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Abstract: In this paper, a stiffness match method is proposed to reduce the vibration sensitivity
of micromachined tuning fork gyroscopes. Taking advantage of the coordinate transformation
method, a theoretical model is established to analyze the anti-phase vibration output caused by
the stiffness mismatch due to the fabrication imperfections. The analytical solutions demonstrate
that the stiffness mismatch is proportional to the output induced by the external linear vibration
from the sense direction in the anti-phase mode frequency. In order to verify the proposed stiffness
match method, a tuning fork gyroscope (TFG) with the stiffness match electrodes is designed and
implemented using the micromachining technology and the experimental study is carried out.
The experimental tests illustrate that the vibration output can be reduced by 73.8% through the
stiffness match method than the structure without the stiffness match. Therefore, the proposed
stiffness match method is experimentally validated to be applicable to vibration sensitivity reduction
in the Micro-Electro-Mechanical-Systems (MEMS) tuning fork gyroscopes without sacrificing the
scale factor.

Keywords: vibration sensitivity; micromachined tuning fork gyroscopes; coordinate transformation
method; stiffness match method; negative electrostatic spring effect

1. Introduction

MEMS vibrational gyroscopes are a kind of inertial sensor for measuring angular rate or angle,
based on an energy transfer of two vibrational modes with the Coriolis effects [1]. Micromachined
gyroscopes are widely used in the military and civilian areas, because of their small size, low cost,
high precision, low power consumption, batch production and easy integration. The performance
characteristic of MEMS gyroscopes such as the sensitivity, resolution, bias, and bandwidth are
significantly improved owing to a high quality factor which ranges from several hundred in air to
hundreds of thousands in a vacuum [2–7]. The high Q-factor not only improves the gyro performance
but also amplifies the vibration amplitudes at some frequencies. Thus, the external vibration has a big
effect on the gyroscope’s reliability and robustness [8,9].

A MEMS tuning fork gyroscope is a very common type to cancel the external linear vibration
output using two identical masses that vibrate in anti-phase [10–14]. The linear vibration is a
common-mode one caused by the external environmental vibration. Since imperfect fabrication
induces structural mismatch, the output errors will be caused by the linear vibration, which is referred
as “vibration sensitivity” or “vibration output”. To reduce the vibration output induced by the
process imperfection, a large frequency separation between the in- and anti-phase modes needs to
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be implemented by increasing the coupling stiffness, but this approach reduces the sensitivity of
TFGs [15,16]. In order to not sacrifice the sensitivity and to reject the vibration output, increasing the
in-phase mode frequency above the anti-phase and improving the frequency separation are necessary
via different coupling methods between two tines [17–19]. All of the above methods take advantage of
the structural designs to reject the vibration output. However, how to reduce the vibration output using
a control circuitry is still not studied. The negative electrostatic spring effect was used to guarantee
the stiffness match of two tines in the other work, which was focused on the electrostatic regulation
of quality factor [20]. The purpose of this paper is different and is focused on how to estimate the
vibration output caused by the external linear vibration with the negative electrostatic spring effect.

This paper proposes a stiffness match method to reduce the vibration sensitivity using the stiffness
match electrodes. A theoretical model of the stiffness match method is established and the vibration
output of the non-ideal TFG is analyzed in Section 2. Section 3 gives the detailed design and fabrication
of tuning fork gyroscope as well as the stiffness match electrodes. Experimental study on the vibration
output under the different stiffness mismatch is carried out and the comparisons with experimental
and theoretical solutions are shown in Section 4. In Section 5, the discussion is given. Section 6 gives
the conclusions.

2. Theoretical Analysis of Stiffness Match Method

The non-ideal TFG model with the match stiffness is shown in Figure 1. The dynamic is governed
by the following.
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Figure 1. The model of the non-ideal TFG with the match stiffness.

Left tine:
m

..
x1 ` c

.
x1 ` pk1 ` keq x1 ` k1px1 ´ x2q “ masin wt (1)

Right tine:
m

..
x2 ` c

.
x2 ` k2x2 ` k1px2 ´ x1q “ masin wt (2)

Subtracting Equation (2) from Equation (1):

m
..
x1 ` c

.
x1 ` pk1 ` keq x1 ` k1px1 ´ x2q ´m

..
x2 ´ c

.
x2 ´ k2x2 ´ k1px2 ´ x1q “ 0 (3)

Adding Equations (1) and (2):

m
..
x1 ` c

.
x1 ` pk1 ` keq x1 `m

..
x2 ` c

.
x2 ` k2x2 “ 2masin wt (4)

where m and c are the mass and damping of each tine, respectively; k1 and k2 denote the springs
stiffness and k1 is the coupling stiffness between the two tines; ke denotes the match stiffness; x1 and x2

are the displacement; and asin wt is the external common mode acceleration, in which a denotes the
amplitude and w is the angular frequency.

To obtain the anti-phase vibration output, a coordinate transformation is used as follows:

xan “ x1 ´ x2, xin “ x1 ` x2 (5)
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Substituting Equation (5) into Equations (3) and (4):

..
xan `

wan

Qan

.
xan `w2

anxan “ ´
∆k` ke

2m
xin (6)

where wan “

b

kan
2m , kan “ k1 ` k2 ` ke ` 4k1, win “

b

kin
2m , kin “ k1 ` k2 ` ke, Qan “

mwan
c , Qin “

mwin
c ,

k1 ´ k2 “ ∆k. wan and win are the defined resonant frequencies in the anti- and in-phase modes,
respectively; kan and kin are the stiffness in the anti- and in-phase modes, respectively; Qan and Qin are
quality factors of the ideal anti- and in-phase motions, respectively; and ∆k is the mismatch stiffness
without the stiffness match.

Thus, Equation (6) can be written as a matrix representation:

M
..
x` C

.
x` Kx “ Fsin wt (7)

where M “

«

1 0
0 1

ff

, C “

«

wan
Qan

0
0 win

Qin

ff

, K “

«

w2
an

∆k`ke
2m

∆k`ke
2m w2

in

ff

, F “

«

0
2a

ff

, x “

«

xan

xin

ff

.

By using the characteristic equation, the natural frequency can be obtained:

w2
1 “

pw2
in`w2

anq´

c

pw2
in´w2

anq
2
`

´

∆k`ke
m

¯2

2

w2
2 “

pw2
in`w2

anq`

c

pw2
in´w2

anq
2
`

´

∆k`ke
m

¯2

2

(8)

The modal superposition method is used to solve Equation (7), and the steady-state response
is obtained:

xptq “ 2β1a
w2

1
¨ 1

1`

¨

˝

p∆k`keq{m
c

pw2
in´w2

anq
2
`

´

∆k`ke
m

¯2
`pw2

in´w2
anq

˛

‚

2 ¨

»

—

—

—

—

—

—

–

´p∆k`keq{m
c

pw2
in´w2

anq
2
`

´

∆k`ke
m

¯2
`pw2

in´w2
anq

¨

˚

˝

p∆k`keq{m
c

pw2
in´w2

anq
2
`

´

∆k`ke
m

¯2
`pw2

in´w2
anq

˛

‹

‚

2

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

`

2β2a
w2

2
¨ 1

1`

¨

˝

p∆k`keq{m
c

pw2
in´w2

anq
2
`

´

∆k`ke
m

¯2
´pw2

in´w2
anq

˛

‚

2 ¨

»

—

—

—

—

—

—

–

p∆k`keq{m
c

pw2
in´w2

anq
2
`

´

∆k`ke
m

¯2
´pw2

in´w2
anq

¨

˚

˝

p∆k`keq{m
c

pw2
in´w2

anq
2
`
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´pw2

in´w2
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‹
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fi
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ffi

ffi
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(9)

where the magnification factor of amplitude βi “
1

b

p1´λ2
i q

2
`p2ξiλiq

2
, the phase angle ψi “ arctan 2ξiλi

1´λ2
i
,

the frequency ratio λi “
w
wi

, and the damping ratio ξi “
c

2wim
.

When w “ w2, the displacement difference in the anti-phase mode frequency can be obtained:

xanptq “ 2Q2a
w2

2
¨

p∆k`keq{m
c

pw2
in´w2

anq
2
`

´

∆k`ke
m

¯2
´pw2

in´w2
anq

1`

¨

˝

p∆k`keq{m
c

pw2
in´w2

anq
2
`

´

∆k`ke
m

¯2
´pw2

in´w2
anq

˛

‚

2 “
2Q2a

w2
2
¨

∆k`ke
d

ˆ

kin´kan
2

˙2
`p∆k`keq2´

ˆ

kin´kan
2

˙

1`

¨

˚

˝

∆k`ke
d

ˆ

kin´kan
2

˙2
`p∆k`keq2´

ˆ

kin´kan
2

˙

˛

‹

‚

2 (10)

where Q2 is the second-order mode Q-factor.
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Considering that kan ´ kin ąą 2 p∆k` keq and using the Taylor series expansion:

∆k` ke
c

´

kin´kan
2

¯2
` p∆k` keq

2
´

´

kin´kan
2

¯

“
∆k` ke

kan ´ kin
(11)

Substituting Equation (11) into Equation (10):

xanptq “
2Q2a

w2
2
¨

∆k` ke

kin ´ kan
cos w2t “

Q2a
2w2

2
¨

∆k` ke

k1
cos w2t (12)

The stiffness mismatch can be reduced using the stiffness match electrodes with the negative
electrostatic spring effect [20]. The stiffness match can be implemented by applying a DC voltage in the
stiffness match electrodes as shown in Figure 2. The DC voltage of the stiffness match V∆k is applied in
the fixed electrodes. Assume that the displacement of the mass in the sense direction (along the x axis)
is ∆x. The comb capacitances between the stiffness match electrodes in the left part can be obtained:

C1 “ Nε
A

d1 ` ∆x
, C2 “ Nε

A
d2 ´ ∆x

(13)

Thus, the electrostatic force in the left part of the left mass is:

Fe1 “
1
2

Nεε

«

1

pd2 ´ ∆xq2
´

1

pd1 ` ∆xq2

ff

V2
∆k (14)

Similarly, the electrostatic force in the right part of the left mass is:

Fe2 “
1
2

NεA

«

1

pd1 ´ ∆xq2
´

1

pd2 ` ∆xq2

ff

V2
∆k (15)

where N denotes the total number of the stiffness match electrodes.
Therefore, the total electrostatic force is:

Fe “ Fe1 ` Fe2 “
1
2

NεA

#

4d1∆x
pd1 ´ ∆xq2 pd1 ` ∆xq2

`
4d2∆x

pd2 ´ ∆xq2 pd2 ` ∆xq2

+

V2
∆k

« 2NεAV2
∆k∆x

˜

1
d3

1
`

1
d3

2

¸ (16)

The direction of the electrostatic force is opposite with the direction of the stiffness spring.
According to Hooke’s law, the match stiffness ke is a negative stiffness coefficient caused by the
electrostatic force:

ke “ ´2NεAV2
∆k

˜

1
d3

1
`

1
d3

2

¸

(17)

Therefore, substituting Equation (17) into Equation (12), one obtains:

xanptq “
Q2a
2w2

2
¨

∆k´ 2NεAV2
∆k

ˆ

1
d3

1
` 1

d3
2

˙

k1
cos w2t (18)

From Equation (18), it is figured out that the anti-phase vibration output can be rejected by
reducing the stiffness mismatch through the stiffness match method.
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Figure 2. The stiffness match electrodes.

3. Design and Fabrication

In order to verify the stiffness match method we proposed, a dual-mass micromachined tuning
fork gyroscope is designed and fabricated. The architecture in the sense axis direction (along the
horizontal direction) consists of two identical tines and a coupling spring, as shown in Figure 3. Each
tine contains a Coriolis mass and a frame, and the Coriolis mass and frame are suspended by the
symmetrical springs. These springs except the coupling ones are the same to reduce the stiffness
mismatch of the left and right masses caused by the fabrication imperfections. The sense electrodes are
variable-area capacitances to ensure the linearity of the capacitance variation with the displacement
along the sense direction. The stiffness match electrodes are variable-gap capacitances to reduce the
stiffness of one mass for the stiffness match of two masses, as shown in Figure 3.Sensors 2016, 16, 1146 6 of 12 
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Figure 3. Optical photograph of a dual-mass tuning fork gyroscope.

The fabrication is implemented using Silicon-on-Glass (SOG) technology. Figure 4 describes
the process flow diagram: (a) the silicon wafer was prepared; (b) the photoresist for anchor was
patterned; (c) the deep silicon etching was done for forming anchor; (d) the glass wafer was prepared;
(e) the photoresist for lift-off was patterned; (f) the electrodes and leads were produced by lift-off
and the silicon-glass anodic bonding was performed; (g) the photoresist for structure was patterned;
and (h) the deep silicon etching was done for releasing the movable structure.
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Finally, the fabricated MEMS tuning fork gyroscope is shown in Figure 5.

Sensors 2016, 16, 1146 6 of 12 

 

 

Figure 3. Optical photograph of a dual-mass tuning fork gyroscope. 

The fabrication is implemented using Silicon-on-Glass (SOG) technology. Figure 4 describes the 

process flow diagram: (a) the silicon wafer was prepared; (b) the photoresist for anchor was 

patterned; (c) the deep silicon etching was done for forming anchor; (d) the glass wafer was prepared; 

(e) the photoresist for lift-off was patterned; (f) the electrodes and leads were produced by lift-off and 

the silicon-glass anodic bonding was performed; (g) the photoresist for structure was patterned; and 

(h) the deep silicon etching was done for releasing the movable structure.  

 

Figure 4. Fabrication process of MEMS tuning fork gyroscope. 

Finally, the fabricated MEMS tuning fork gyroscope is shown in Figure 5. 

 

Figure 5. The fabricated MEMS tuning fork gyroscope. 

  

Figure 5. The fabricated MEMS tuning fork gyroscope.

4. Experimental Study and Comparison with Theoretical Model

4.1. Experimental Study

In order to further analyze the anti-phase vibration output caused by the linear vibration due
to the stiffness mismatch, the experimental study is carried out. The experimental setup is shown
in Figure 6. The MEMS gyroscope with the printed circuit board (PCB) is mounted on the vibration
shaker, the DC power supply is applied to the circuitry, and the vibration shaker is excited by the
excitation signal from the signal generator through the power amplifier. The vibration acceleration
signal is tested by the Laser Doppler vibrometer and the corresponding data are acquired by the PC,
and the sensing output voltage of the MEMS tuning fork gyroscope is recorded by the dynamic signal
analyzer (Crystal Instrument Corporation, Santa Clara, CA, USA, COCO-80).
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First, the electrical frequency sweep is carried out using the control circuit. Specifically, the
movable mass is imposed using a sinusoidal carrier signal of 5 V, and a dc bias voltage of 5 V and
an ac voltage of 0.1 V with a frequency sweep range from 3000 to 4000 Hz is applied on the fixed
electrodes. To change the degree of the stiffness match, the voltage of the stiffness match V∆k imposed
on the stiffness match electrodes are from 0 to 20 V. Through the measured frequency response of the
MEMS TFG, the anti-phase mode frequency is obtained and the anti-phase Q-factor is acquired by the
half-power bandwidth, as shown in Figures 7 and 8, respectively. In Figure 7, the resonant frequency is
decreased rapidly with the increase of the voltage V∆k. The Q-factors are nearly unchanged in Figure 8,
which are about 740 under a vacuum.
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Figure 8. The quality factor with the increase of the voltage V∆k.

Figure 7 shows that the anti-phase mode frequency is changed as the voltage of the stiffness
match. The purpose is to obtain the resonant frequency under the different voltage of the stiffness
match. Because the measured vibration output at the resonant frequency needs to be obtained, it is
necessary to first acquire the resonant frequency. Then, the vibration output can be measured at the
acquired anti-phase mode frequency.

Then, the mechanical frequency sweep is carried out using a vibration shaker. The printed circuit
board is only powered by the DC power supply without the other electrical signals. The excitation
acceleration signal with a frequency sweep range from 3000 to 4000 Hz is sinusoidal, and its amplitude
is 1 g (9.8 m/s2). The output voltage of the differential sense capacitance without the stiffness match
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is shown in Figure 9. It shows that the vibration output in the in-phase mode and anti-phase mode
frequencies are obvious and the in-phase mode frequency fin is 3332.4 Hz while the anti-phase mode
frequency fan is 3645.5 Hz. The output voltage of the differential sense capacitance in the anti-phase
mode frequency is obtained under the different voltage of the stiffness match V∆k, as described in
Figure 10.
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Figure 10. The measured vibration output of the differential sense capacitance in the anti-phase
mode frequency.

Figure 10 shows that the anti-phase vibration output is firstly decreased and then increased. The
anti-phase vibration output is minimized when the voltage V∆k is 9 V and the vibration output is
0.28 V, while the anti-phase vibration output is 1.07 V without the stiffness match. Thus, the anti-phase
vibration output is reduced by 73.8% compared to the structure without the stiffness match.

4.2. Theoretical Calculation

Due to the practical fabrication defects, the mismatch stiffness ∆k is hard to predict. When
the anti-phase vibration output is minimized, ∆k is same with the negative stiffness coefficient ke.
Using Equation (17), ∆k can be estimated, and the relative stiffness mismatch ∆k{k2, is less than 1.5%.
Through the measured in-phase mode frequency fin, the anti-phase mode frequency fan and the
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estimated ∆k, the coupling stiffness k1 and the springs stiffness k2 can be solved. The model parameters
used in the theoretical model is listed in Table 1.

Table 1. Parameters used in the theoretical model.

Parameters Value Parameters Value

Sense-mode mass 1.3951 ˆ 10´6 kg Structural thickness 80 µm
Mismatch stiffness 8.1 N/m Sense-mode Q 740
Springs stiffness k2 607 N/m Common acceleration 9.8 m/s2

Stiffness mismatch 1.33% Coupling stiffness 60 N/m

According to the measured fan and Q-factor, the estimated ∆k and k1, the theoretical values of
the vibration output displacement difference ∆x of the differential sense capacitance in the anti-phase
mode frequency can be obtained using Equation (18). The capacitance sensitivity Sc is 1.427 V/pf
and the displacement sensitivity Sd is 0.30 pf/um, which are measured by the experimental tests, and
expressed as:

Sc “
V0

∆c
, Sd “

∆c
∆x

(19)

From Equation (19), the vibration output displacement difference can be expressed as:

∆x “
V0

Sc ¨ Sd
(20)

Finally, the theoretical output voltage of the differential sense capacitance in the anti-phase mode
frequency is obtained under the different voltage V∆k, as shown in Figure 11.Sensors 2016, 16, 1146 10 of 12 
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Figure 11. The theoretical vibration output of the differential sense capacitance in the anti-phase
mode frequency.

4.3. Experimental and Theoretical Comparisons

Comparisons of the experimental and theoretical values are displayed in Figure 12. As can be
seen in Figure 12, there is an error between the experimental and theoretical values and the theoretical
value is a little smaller than the experimental value. The variation tendency is almost the same, which
experimentally verifies the proposed stiffness match method. According to the previous theoretical
Equation (18) (described in Section 2), the vibration output is zero when the stiffness of the left mass
and the right mass is matched, while the measured minimum value is 0.28 V. The possible reasons
are that the mass and damping of the left and right tines are also mismatch and other possible causes,
which will induce the anti-phase vibration output.
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5. Discussion

According to Equation (18), it is concluded that the anti-phase vibration output of the MEMS
tuning fork gyroscope is proportional to the stiffness mismatch and inversely proportional to the
coupling stiffness. Based on the theoretical analysis, it can be seen that there are two ways to effectively
eliminate the anti-phase vibration output without sacrificing the scale factor. One way is to design a
structure to increase the coupling stiffness by using the anchored coupling mechanism according to the
previous study [16], which takes advantage of the structural approach to reduce the vibration output.
Another way is to design stiffness match electrodes with the corresponding circuit to reduce the
stiffness mismatch, which makes use of the control circuit approach based on applying a DC voltage
on the stiffness match electrodes to eliminate the vibration output with the negative electrostatic
spring effect.

However, the anti-phase vibration output is still not completely eliminated. The possible reasons
are that there are also mismatch between the mass and damping of the left and right tines and the other
possible causes such as the asymmetric electrostatic forces and the capacitance nonlinearity, which will
induce the anti-phase vibration output. Because other complicated factors can affect the anti-phase
vibration output, how to better reduce the anti-phase vibration output needs to be further studied in
the future.

6. Conclusions

This paper proposes a stiffness match method to reduce the vibration sensitivity of micromachined
tuning fork gyroscopes. Making use of the coordinate transformation method, a theoretical model is set
up to investigate the anti-phase vibration output caused by the stiffness mismatch due to the fabrication
imperfections. The analytical results reveal that the stiffness mismatch is proportional to the output
induced by the linear vibration from the sense direction in the anti-phase mode frequency. In order
to verify the proposed stiffness match method, the TFG including the stiffness match electrodes
are designed and implemented using micromachining technology and the experimental study is
carried out. The experimental tests demonstrate that the linear vibration output can be reduced by
73.8% through the stiffness match method with stiffness match electrodes compared to the structure
without the stiffness match. Therefore, the proposed stiffness match method is experimentally validated
to be applicable to the vibration sensitivity reduction in the tuning fork gyroscopes without sacrificing
the sensitivity.
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