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Abstract: This paper presents an object occlusion detection algorithm using object depth information
that is estimated by automatic camera calibration. The object occlusion problem is a major factor
to degrade the performance of object tracking and recognition. To detect an object occlusion,
the proposed algorithm consists of three steps: (i) automatic camera calibration using both moving
objects and a background structure; (ii) object depth estimation; and (iii) detection of occluded regions.
The proposed algorithm estimates the depth of the object without extra sensors but with a generic
red, green and blue (RGB) camera. As a result, the proposed algorithm can be applied to improve the
performance of object tracking and object recognition algorithms for video surveillance systems.

Keywords: occlusion detection; automatic camera calibration; depth estimation; moving object
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1. Introduction

Recently, the demand for object tracking and recognition algorithms is increasing due to video
surveillance. An object occlusion is a major factor for the performance degradation of a video
surveillance system. For this reason, various object occlusion detection and handling methods
were studied.

Mei et al. proposed an object tracking with consideration of occlusion that is detected using the
occlusion map [1]. Since this method uses a target template to obtain the occlusion map, it is difficult
to detect the object occlusion when the target template is unavailable. Zitnick et al. generated a depth
map using a stereo camera and detected object occlusion regions [2]. However, this method needs
two cameras for stereo matching to generate the depth map. Sun et al. proposed an optimization
approach using the visibility constraint for the stereo matching and then generated the depth map by
minimizing the energy function [3]. Since a stereo camera-based occlusion detection method needs an
additional camera, it is not easy to implement in an already installed wide-area surveillance system.

To solve this problem, single camera based depth map estimation methods were proposed.
Matyunin et al. estimated the depth using an infrared sensor [4]. However, this method cannot work
in the outdoor scene since an infrared sensor is interrupted by sunlight. Im et al. proposed a single
red, green, and blue (RGB) camera-based object depth estimation method using multiple color-filter
apertures (MCA) [5]. However, this method needs a special aperture for the object depth estimation,
and produces color distortion at boundary of the out-focused objects. Zonglei et al. used a patterned
box for semi-automatic camera calibration [6]. Lin et al. estimated vanishing points using traffic lanes,
and estimated the distance of a frontal vehicle using a single RGB camera for a collision warning
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system [7]. Since this method uses the traffic lane for vanishing point estimation, distance estimation
is impossible when an input image does not contain a traffic lane. Song et al. detected features from a
moving object, and automatically calibrated the camera [8]. However, Song’s method cannot avoid the
camera calibration error when feature points change while the object is moving.

To solve these problems, the proposed method first performs automatic camera calibration using
both moving objects and background structures to estimate camera parameters. Given the camera
parameters, the proposed algorithm estimates the object depth with regard to a reference plane, and
then detects the object occlusion. To estimate vanishing points and lines, the proposed algorithm
detects parallel lines in the input image. Bo et al. detected straight lines from background structures
using the one-dimensional (1D) Hough transform for automatic camera calibration [9]. Since this
method uses only a single image, it is impossible to automatically calibrate the camera when the
background does not have line components. Moreover, accuracy of the camera calibration is degraded
by with non-parallel lines. Lv et al. detected human foot and head points for automatic camera
calibration [10]. However, if the estimated foot and head points are not sufficiently accurate or if
the object motion is linear, the camera calibration is impossible. Moreover, accuracy of the camera
calibration result depends on the object detection results. To solve these problems, the proposed
algorithm combines the background structure lines with human foot and head information to estimate
vanishing points and lines.

This paper is organized as follows: Section 2 describes background theory of the camera geometry,
and Section 3 presents the proposed object occlusion detection algorithm. Experimental results of the
proposed algorithm are shown in Section 4, and Section 5 concludes the paper.

2. Theoretical Background of Camera Geometry

Estimation of the depth needs a 3D space information. To obtain the projective relationship
between the 2D image and 3D space information, a camera geometry is used with camera parameter
that describe camera sensor, lens, optical axis, and a position of the camera in the world coordinate.
In the pin-hole camera model [11], a point in the 3D space is projected onto a point in the 2D image as
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where s represents the scale, [ x y 1 ]T a point in the 2D image, matrix A consists of intrinsic camera
parameters, fx and fy focal length in the x- and y-axis focal length, respectively, skew the skewness,
a the aspect ratio, camera rotation matrix R consists of camera rotation parameters rij, [ t1 t2 t3 ]T

the camera translation vector, and [ X Y Z 1 ]T a point in the 3D space.
To simplify the description without loss of generality, we assume that the focal lengths fx and fy

are equivalent, the principal point is at the image center, the skewness is equal to zero, and the aspect
ratio is equal to 1. In the same manner, we also assume that the camera rotation angle with regard to
the Z-axis is equal to zero, and the camera translation with regard to both X- and Y-axis is equal to
zero to calculate the extrinsic matrix [R|t] as

[R|t] = [RZ(ρ)RX(θ)T(0, 0, hc)] (2)

where RZ represents the rotation matrix with regard to the Z-axis, RX the rotation matrix with regard
to the X-axis, T the transformation for a translation, hc the camera height.

The 2D image is generated by the light that is reflected by an object and than arrives at the
camera sensor. In this process, a single object is projected onto the 2D image plane with different sizes
according to the distance from the camera as shown in Figure 1. For this reason, parallel lines in the
3D space are projected on the 2D image plane as non-parallel lines depending on the depth. Using the
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apparent non-parallel lines in the image, the vanishing points can be estimated as a intersected points
of those lines. Since the projective camera transformation model projects a point in the 3D space onto
the camera sensor, the camera parameters can be estimated using vanishing points.

Figure 1. Projective model of the camera.

The point in the 3D space is projected onto a camera sensor corresponding to a point in the 2D
image using a projective transform. However, a point in the 2D image cannot be inversely projected
onto a unique point in the 3D space since the camera projection transform is not a one-to-one function.
On the other hand, if there is a reference plane, a point in the 2D image can be inversely projected
onto a point on the reference plane that is defined in the 3D space. As a result, the proposed algorithm
estimates the object depth using the 2D image based on a pre-specified reference plane.

3. Automatic Calibration-Based Occlusion Detection

The proposed object occlusion detection algorithm consists of three steps: (i) automatic camera
calibration; (ii) object depth estimation; and (iii) occlusion detection. Figure 2 shows the block diagram
of the proposed algorithm, where Ik represents the k-th input frame, L represents the extracted lines,
P represents the projective matrix, D represents the object depth information, and O represents the
detected region of an occluded object.

Figure 2. Block diagram of the proposed occlusion detection algorithm.

3.1. Automatic Camera Calibration

The proposed algorithm estimates the camera parameters for the object depth estimation followed
by object occlusion detection. Since semi-automatic camera calibration is the simplest way to estimate
parameters using a synthetic calibration pattern [6], its performance is highly dependent on the
experience of a user. To solve this problem, the proposed algorithm uses an automatic camera
calibration method that extracts lines from the image, and then estimates vanishing points and
lines [12].

To detect human foot and head points, the proposed algorithm detects the foreground by modeling
the background using the Gaussian mixture model (GMM) [13]. The object region is then detected by
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labeling a sufficiently large object. Given an object region, the vertically highest point is determined as
the head point. On the other hand, the average of the bottom 20 percent points is determined as the
foot point.

A pair of parallel lines that connect head points and foot points are used to detect vanishing
points and lines. Since the lines connecting head points and foot points are non-parallel when the
height of an object changes while walking, the proposed algorithm detects the uniform height of the
object only when pedestrian’s legs are crossing as

1
n

n

∑
i=1

(pi − p f )
2 < TC (3)

where pi represents the candidate foot points, n the number of candidate foot points, p f the detected
foot point, and TC the threshold value.

To combine object foot and head information with the background structure lines, the proposed
algorithm detects edges that are used to detect vanishing points and lines [14]. The detected foot and
head points and background structure lines are shown in Figure 3.

(a) (b)

Figure 3. Results of the line detection: (a) foot-to-head line and (b) background structure lines.

The vanishing points and lines are estimated using the detected foot-to-head line and background
structure lines. For the robust vanishing points and lines estimation, a sufficient number of foot and
head points are required. For that reason, the proposed algorithm estimates the vanishing points
and lines depending on the number of the human foot and head points according to the following
three cases:

Theoretically, homography estimation for camera calibration requires four 2D coordinates that
can solve eight linear equations. However, a practical random sample consensus (RANSAC) based
robust camera calibration needs at least eight points such that the calibration error is minimized as
shown in Figure 4.
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Figure 4. Focal length estimation error depending on the number of foot-head data sets with
30% outliers.

Case 1. If the number of detected foot and head point sets is less than N, the vanishing points
and lines are estimated using background structure lines. More specifically, three vanishing points
are selected from background lines intersecting points using the RANSAC algorithm. Among three
vanishing points, the lowest one is determined as the vertical vanishing point. The line connecting the
remaining two vanishing point is determined as the horizontal vanishing line.

Case 2. If the number of detected foot and head sets is more than N but the object motion is linear,
the vertical vanishing point can be estimated only using the object foot and head points. The vertical
vanishing point is determined at the intersected point of foot-to-head lines as shown in Figure 5.
However, if the object moves linearly, estimation of a horizontal vanishing line is impossible since
only one horizontal vanishing point is estimated. In this case, the vanishing line is estimated using
background structure lines.

Case 3. If the number of detected foot and head sets is more than N and object motion is not
linear, vanishing points and lines can be estimated using foot and head points. A foot-to-foot line
that connects two foot points and the corresponding head-to-head line that connects two head points
are used to estimate the horizontal vanishing points. As a result, the horizontal vanishing line can be
estimated using the two horizontal vanishing points as shown in Figure 5.

Figure 5. Definition of vanishing points and the horizontal vanishing line.
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Camera parameters are calculated using the estimated vertical vanishing point and the horizontal
vanishing line as [15]

f =
√
(a3/a2 − py)(vy − py)

ρ = atan(−vx/vy)

θ = atan(−
√

v2
x + v2

y/ f )

hc = ho/(1− d(oh ,vl)‖o f−v‖
d(o f ,vl)‖oh−v‖ )

(4)

where f represents the focal length, ρ the roll angle, θ the tilt angle, hc the camera height, vl the
horizontal vanishing line a1x + a2y + a3 = 0, v = [ vx vy ]T the vertical vanishing point, ho the
object height, o f the object foot point, oh the object head point, and d(A, B) the distance between a
point A and a line B.

3.2. Object Depth Estimation and Occluded Region Detection

The proposed algorithm uses object depth information to detect an occluded region.
To estimate the depth of an object, the 2D image coordinate is projected onto the reference plane
in the 3D space using a projective matrix. Since the object foot points should be on the ground plane,
the proposed algorithm uses the ground plane as the reference plane, which means that the ground
plane is considered as the XY plane because the camera height is calculated as the distance between
the ground plane and the camera. Using an object foot point in the 2D image, the object foot point on
the ground plane in the 3D space can be calculated. To detect the foot point in the 3D space, a foot
point in the 2D image is inversely projected onto the 3D space using a projective matrix as

X =
(

PTP
)−1

PTx f (5)

where x f represents the foot point in the 2D image, matrix P the projective matrix, and X the inversely
projected coordinate of x f . Inversely projected coordinate X is normalized by the Z-axis value to detect
the foot point in the 3D space as

X f =
X
Z

(6)

where Z represents the Z-axis value of X, and X f the foot point on the ground plane in the 3D space.
An object depth is estimated by computing the distance between the object and camera.

However, the foot point appears in the finite position in the input image. For this reason, the proposed
algorithm uses the nearest foot point as a pivot point for the object depth estimation. The estimated
depth is then normalized using the farthest distance. If an object is far enough from the camera, depth
of the object foot point is assumed to be the Y-axis coordinate since the camera pan angle is equal to
zero and the pivot point is on the ground plane. If the object depth is equal to the object foot point
depth, the object depth is calculated as

d =

∣∣∣Yf −Yp

∣∣∣
dF

(7)

where d represents the object depth, Yp the Y-axis value of the pivot point, Yf the object foot point,
and dF the farthest distance. Figure 6 shows the proposed object depth estimation model, where dN
represents the nearest distance, (Xp, Yp, Zp) the pivot point, and (X f , Yf , Z f ) the object foot point.
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Figure 6. The proposed object depth estimation model.

The proposed algorithm detects the object occlusion using the estimated object depth. The depth
of the same object in adjacent frames slowly changes. On the other hand, if the object is occluded,
the estimated depth of the object rapidly changes. Based on the observation, object occlusion is
detected as

O =

{
true, if |dt−1 − dt| ≥ TO

false, otherwise
(8)

where O represents the object occlusion detection result, dt the depth of the object at time t, and TO the
threshold value for the object occlusion detection. We can only estimate depth from standing human
objects whose feet lie on the reference plane assuming that each object has a uniform depth.

4. Experimental Results

This section shows the results of the proposed automatic camera calibration and object occlusion
detection algorithms. For the experiment, test video sequences of resolution 1280 × 720 were acquired
using a camera installed at 2.2 to 7.2 m high. In addition to the in-house test sets, Vision and
Autonomous System Center’s (VASC) stereo dataset is also used to compare the performance of
the proposed method with existing stereo matching-based methods [16].

Figure 7 shows the result of three different methods for automatic camera calibration. A ground
plane is drawn on the image using grid lines with a 0.5 m interval to show the accuracy of the camera
calibration. The background structure-based method makes a poor calibration result because of
insufficient, non-parallel line segments and random textures of natural objects as shown in Figure 7a.
The moving object-based method degrades the calibration performance because of the incompletely
detected moving object and only linear motion of the object as shown in Figure 7b. On the other hand,
the proposed method significantly improves the accuracy of camera calibration because it uses neither
incomplete background structures nor multiple object positions in the same line as shown in Figure 7c.

Figure 8 shows the result of object depth estimation using the proposed method. Figure 8b shows
the calibration result with the superimposed ground plane. The estimated depths of moving objects
are shown in Figure 8c.

Figure 9 compares depth estimation results using the stereo matching-based and the proposed
methods. Figure 9a,b respectively show the left and right images of the “Toy” in the VASC stereo
dataset. Figure 9c shows the stereo matching-based depth estimation result. Figure 9d shows guidelines
to detect an region, where red lines represent the objects bottom boundary and blue lines the object’s
top boundary. Figure 9e shows the superimposed grid of the reference plane that is the camera
calibration result. The calibration result using the proposed object depth estimation method is shown
in Figure 9f. Although the stereo matching-based method generated many holes in textureless regions
without features, the proposed method successfully estimated the continuous depth map.
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(a)

(b)

(c)

Figure 7. Results of three different method for camera calibration: (a) background structure-based
method; (b) moving object-based method; and (c) the proposed camera calibration method.

(a) (b) (c)

Figure 8. The results of the proposed object depth estimation: (a) input image; (b) calibration result in
the form of the superimposed grid representing the ground plane; and (c) the depth estimation result.
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(a) (b) (c)

(d) (e) (f)

Figure 9. Comparison of depth estimation results using the stereo-based and the proposed methods:
(a) the left stereo image; (b) the right stereo image; (c) estimated depth map using the stereo
matching-based method; (d) guide lines of the left image; (e) estimated ground plane of the left
image; and (f) estimated depth map of the left image using the proposed method.

Figure 10 shows the detection result of an occluded object using the proposed occlusion detection
algorithm with the threshold distance of 1.0 m. Figure 10a shows the detection result of the occluded
object by a background structure. Figure 10b shows the detection result of the occluded object by
another object, and Figure 10c shows the detection result in a different test video. The proposed
method can successively detect occlusion in various test videos. As shown in Figure 10d detection of
the y-axis value of an object foot position may results in erroneous detection of occlusion. However, the
proposed method can correctly detect occlusion in the scene-invariant manner since it uses the depth
in formation in the 3D space.

(a)

(b)

Figure 10. Cont.
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(c)

(d)

Figure 10. Results of occlusion detection three selected frames in each video: (a) occlusion by
background; (b) occlusion by another object; (c) result of occlusion detection detection in another
video and (d) result occlusion detection without depth information.

5. Conclusions

In this paper, we presented a fully automatic object occlusion detection method by estimating
the object depth from a single uncalibrated camera. The proposed algorithm can robustly calibrate
a camera by combining the background structure line components and moving object information.
In addition, object depth is estimated using a single RGB camera. As a result, the object occlusion is
successfully detected by analyzing the object depth information. The proposed method can be applied
to object detection and tracking in a multiple-view surveillance system.

The fundamental assumption of the proposed occlusion detection algorithm is that there is a
single, flat ground on which all objects move around. If the ground is not flat or slanted, the estimated
depth becomes inaccurate, and as a result, object detection may fail. In that case, the nonflat ground can
be approximated by piece-wise flat one, and the slanting ground can be taken care of in the calibration
process. In spite of the restrictions, the proposed method is suitable for a wide range of surveillance
applications, such as multiple camera video tracking with object handover and normalized metadata
generation-based video indexing and retrieval because of its economical implementation.
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