting based approach and will fail to perform when the network scenario changes.
In [14], the bearing measurements are utilised together with range-difference measurements obtained
from time difference of arrival of the signal from multiple sensors. Together with geometric constraint
on measurements errors an improved localisation algorithm is proposed for static target nodes. A two
step range and angle based positioning is presented in [15], in which the range estimation in the
first step is utilised with differential angle measurement obtained in the second step. A cooperative
version of hybrid localisation based on ToA and AoA is proposed in [16], which achieves a very high
accuracy at the cost of high computational load. Moreover, non-line of sight components of the signal
are detected by an iterative algorithm which is based on the incoming hybrid signals in [17]. In [18],
positioning and tracking of people is performed using the extended Kalman filter based on time
difference of arrival and AoA. Positioning of people is an important application of WSN and has a vital
significance in health care systems [19]. In contrast to the mentioned literature, our work is based on
the noise covariance of the hybrid measurements and produces completely unbiased estimates of the
unknown vector while considering a realistic assumption of unknown path-loss exponent (PLE) vector.

This paper proposes a LLS estimator based on a hybrid AoA-RSS measurement model which
produces unbiased estimates of the unknown vector of location coordinates. Furthermore, in order
to improve accuracy, the link quality between the anchor node (AN) and the target node (TN)
is considered, which is provided by the covariance matrix. Thus, the covariance matrix is first derived
and a weighted linear least squares (WLLS) estimator is proposed. Moreover it is noted that different
combinations of ANs perform optimally in different sections of the network. As a result, the network
can be decomposed into different zones where each zone corresponds to a unique combination of
ANs. Hence, a technique that selects this optimal set of ANs for different zones is proposed. In case of
ranging via RSS the correct knowledge of PLE associated with each link is required. In most studies the
PLEs are assumed to be known, which is an oversimplification of real conditions. Some recent studies
jointly estimate the location coordinates and the PLE for localisation [20,21] for RSS measurements only.
However, these studies assume the same PLE for every AN-TN link, which is not a valid assumption
for real data. In contrast with [20,21], in this paper, we assume an unknown and a different PLE value
for each communication link and we propose a novel PLE estimator, based on the generalised pattern
search algorithm.

The main contributions of this paper are as follows:

• A new unbiased observation model for localisation of static nodes is developed based on hybrid
measurements, namely angle-of-arrival and received-signal-strength data.

• A WLLS framework based on the noise covariance of the signal is presented.
• The mathematical derivation of unbiasness and unbias constant is given.
• A two step AN selection technique is presented which further improves the performance.
• Theoretical results for the mean square error (MSE) are derived.
• Joint PLE and sensor node coordinates estimation is proposed via generalised pattern search

(A dynamic version was presented in [22] for mobile nodes).
• The linear Cramer-Rao bound (LCRB) is derived for the WLLS algorithm.
• A more practical scenario for simulation is considered where the TNs are situated inside as well

as outside the convex hull defined by ANs.

The rest of the paper is organized as follows: Section 2 presents the problem statement and the
unbiased system model. The WLLS algorithm is proposed in Section 3. In Section 4 the two step
AN selection strategy is presented and the theoretical MSE for LLS is derived. A PLE estimator
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via the generalised pattern search is proposed in Section 5. The LCRB is derived in Section 6.
Finally, in Section 7, we discuss the simulation results which are followed by conclusions in Section 8.

2. System Model

The following notations are introduced: Rn and Zn are the sets of n dimensional real numbers and
integers respectively. Also, N (µ, σ2) and U [Umin, Umax] denotes the normal distribution with mean µ

and variance σ2 and uniform distribution between Umin and Umax, respectively. A two dimensional
network is considered consisting N ANs with known locations i.e., ui = [xi, yi]

T(ui ∈ R2) for
i = 1, ..., N and a TN which has unknown coordinates i.e., u = [x, y]T

(
u ∈ R2). Unlike conventional

trilateration, in hybrid systems the AN does not define a circle, but rather defines a line. At one end
of the line the AN is situated with known position while the TN is situated at the opposite end for
which the coordinates are to be estimated. If the slope (AoA) and the magnitude (RSS) information of
this line is available, then the TN coordinates can be easily determined using trigonometric equations.
The AN receives a signal with line of sight and non-line of sight components. The line of sight and
non-line of sight detection is beyond the scope of this paper. Readers are referred to [23,24] for line
of sight/non-line of sight detection and mitigation techniques. This section presents the angle of
arrival-received signal strength measurement for localisation which serves as a base for the rest of the
paper. Let (xi, yi) be the coordinates of ith AN then the x and y coordinates of the TN in the presence
of both range and angle estimates are given by [25]

x̂ = xi + d̂i cos θ̂iδi (1)

ŷ = yi + d̂i sin θ̂iδi (2)

where d̂i, θ̂i and δi represent range measurements, angle measurement and the unbiasing constant,
respectively. The angle measurement θ̂i is given by

θ̂i = arctan
[
(y− yi)

(x− xi)

]
+ mi + φi (3)

where mi represents the zero mean Gaussian noise in angle estimate i.e., mi ∼
(
N
(

0, σ2
mi

))
and φi

represents the angular spread caused by the non-line of sight signal which can be statistically described
as a Gaussian random variable and can be calculated from experimental data [26]. In this paper,
we restrict our attention to line of sight signals only. The non-line of sight detection/mitigation for
angle estimation is studied in [27,28]. Equation (3) can be written in vector form as

θ̂ = f (u) + m (4)

where θ̂ =
[
θ̂1, . . . , θ̂N

]T
, f (u) = [arctan [(y−y1)/(x−x1)] , . . . , arctan [(y−yN)/(x−xN)]]

T ,
m = [m1, . . . , mN ]

T is the noise vector and (.)T represents the transpose operator.
The range measurement, d̂i, is extracted from the path-loss Li.

Li = L0 + 10αi log10 di + wi (5)

where L0 is the path-loss at reference distance d0, normally taken as 1m for indoor scenarios and is
dependent on antenna characteristics, wi is the zero mean Gaussian random variable characterizing the
shadowing effects i.e., wi ∼

(
N
(

0, σ2
wi

))
, αi represents the PLE associated with ith AN with value

range from 2–5, depending on the environment, The observed path-loss zi from d0 to di is given as
Li −L0, and can be represented as

ẑi = γαi ln di + wi (6)

where γ = 10
ln 10 . The distance estimates from Equation (6) can be obtained as [29]
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d̂i = di exp
(

wi
γαi

)
κi (7)

where κi is the unbiasing constant for RSS measurement only and is given by κi = exp
(
−σ2

wi
/2 (γαi)

2
)

.

Equation (7) can be represented in vector form as d̂ = d �
[
exp

(
1

γαi
(w)

)]
� κ, where

d̂ =
[
d̂1, . . . , d̂N

]T
, d = [d1, . . . , dN ]

T , κ = [κ1, ..., κN ] and w = [w1, . . . , wN ]
T represents the shadowing

component vector. The mathematical symbol � represents the Schur product. The unbiasing constant
for AoA-RSS signal is given by

δi = exp

(
σ2

mi

2
−

σ2
wi

2 (γαi)
2

)
(8)

which can be represented in vector form as δ = [δ1, . . . , δN ]
T .

Thus, Equations (1) and (2) can be written in matrix form as

b̂ = Au + q (9)

where
A =diag [eN, eN] ∈ R2N×2, u = [x, y]T ∈ R2×1

b̂ =
[
b̂ (x) , b̂ (y)

]T
∈ R2N×1 (10)

and eN is a column vector of N ones and q is the noise vector with zero mean vector and covariance
C (u) . In Equation (10), b̂ (x) and b̂ (y) are given as

b̂ (x) =
[

x1 + d̂1 cos θ̂1δ1, . . . , xN + d̂N cos θ̂NδN

]T
∈ RN×1

b̂ (y) =
[
y1 + d̂1 sin θ̂1δ1, . . . , yN + d̂N sin θ̂NδN

]T
∈ RN×1

Then the LLS solution is given by
û =A†b̂ (11)

where A† is the Moore–Penrose pseudoinverse of matrix A and is given by A† =
(
ATA

)−1 AT .

Justification For δi:

Without considering the unbiasing constant, Equation (11) produces biased estimates of the
unknown vector u. We now show mathematically that the unbiasing constant is imperative for unbias
estimation. The bias of the LLS technique is given by

Bias = A† [ε (x) ε (y)]T (12)

where ε (x) = E
[
b̂ (x)

]
−b (x) and ε (y) = E

[
b̂ (y)

]
−b (y). b (x) and b (y) represents noise

free observation. Then the ith term of ε (x) and ε (y) is given by

ε (x)i =Emi ,wi

[
di exp

(
wi
γαi

)
cos (θi+mi)−di cos θi

]
(13)

ε (y)i =Emi ,wi

[
di exp

(
wi
γαi

)
sin (θi + mi)−di sin θi

]
(14)
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where E(.) represents the mathematical expectation operation. Equations (13) and (14) are reduced to

ε (x)i = di cos θi

(
exp

(
−

σ2
mi

2
+

σ2
wi

2 (γαi)
2

)
− 1

)
(15)

ε (y)i = di sin θi

(
exp

(
−

σ2
mi

2
+

σ2
wi

2 (γαi)
2

)
− 1

)
(16)

Thus, we use δi in Equations (1) and (2) to reduce Equations (15) and (16) to zero and consequently
Equation (12) to zero. The proof is given in Appendix A.

3. Weighted Linear Least Squares Algorithm

The performance of LLS can be improved by utilising the communication link quality between
ANs and the TN. Thus links with larger noise are given small weights as compared with links with
small noise. This link quality is provided by the covariance matrix. In this section, we exploit the
covariance matrix and propose a WLLS solution which is obtained by minimizing the cost function.

εWLLS (û) =
(

b̂−Au
)T

C−1 (u)
(

b̂−Au
)

(17)

where C (u) is the covariance matrix given by C (u) = Em,w

[(
b̂− b

) (
b̂− b

)T
]

. The matrix C (u)

can be partitioned into sub-matrices as

C (u) =

[
C (x) C (xy)

C (xy) C (y)

]
∈ R2N×2N (18)

The sub-matrices in Equation (18) are given as follows

C(x)=Em,w

[(
b̂(x)−b(x)

) (
b̂(x)−b(x)

)T]
∈ RN×N (19)

C(y)=Em,w

[(
b̂(y)−b(y)

) (
b̂(y)−b(y)

)T]
∈ RN×N (20)

C(xy)=Em,w

[(
b̂(x)−b(x)

) (
b̂(y)−b(y)

)T]
∈RN×N (21)

Then for AoA-RSS measurement Equations (19)–(21) reduces to Equations (22)–(24) for i = j and
to 0 for i 6= j.

C (x)ii =
d2

i
2

κi +
d2

i
2

cos (2θi) κ̄i − (di cos θi)
2 (22)

C (y) ii =
d2

i
2

κi −
d2

i
2

cos (2θi) κ̄i − (di sin θi)
2 (23)

C (xy)ii =d2
i cos θi sin θi (κ̄i − 1) (24)

C (x) ij = 0, C (y)ij = 0, C (xy)ij = 0

where κi = exp
(

σ2
wi

(γαi)
2 + σ2

mi

)
, κ̄i = exp

(
σ2

wi
(γαi)

2 − σ2
mi

)
and the notation Tij refers to the element at

the ith row and jth column of any matrix T.
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The elements of C (u) in Equation (18) depends on the real values of distances and angles, which
are not available. Thus, their estimated values are used to calculate the covariance matrix. Now the
WLLS solution can be obtained as follows,

ûWLLS = A‡b‡ (25)

where A‡ =
[
ATC−1 (û)A

]−1 AT and b̂‡ = C−1 (û) b̂.
Further performance improvement can be attained by optimal selection of ANs described in the

next section.

4. Two Step Optimal AN Selection

Due to the unequal error associated with different ANs, some ANs may actually deteriorate the
positioning accuracy. These ANs may be positioned at a large distance from the TN or they may receive
signal through multiple paths or it may have a poor geometric dilution of precision. This scenario
is more obvious in a network where some TNs are outside the convex hull defined by the ANs.
Thus, for different TNs in a network there exists an optimal subset of ANs that will produce better
estimates than estimates produced while using all ANs. In this section, we present a two step optimal
subset selection scheme. A pre-processing step, called zone detection, selects different subsets of ANs
for different TNs followed by localisation using the optimal subset of ANs.

Step I: Zone Detection: During this pre-processing step, the whole network is divided into
a grid. The complexity of this step depends on the resolution of the grid and the total number of ANs.
However, this step needs to be performed only once. Each point on the grid acts a pseudo-TN. For each
of these pseudo-TN, the localisation error is calculated for all combinations of ANs using the theoretical
MSE presented in the next subsection. The combination that shows the lowest MSE is selected as an
optimal combination of anchor nodes for that point. Thus using this technique a particular combination
is selected for different points on the grid. In this way the whole network is divided into different
regions called zones, where each zone has its own optimal subset of ANs that shows that the minimum
MSE during localisation in the next step.

The theoretical MSE of AoA-RSS signal model: The derivation of the theoretical MSE for LLS is
performed as follows.

MSE(û) = Tr
{

Ew,m

[
(û− u) (û− u)T

]}
(26)

where û is the estimate of the location vector, u is A†b is the ground truth and Tr(.) represents the
trace operator. Equation (26) can be simplified as follows

MSE(u) = Tr
{

Ew,m

[(
A†b̂−A†b

) (
A†b̂−A†b

)T
]}

= Tr
{

Ew,m

[(
A†b̂−A†b

)(
b̂
(
A†)T−b

(
A†)T

)]}
= Tr

{
A†Ew,m

[(
b̂− b

) (
b̂− b

)] (
A†)T

}
= Tr

{
A†C (û)

(
A†)T

}
(27)

Thus in the offline stage, the combination of ANs minimizing Equation (27) for a particular grid
point is selected as the optimal AN subset.

Step II: Localisation with optimal combination of ANs: The second step is also two fold.
Firstly, a rough estimate of the location of the TN is obtained using all ANs. This rough estimate is
necessary to detect the zone where the TN belongs. Once the zone is detected, the location of this TN
is refined by localising it again, this time using the optimal combination of ANs for its respective zone.
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5. Estimation of Unknown PLE

In order to estimate the distance from the target node to the anchor node, the correct knowledge
of PLE associated with each link is necessary. Most of the localisation techniques assume that the
PLE is known and same for all links. However, even a small error in the PLE vector produces a
significant error in the estimated location. In contrast with the common localisation techniques, in
this paper we consider the case when the PLE is unknown and has a different value for every link.
A new PLE-generalised pattern search algorithm is proposed. For the observation vector b̂, given by
Equation (10), the cost function Ψ (u, α) with unknown PLE vector and TN’s coordinates vector u is
given by

Ψ (u, α) =‖ Au− b̂ ‖2 (28)

where α is the PLE vector given by, α = [α1, ..., αN ] . In Equation (28), α and u are unknown. The LLS
solution to u is given by Equation (11) and after replacing it in Equation (28) gives [30]

Ψ (α) =
[
[b (x) b (y)]

(
I2N −AA†

)
[b (x) b (y)]T

]
(29)

Equation (29) has only one unknown i.e. the vector α. In Equation (29)

b (x)=
[

exp
(

ẑ1

γα1

)
cos θ̂1δ1, ..., exp

(
ẑN

γαN

)
cos θ̂NδN

]T
(30)

and

b (y)=
[

exp
(

ẑ1

γα1

)
sin θ̂1δ1, ..., exp

(
ẑN

γαN

)
sin θ̂NδN

]T
(31)

and I2N is an identity matrix of dimension 2N. The solution to Equation (29) is given by

α̂ = arg min
α
{Ψ (α)} (32)

Equation (32) can be solved by a brute force search method which is computationally expensive as
the cost function has to be evaluated at all possible values of α. For a large number of nodes the brute
force search method becomes impractical. Computationally more efficient the generalise pattern search
method is therefore used to minimise Equation (32). The generalised pattern search for minimisation
of Equation (32) is presented in the next subsection.

Generalised Pattern Search

The generalised pattern search belongs to a family of derivative-free optimisation techniques.
Starting from an initial guess for α0 ∈ [2, 5] for most environments [31] and an initial step size ∆0,
The generalised pattern search iteratively updates αk such that Ψ (αk+1) < Ψ (αk), where αk represents
the value at kth iteration. Each update evaluates the cost function Equation (32) at a point on the mesh,
with the updated point closer to the minimum of Ψ (α) .

Each iteration consists of a search (optional) and a poll step. At each of these steps the cost function
is evaluated on a meshMk, centred at αk and defined by D, a finite set of direction which positively
spans RN . The directions can be chosen by any strategy. However each direction d̄j ∀ j = 1, ..., q must
be a product of Gzj, where q is the cardinality of D, G ∈ RN×N is a non-singular generating matrix
which for the present problem is G = 1

ν IN for ν > 1 and zj ∈ ZN is an integer vector. These conditions
are necessary to the convergence theory [32]. Let Z ∈ ZN×q denotes a matrix whose columns are
zj∀j = 1, ..., q, then D is represented as the product of GZ and the mesh centred at αk is given by

Mk = {αk + ∆kDz : z ∈ Zq} (33)
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At the kth poll, the cost function is evaluated at neighbouring poll points given by
Pk =

{
αk + ∆k d̄, d̄ ∈ Dk

}
. Thus at (k + 1)th iteration if the cost function value i.e., Ψ (αk+1) is lower

than Ψ (αk) then the step size is increased by ∆k+1 = ξ∆k for any scalar ξ > 1 and αk+1 is accepted
i.e.,Mk+1 is centred at αk+1. Otherwise if Ψ (αk+1) > Ψ (αk) for all the poll points then the step size
is decreased by ∆k+1 = 1

ξ ∆k and αk+1 = αk. The algorithm is repeated until a stopping condition is
reached e.g., Ψ (αk+1)−Ψ (αk) < τ, where τ is some small value. The generalised pattern search for
PLE estimation is presented in Algorithm 1.

Algorithm 1: Generalised Pattern Search
for k = 1, ...

i. Initialize α0 ∈ [2 5], ∆0,τ, ξ, ν.
ii. Evaluate Ψ (αk+1) with all poll points from poll set

{
αk + ∆k d̄, d̄ ∈ D

}
.

iii-a. If improved poll point is found, accept αk+1, set ∆k+1 = ξ∆k.
iii-b. If improved poll point cannot be found, set αk+1 = αk, set ∆k+1 = ∆k

ξ .
Repeat until Ψ (αk+1)−Ψ (αk) < τ.

end

6. Linear Cramer-Rao Bound

The Cramer-Rao bound characterizes the best possible accuracy of an unbiased estimator.
The conventional localisation Cramer-Rao bound is based on individual readings from ANs.
Conversely, the LLS and WLLS formulation is based on observation vector b̂. In order to lower
bound the performance of WLLS, we derive the LCRB in this section. The maximum accuracy of the
two dimensional localisation is characterized by the MSE bound:

MSE (u) ≥ [I (u)]11 + [I (u)]22
det [I (u)]

(34)

where [I (u)] is the Fisher information matrix (FIM) whose elements are given by Equation (35) [30].

[I (u)]ij =
[

∂µ (u)
∂ui

]
C−1 (u)

[
∂µ (u)

∂uj

]
+

1
2

Tr

[(
C−1 (u)

∂C (u)
∂ui

C−1 (u)
∂C (u)

∂uj

)]
(35)

where µ (u) = [x1 + d1 cos θ1] , . . . , xN + dN cos θN ,. . . , y1 + d1 sin θ1,. . . , yN + dN sin θN ]
T is the mean

of the observation vector. The derivatives are obtained as follows:

∂µ

∂x
= [11, 12, · · · 1N , 01, 02, · · · 0N ]

T (36)

∂µ

∂y
= [01, 02, · · · 0N , 11, 12, · · · 1N ]

T (37)

∂C (x)
ii

∂x
= (x− xi) κi +

[
(y− yi) sin 2θi + (x− xi) cos 2θi

]
κ̄i − 2 (x− xi) (38)

∂C (x)
ii

∂y
=(y− yi) κi +

[
(y− yi) cos 2θi − (x− xi) sin 2θi

]
κ̄i (39)

∂C (y)
ii

∂x
= (x− xi) κi −

[
(y− yi) sin 2θi + (x− xi) cos 2θi

]
κ̄i (40)

∂C (y)
ii

∂y
= (y− yi) κi −

[
(y− yi) cos 2θi − (x− xi) sin 2θi

]
κ̄i − 2 (y− yi) (41)

∂C (xy)
ii

∂x
=
[
sin 2θi (x− xi)− cos 2θi (y− yi)

]
[κ̄i − 1] (42)
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∂C (xy)
ii

∂y
=
[
cos 2θi (x− xi) + sin 2θi (y− yi)

]
[κ̄i − 1] (43)

The derivation of Equation (38) to Equation (43) are given in Appendix B.

7. Simulation Results

In this section, we report simulation results which evaluate the performance of the proposed
techniques. A 200 m× 200 m network is considered with subsets of 8 ANs at fixed and known positions.
To represent a realistic scenario the target nodes are taken at random locations. The parameters
considered are given in Table 1 and the network deployment is shown in Figure 1.

Table 1. Parameters description.

S.No Symbol Description

1 σ2
m Angle noise variance

2 σ2
w Shadowing noise variance

3 αi PLE associated with ith link
4 α0 Initial PLE assumption (for initialising GenPS)
5 σp Standard deviation of erroneous PLE
6 40 Initial step size in GenPS
7 4k Step size at kth iteration
8 ξ Step size indicator in GenPS
9 τ Stopping criteria for GenPS

10 ` Number of iterations

Metres (m)
0 20 40 60 80 100 120 140 160 180 200

M
e
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e
s
(m

)

0

20

40
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Figure 1. Network deployment with 30 target nodes (TNs) positioned at random unknown locations
and 8 anchor nodes (ANs) at fixed known locations.

In Figure 2, using Monte Carlo simulation, the Avg. RMSE is plotted obtained with LLS approach
and WLLS approach for localisation using hybrid AoA-RSS measurements. The noise in angle estimates
is kept fixed at σ2

m = 4 while the shadowing noise is incremented gradually. Also, the PLE values are
incremented from 2 to 4.5. The average RMSE is plotted across different values of shadowing noise
variance and PLEs. It is evident from the Figure 2 that WLLS approach (based on the noise covariance
matrix) has a better accuracy than LLS approach and showing around 25%–30% better results in terms
of Avg. RMSE.

In Figure 3, the network is divided into different zone. Each zone have its own optimal subset
of ANs. Each color represents a different combination of ANs. It is evident from Figure 3 that using all
ANs for localisation does not show minimum error for all TNs. The optimal combinations of ANs for
the zones shown in Figure 3 are given in Table 2.



Sensors 2016, 16, 1143 10 of 16

7

6

σ
2
w
(dB)

5

4

3

22

2.5

3
α

3.5

4

14

12

8

6

4

10

4.5

A
v
g
.
R
M
S
E

(m
)

6

8

10

12

14

LLS
WLLS

Figure 2. Performance comparison between linear least squares (LLS) and weighted linear least squares
(WLLS) for hybrid angle of arrival (AoA)-received signal strength (RSS) measurement. σ2

m = 40,
ANs = [1− 8], αi = 2.5 ∀ i, ` = 2500.
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Figure 3. Division of network into different zone based on the theoretical mean square error (MSE).
ANs = [2, 4, 6, 8], αi = 2.5 ∀ i.

Table 2. Optimal combinations of ANs for zones shown in Figure 3.

Zones Optimal AN Combination

Zone 1 i = 2, 8

Zone 2 i = 2, 4

Zone 3 i = 6, 8

Zone 4 i = 4, 6

Zone 5 i = 2, 4, 8

Zone 6 i = 2, 6, 8

Zone 7 i = 2, 4, 6

Zone 8 i = 4, 6, 8

Zone 9 i = 2, 4, 6, 8

For the configuration given in Figure 1, the network is divided into different zones, shown in
Figure 3, using the theoretical MSE given by Equation (27). The blue and the red curves in Figure 4
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represent the performance of the unbiased LLS algorithm using all available ANs and the subsets of
ANs determined by the first step of the two step optimal AN selection scheme, respectively. In Figure 4,
the Avg. RMSE is for all 30 TNs is plotted against shadowing noise variance on lower and angle noise
variance on upper x-axis.
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Figure 4. Performance comparison in terms of Avg. RMSE, using optimal subsets of ANs and using all
ANs simultaneously. ANs = [2, 4, 6, 8] , ` = 1000, αi = 2.5 ∀ i.
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Figure 5. Performance evaluation via theoretical MSE expression and simulation for LLS.
ANs =[(2, 4, 6, 8) , (1, 2, 3, 5, 6, 7) , (1− 8)], ` = 1500, αi = 2.5 ∀ i.

The theoretical MSE is used to demonstrate the system’s performance. In Figure 5, the curves
represent the Avg. RMSE obtained by Monte Carlo simulation using different number of ANs.
The markers represent the Avg. RMSE using the theoretical MSE expression derived in Section 4.
Both performances are plotted across shadowing and angle noise variance which are taken across lower
and upper x-axis. Since, the markers coincide with the curves, which shows the accurate prediction of
the systems performance and which also proves that the mathematical derivation of the theoretical
MSE expression in Section 4 is correct.

Figure 6 demonstrates the performance of the hybrid AoA-RSS signal model based on LLS
approach when the PLE vector is estimated via the generalised pattern search. Each AN-TN link is
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associated with a different PLE, which is taken at random between 2–5. LLS using erroneous PLEs
is also plotted for comparison, i.e., ᾱi = αi + pi where ᾱi is the erroneous PLE and pi is the error
associated with true PLE αi. pi is considered to be zero mean Gaussianly distributed random variable
with the standard deviation σpi i.e., pi ∼ N

(
0, σ2

pi

)
. For this simulation σpi = 0.2 is considered. It is

observed that even such a small error in the PLE vector produces considerable error in the final estimate
of the location of TN, while localisation using estimated PLEs produce considerably better estimates.
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Figure 6. Avg. RMSE comparison using estimated PLEs and true PLE’s. ANs = [1− 8], ` = 2000, τ = 1,
ξ = 2, ∆0 = 0.5, v = 10, αi ∈ U [2, 5] , α0 ∈ U [2, 5] , σp = 0.2.
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Figure 7. Performance comparison between LLS, WLLS and LCRB using hybrid AoA-RSS
measurements. ANs = [1− 8] αi = 2.5 ∀ i, ` = 2000.

Comparison of the LLS, WLLS with its corresponding LCRB for the AoA-RSS measurement model
is given in Figure 7. In this case, the PLE is kept fixed at 2.5. The Avg. RMSE of all TNs is plotted
across both noise variance. Again it can be seen from Figure 7 that the WLLS outperforms the LLS
model and that LCRB tightly bounds WLLS.
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8. Conclusions

This paper focuses on hybrid localisation using AoA-RSS measurements. An unbiased LLS
estimator is proposed and improvements to the LLS model are achieved by proposing a WLLS
algorithm and by developing a methodology for optimal AN selection. A PLE estimation technique
using the generalised pattern search is also proposed and a closed form MSE expressions for LLS
is derived. Further analysis is done and LCRB is derived that tightly bounds WLLS solution.

It is demonstrated via simulation that the WLLS algorithm performs with 25%–30% better accuracy
than the LLS algorithm while the performance is further enhanced with the optimal AN selection. It is
also observed that the MSE expression accurately predicts the performance of the LLS technique.
Furthermore, the generalised pattern search algorithm considerably improves the performance
by accurately estimating the PLEs. Finally, it is shown that the LCRB derived, tightly bound the
performance of WLLS estimator. The proposed algorithms are suitable for a number of applications
including first aid responders, logistics and fault and fire detection.
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The following abbreviations are used in this manuscript:

AN Anchor node
TN Target Node
AoA Angle of Arrival
RSS Received Signal Strength
ToA Time of Arrival
MSE Mean Squares Error
Avg. RMSE Average Root Mean Squares Error
LLS Linear Least Squares
WLLS Weighted Linear Least Squares
PLE Path-loss Exponent
LCRB Linear Cramer-Rao Bound
FIM Fisher Information Matrix

Appendix A. Derivation of Unbiasing Constant

The ith term of ε (x)i = Ewi ,mi

[
b̂ (x)i − b (x)i

]
, for b̂ (x)i in which δi is ignored, is given by,

ε (x)i = Ewi ,mi

(
xi + di exp

(
wi
γαi

)
cos
(

θi + mi

)
− xi − di cos θi

)
for i = 1, . . . , N

Using sum difference formula cos (θi + mi) = cos (θi) cos (mi)− sin (θi) sin (mi).

ε (x)i =

(
diEwi

[
exp

(
wi
γαi

)])(
cos θiEmi

[
cos mi

]
− sin θiEmi

[
sin mi

])
− di cos θi

Taking the expectations Ewi

[
exp

(
wi
γαi

)]
= exp

(
σ2

wi
γαi

)
, Emi

[
cos mi

]
= exp

(
−

σ2
mi
2

)
and

Emi

[
sin mi

]
= 0, we obtain
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ε (x)i = di cos θi

(
exp

(
−0.5σ2

mi
+

σ2
wi

2 (γαi)
2

)
− 1

)

similarly the ith term of ε (y)i = Ewi ,mi

[
b̂ (y)i − b (y)i

]
can be reduced to

ε (y)i = di sin θi

(
exp

(
−0.5σ2

mi
+

σ2
wi

2 (γαi)
2

)
− 1

)

Appendix B. Derivation of FIM

Derivation of Equation (38): Taking derivative of Equation (22) with respect to x

∂C (x)
ii

∂x
=

∂

∂x

(
d2

i
2

)
κi +

∂

∂x

(
d2

i
2

cos 2θi

)
κ̄i −

∂

∂x

(
di cos θi

)2
(B1)

Utilising product rule

∂C (x)
ii

∂x
=
(

x− xi

)
κi +

(
d2

i
2

∂

∂x
cos 2θi + cos 2θi

∂

∂x
d2

i
2

)
κ̄i −

∂

∂x

(
di cos θi

)2

=
(

x− xi

)
κi +

(
d2

i sin 2θi
∂

∂x
θi + cos 2θi

(
x− xi

))
κ̄i −

∂

∂x

(
di cos θi

)2
(B2)

=
(

x− xi

)
κi +

((
y− yi

)
sin 2θi + cos 2θi

(
x− xi

))
κ̄i − 2

(
x− xi

)
(B3)

This is the required solution and it is obtained from Equation (B2) after taking the following

derivatives ∂
∂x θi =

(y−yi)

d2
i

, ∂
∂x

(
d2

i
2

)
=
(

x− xi

)
and ∂

∂x (di cos θi)
2 = 2

(
x− xi

)
.

Derivation of Equation (39): Taking derivative of Equation (22) with respect to y.

∂C (x)
ii

∂y
=

∂

∂y

(
d2

i
2

)
κi +

∂

∂y

(
d2

i
2

cos2θi

)
κ̄i −

∂

∂y

(
di cos θi

)2
(B4)

∂C (x)
ii

∂y
=
(

y− yi

)
κi +

(
d2

i
2

∂

∂y
cos 2θi + cos 2θi

∂

∂y
d2

i
2

)
κ̄i −

∂

∂y

(
di cos θi

)2

=
(

y− yi

)
κi +

(
−d2

i sin 2θi
∂

∂y
θi + cos 2θi

(
y− yi

))
κ̄i −

∂

∂y

(
di cos θi

)2
(B5)

=
(

y− yi

)
κi +

(
cos 2θi

(
y− yi

)
− sin 2θi

(
x− xi

))
κ̄i (B6)

Equation (B6) is obtained from Equation (B5) by using the following derivatives ∂
∂y θi =

(x−xi)

d2
i

and ∂
∂y

(
di cos θi

)2
= 0.

Derivation of Equations (40) and (41) is similar, other than the fact that x variable is replaced by y.
Derivation of Equation (42): Taking derivative of Equation (24) with respect to x.

∂C (xy)
ii

∂x
=

∂

∂x

(
d2

i cos θi sin θi

)[
κ̄i − 1

]
(B7)
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which can written after using product rule as

∂
∂x
(
d2

i cos θi sin θi
)
= d2

i cos θi
∂

∂x sin θi+sin θi
∂

∂x d2
i cos θi

= d2
i cos θi

∂
∂x sin θi+d2

i sin θi
∂

∂x cos θi+sin θi cos θi
∂

∂x
(
d2

i
)

= −d2
i cos θi

(
cos θi

(
y−yi

)
d2

i

)
+ d2

i sin θi

(
sin θi

(
y−yi

)
d2

i

)
+ sin θi cos θi

(
2
(

x− xi

)) (B8)

Replacing Equation (B8) in Equation (B7) we get Equation (42).
Derivation of Equation (43): Taking the derivative of Equation (24) with respect to y.

∂C (xy)
ii

∂y
=

∂

∂y

(
d2

i cos θi sin θi

)[
κ̄i − 1

]
(B9)

The derivatives in Equation (B9) is given as

∂
∂y

(
d2

i cos θi sin θi

)
= d2

i cos θi
∂

∂y sin θi + sin θi
∂

∂y d2
i cos θi

= cos2 θi

(
x− xi

)
− sin2 θi

(
x− xi

)
+ 2 sin θi cos θi

(
y− yi

) (B10)

Replacing Equation (B10) in Equation (B9) we get Equation (43).
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