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Abstract: This paper describes a method for estimating the attitude of an underwater robot. The
method employs a new concept of sine rotation vector and uses both an attitude heading and
reference system (AHRS) and a Doppler velocity log (DVL) for the purpose of measurement. First,
the acceleration and magnetic-field measurements are transformed into sine rotation vectors and
combined. The combined sine rotation vector is then transformed into the differences between the
Euler angles of the measured attitude and the predicted attitude; the differences are used to correct
the predicted attitude. The method was evaluated according to field-test data and simulation data
and compared to existing methods that calculate angular differences directly without a preceding
sine rotation vector transformation. The comparison verifies that the proposed method improves the
attitude estimation performance.

Keywords: underwater vehicle; underwater robot; attitude; sine rotation vector; Euler angles; attitude
heading and reference system; Doppler velocity log

1. Introduction

Determining the attitude of underwater robots is one of the major research areas in the robotics
field, because an underwater robot requires attitude information to estimate its location and control its
motion [1]. The rotation and attitude with respect to a reference can be described in terms of Euler
angles, quaternions, rotation matrices, rotation vectors and angle-axis representations. This paper
proposes an attitude estimation approach that uses a new method called the sine rotation vector to
represent rotations. If exteroceptive measurements of range to beacons and communication between the
robot and beacons are available [2,3], it is possible to estimate the location without the information on
attitude. However, for long-range navigation, it is practically not feasible to implement the system for
range measurements or a communication network. Therefore, most underwater navigation methods
require attitude data.

A vast number of studies have focused on the attitude estimation and navigation of underwater
robots. The major approaches employ the following methodologies: methods using range measurement
from acoustic beacons, methods integrating velocity over time, methods using landmarks or features
of the environment, methods using range and bearing measurements and cooperative navigation.
With the development of sensor technologies and data-fusion theory, methods that fuse a variety
of heterogeneous sensors and theories have recently been developed. The navigation methods for
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underwater robots comprise aspects that are similar to the methods used for ground-robot navigation,
whereby the multiple measurements of different features are fused [4,5].

The Kalman filter approach is used in many methods designed for the attitude estimation and
navigation of underwater robots. The nonlinear dynamics, forces, moments, position and velocity
of the robot are fused for the estimation through a nonlinear observer and an extended Kalman
filter (EKF) [6]. A method that uses a robot kinetic model has also been proposed [7]. This method,
which can also be used to estimate sea currents, makes full use of the measurements from inertial
navigation systems (INS) or attitude heading and reference systems (AHRS), ultrashort base line
(USBL) systems and a Doppler velocity log (DVL) for the purpose of navigation. Another similar
approach that uses robot dynamics for navigation, integrating low-cost INS and USBL systems, has
also been reported [8]. Notably, an adaptive dynamic model and an EKF are fused for the autonomous
navigation of underwater robots [9].

A navigation method that also estimates the sensor parameters has been proposed. The method
uses an inertial measurement unit (IMU), a DVL, a magnetic compass and a depth sensor, all of which
constitute a typical set of navigation sensors [10]. Similar to the method described in [7], a method that
concurrently estimates the location of a robot and the sea level has also been proposed [11]. Besides
the popular Kalman filter-based approaches [12], some methods adopt particle filters (PFs) for the
estimation [13,14].

Interference of the magnetic field is one of the most critical issues when using a magnetometer
for attitude estimation. Though many methods have investigated the estimation of the bias of the
magnetic field measurement [15], it is still hard to estimate and compensate for the bias because of the
following reasons: the bias and interference depend on the environmental aspects, which are varying
both with time and place; and it is in all directions, that is the bias is in the directions of north, east and
Earth-center.

The proposed method does not explicitly estimate and compensate for the bias and interference
of the magnetic field measurement. Nevertheless, the sine rotation vector method reduces the effect
of bias and interference. The method uses only the northward direction of the magnetic field, and
ignores the east and Earth-center direction components. Therefore, it is not affected by the bias and
interference in these two directions. Likewise, the method uses only the Earth-center direction of the
acceleration, thus eliminating the interference affecting the acceleration measurement toward the north
and east.

This paper proposes a new approach called the sine rotation vector method, whereby an EKF
is applied to estimate the attitude of an underwater robot. In some of the previous methods, the
measurement innovation or residual is calculated by simply subtracting predicted Euler angles from
the measured Euler angles in the correction step; however, it should be noted that physical rotation is
not linearly related to Euler angles.

Euler angles can be used for the representation of both the rotation and attitude. However,
the difference of two attitudes represented in Euler angles does not necessarily represent the Euler
angles needed for the rotation between the attitudes. It is generally understood that the relationship
R(φ1, θ1, ψ1)R(φ2, θ2, ψ2) = R(φ1 + φ2, θ1 + θ2, ψ1 + ψ2) does not hold, where R(φ, θ, ψ) is the rotation
matrix with the roll φ, pitch θ and yaw ψ. To avoid the problem, the sine rotation vector is used to
represent the rotation instead of the direct difference of Euler angles.

In general, correspondence between the Euler angle difference and the physical rotation is not
uniquely determined. The difference between the Euler angles that represent two different attitudes
does not indicate the rotation between the two attitudes. Let x1 and x2 indicate two attitudes that
are represented by Euler angles. The rotation from attitude x1 to attitude x2 is not necessarily the
rotation that is indicated by the Euler angle difference calculated by subtracting x1 from x2. The
difference between the Euler angles is therefore not a legitimate representation of the measurement
innovation; that is, the difference between the Euler angles does not indicate the rotation needed to
adjust the predicted attitude for the Kalman filter correction step. The difference between the Euler
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angles of the measured attitude and the predicted attitude does not represent the physical relationship
between the measured attitude and the predicted attitude. To remove the ambiguity in the calculation
of the measurement innovation, the proposed method computes the innovation by calculating the
sine rotation vector from the predicted attitude to the measured attitude and then converting the sine
rotation vector to Euler angles. This method produces a unique and physically-consistent measurement
innovation that corresponds to the pair composed of the measured attitude and the predicted attitude.

Quaternions and SO(3) matrices have been used for attitude estimation [16–18]. The quaternion
and SO(3) matrix uniquely determine the rotation required to rotate the predicted attitude to the
measured attitude as the sine rotation vector does. The problem to be addressed in using the quaternion
is keeping the magnitude of the quaternion to one [19,20]. In the stage of prediction and correction,
the magnitude of the quaternion deviates from one. Therefore, it is required to use some subterfuge
to normalize the quaternion. Likewise, the SO(3) matrix should have the property of orthogonality.
Therefore, the methods using the SO(3) matrix inevitably use some method to approximate the
predicted and corrected matrix to some orthogonal matrix [19,20]. The use of the sine rotation vector
does not require approximation for the normalization of vectors or the orthogonalization of matrices.

The attitude estimation problem studied in this paper is formulated in Section 2. Sections 3–5
describe the attitude estimation procedure. Section 6 shows the results of experiments and simulations
using the proposed method and the previously-reported methods and presents a comparison of these
results. Section 7 concludes the paper and suggests further research regarding the proposed method.

2. Problem Formulation

2.1. Nomenclature

The notations that are used for the derivation of the method are listed below.

x(t) attitude of a robot at time t; x(t) = (φ(t), θ(t), ψ(t))T , where
φ(t), θ(t) and ψ(t) indicate roll, pitch and yaw

x̂(t) attitude estimated at time t through prediction and a correction
procedure; x̂(t) = (φ̂(t), θ̂(t), ψ̂(t))T

P̂(t) error covariance of the estimated attitude x̂(t)
x−(t) attitude predicted at time t, before it is corrected by the

measurements; x−(t) = (φ−(t), θ−(t), ψ−(t))T

P−(t) error covariance of the predicted attitude x−(t)
a(t) acceleration measured in the instrument coordinate frame;

a(t) = (ax(t), ay(t), az(t))T

aunit(t) normalized acceleration measurement;
aunit(t) = (ax(t), ay(t), az(t))T

unit =
a(t)
‖a(t)‖

m(t) magnetic field measured in the instrument coordinate frame;
m(t) = (mx(t), my(t), mz(t))T

munit(t) normalized magnetic field measurement;
munit(t) = (mx(t), my(t), mz(t))T

unit =
m(t)
‖m(t)‖

z(t) measurements of roll, pitch and yaw calculated from
the a(t) and m(t) at time t; z(t) = (φ(t), θ(t), ψ(t))T

v(t) linear velocity of the robot in the robot coordinate
frame; v(t) = (u(t), v(t), w(t))T

ω(t) rotational velocity of the robot in the robot coordinate
frame; ω(t) = (p(t), q(t), r(t))T

g(·) motion model of a robot that relates the robot attitude x(t) and
the linear velocity v(t) to the rotational velocity ẋ(t) of the
robot; ẋ(t) = g (x(t), v(t))
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h(·) the measurement model that relates state x(t) to the measurement
z(t); z(t) = h(x(t))

tk the k-th discretized sampling time instant
∆tk time period between t = tk−1 and t = tk; ∆tk = tk − tk−1

In many studies, an underwater robot is often referred to as an underwater vehicle. Thus, in the
following sections, the terms vehicle and robot will be used interchangeably.

2.2. Problem Formulation

The following is a description of the problem to be solved.
Attitude estimation problem: Find the attitude x̂(tk) of an underwater robot at time t = tk, given

the provided measurements a(tk), m(tk). The attitude x̂(tk−1) estimated at time t = tk−1, the linear
velocity v(tk) and the angular velocity ω(tk) are given.

The estimation procedure repeats at every time tk when new measurements are available, and it
runs recursively based on the results provided at the previous estimation sequence. The estimated
attitude x̂(tk) will be used for the estimation of x̂(tk+1) at the next iteration of the procedure. The
estimation procedure consists of two sub-procedures: prediction and correction. The prediction and
correction procedures will be derived in the following sections.

The rotational velocity of the vehicle ω(tk) detected with a gyroscope in the AHRS is used for the
prediction. The velocity ω(tk) is measured in the instrument coordinate frame. It is assumed that the
instrument coordinate frame is adjusted to coincide with the vehicle coordinate frame. The acceleration
a(tk) and magnetic field m(tk) measurements are used for the correction; furthermore, these are
measured by an AHRS in the instrument coordinate frame that is also assumed to be coincident with
the vehicle coordinate frame.

The linear velocity of the vehicle v(tk) is detected with the DVL. The velocity v(tk) is measured
in the instrument coordinate frame that also coincides with the vehicle coordinate frame. Using the
estimated attitude, the linear velocity v(tk) is converted to the velocity in the Earth-fixed coordinate
frame; this converted velocity is then integrated to find the location of the robot in the Earth-fixed
coordinate frame. The linear velocity v(tk) can also be used to extract the pure gravitation field by
removing the vehicle acceleration from the acceleration measurement a(tk).

The proposed method utilizes the short-term superiority of the angular rate measurement and
the long-term stability of the attitude algebraically calculated from the acceleration and magnetic field
measurement. Table 1 depicts the complementary aspects of the these measurements. The short-term
superiority of the gyroscope measurement is utilized in the prediction stage where the attitude is
predicted using the angular rate measurement. Though the angular rate provides the short-term
change of the attitude with high accuracy, the accuracy of the attitude calculated from the numerical
integration of the attitude change deteriorates with time. To compensate for the deterioration, the
long-term stability of the attitude that is algebraically calculated from the acceleration and the magnetic
field is used in the measurement update or correction stage. The DVL is used to calculate the location
using the estimated attitude. Furthermore, it can be used to reduce the system dynamics effect that
perturbs the gravitation field in calculating the roll and pitch of the robot.

Table 1. Complementary aspects of the measurements. DVL, Doppler velocity log.

Short-Term Use Long-Term Use

Angular rate (gyroscope) prediction -
Gravitational field (accelerometer) - correction
Magnetic field (magnetometer) - correction

Velocity (DVL) -
(1) Location estimation
(2) Rejection of dynamic effect
in gravitational field measurement
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3. Predictions of Attitude and Covariance

The prediction step that is otherwise called the “time update step” is used to predict the state
and error covariances for time tk; to complete the step, the measured angular velocity ω(tk−1) at time
t = tk−1, the state x̂(tk−1) and the error covariance P̂(tk−1) that was estimated previously at time tk−1
are used. The prediction is based on the function g(·) that is used to determine the time derivative of
the attitude, as follows:

ẋ(tk) = g(x(tk), v(tk)) (1) φ̇(tk)

θ̇(tk)

ψ̇(tk)

 =

 p(tk) + q(tk)S(φ̂(tk))T(θ̂(tk)) + r(tk)C(φ̂(tk))T(θ̂(tk))

q(tk)C(φ̂(tk))− r(tk)S(φ̂(tk))

q(tk)S(φ̂(tk)) sec(θ̂(tk)) + r(tk)C(φ̂(tk)) sec(θ̂(tk))


︸ ︷︷ ︸

g(x(tk),v(tk))

(2)

Using Equations (1) and (2), the attitude is predicted as x−(tk) according to Equations (3) and (4),
as follows:

x−(tk) = x̂(tk−1) + ẋ(tk−1)∆tk (3) φ−(tk)

θ−(tk)

ψ−(tk)

 =

 φ̂(tk−1) + φ̇(tk−1)∆tk
θ̂(tk−1) + θ̇(tk−1)∆tk
ψ̂(tk−1) + ψ̇(tk−1)∆tk

 (4)

where ∆tk = tk − tk−1. In these equations, S(·), C(·) and T(·) represent sin(·), cos(·) and
tan(·), respectively.

The Jacobian matrix J of the function g(·) is used to find the linearized state transition matrix A
according to Equation (5), as follows:

A = I3×3 + ∆t J (5)

The Jacobian matrix J of the function g(·) is given according to Equation (6), as follows:

J =
∂g
∂x

(x̂(tk−1), v(tk−1)) =


(
qC(φ̂)− rS(φ̂)

)
T(θ̂)

(
qS(φ̂) + rC(φ̂)

)
sec2(θ̂) 0

−qS(φ̂)− rC(φ̂) 0 0(
qC(φ̂)− rS(φ̂)

)
sec(θ̂)

(
qS(φ̂) + rC(φ̂)

)
sec(θ̂)T(θ̂) 0

 (6)

where the time variable (tk−1) is deleted from p, q, r, φ̂ and θ̂ for notational simplicity.
The error covariance P−(tk) of the predicted attitude x−(tk) is derived as Equation (7) through

the use of the linearized state transition matrix A, as follows:

P−(tk) = AP̂(tk−1)A
T + R (7)

where R is the error covariance of the vehicle motion. The two Equations (4) and (7) complete the
prediction step.

4. Corrections of Predicted Attitude and Covariance

The correction step that is otherwise called the “measurement update step” adjusts the predicted
attitude x−(tk) and error covariance P−(tk) by using the measurements at time tk, z(tk). For the
corrections, the measurement model matrix H that is the linearized measurement model of h(·) is
required. Because the measurement z(tk) consists of the roll, pitch and yaw of the Euler angles that
match those in state x(tk), the measurement model matrix H is identity, that is H = I.
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Using the measurement model H, the Kalman gain for the adjustment of x−(tk) and P−(tk) is
given according to Equation (8), as follows:

K(tk) = P−(tk)H
T(HP−(tk)H

T + Q)−1 (8)

where Q is the error covariance of the measurement.
The predicted attitude x−(tk) is corrected to x̂(tk) by Equation (9), as follows:

x̂(tk) = x−(tk) + K(tk)
(
z(tk)− h(x−(tk))

)
(9)

The predicted covariance P−(tk) is adjusted to P̂(tk) by Equation (10), as follows:

P̂(tk) = P−(tk)−K(tk)HP−(tk) (10)

The innovation ν(tk) = z(tk) − h(x−(tk)) in Equation (9) will be derived in a manner that is
different from the usual methods. The proposed method that uses the sine rotation vector will be
described in Section 5.

5. Innovation by Sine Rotation Vector

5.1. Calculation of Innovation by Sine Rotation Vector

The innovation ν(tk) is given by Equation (11), as follows:

ν(tk) = z(tk)− h(x−(tk)) (11)

The innovation ν(tk) is the difference between the measured attitude z(tk) and the presumed
measurement h(x−(tk)) that is calculated under the assumption that the robot is in its predicted
attitude x−(tk). Many existing methods calculate the measurement z(tk) from the acceleration a(tk)

and magnetic field m(tk), whereby the predicted attitude x−(tk) is used as the presumed measurement
h(x−(tk)).

This paper proposes a new approach for finding the innovation, which is the difference between
the measured attitude z(tk) and the presumed attitude h(x−(tk)). The proposed method finds the sine
rotation vector between the presumed attitude and the measured attitude. Because vehicle acceleration
is negligible compared to gravity, the measured acceleration a(tk) is directed toward the −z direction
of the Earth-fixed coordinate frame; that is, the acceleration measurement a(tk) is the Earth-fixed −z
direction vector that is represented in the instrument coordinate frame. Let the presumed −z direction
represented in the vehicle coordinate frame be denoted by −zpres(tk). The presumed −z direction
vector −zpres(tk) is calculated according to Equation (12), as follows:

− zpres(tk) =
vRw(tk)(0, 0,−1)T (12)

where vRw(tk) is the rotation matrix from the Earth-fixed coordinate frame to the vehicle coordinate
frame at time t = tk. vRw(tk) is calculated using the predicted attitude x−(tk); then, the cross product
of −zpres(tk) and aunit(tk) meets the sine rotation vector r−z(tk). The sine rotation vector r−z(tk)

represents the rotation from the presumed −z direction to the measured −z direction, as follows:

r−z(tk) = −zpres(tk)× aunit(tk) (13)

The direction of the sine rotation vector r−z(tk) represents the axis of rotation from the presumed
−z direction to the measured −z direction. The length of the sine rotation vector r−z(tk) is the sine of
the rotation angle from the presumed −z direction to the measured −z direction. Figure 1a represents
graphically how the r−z(tk) is calculated and represents the rotation.
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Likewise, the measured magnetic field m(tk) directs the Earth-fixed x direction that is represented
in the instrument coordinate frame. The bias of the measured magnetic field m(tk) from the Earth-fixed
x direction should be adjusted by using the methods for bias estimation [15,21]. Let the presumed x
direction that is represented in the vehicle coordinate frame be denoted by xpres(tk). Then, Equation (14)
provides the presumed x direction vector xpres(tk) that is represented in the vehicle coordinate frame,
as follows:

xpres(tk) =
vRw(tk)(1, 0, 0)T (14)

The cross product of xpres(tk) and munit(tk) then becomes the sine rotation vector rx(tk). The
sine rotation vector rx(tk) represents the rotation from the presumed x direction to the measured x
direction, as follows:

rx(tk) = xpres(tk)×munit(tk) (15)

Figure 1b represents graphically how the rx(tk) is calculated and represents the rotation.

(a) (b)

Figure 1. Sine rotation vectors. (a) Sine rotation vector rotating z directional vectors; (b) Sine rotation
vector rotating x directional vectors.

Both of the sine rotation vectors r−z(tk) and rx(tk) bear the rotation information from the
presumed attitude to the measured attitude. These two vectors are the rotations determined by
two different sensors (the accelerometer and the magnetometer) and are combined using Equation (16),
as follows:

r(tk) = γ−zr−z(tk) + γxrx(tk) (16)

γ−z and γx in Equation (16) are mixing parameters with a sum value of one, as follows:

γ−z + γx = 1 (17)

The values of γ−z and γx need to be set based on the general rule: the larger value is assigned to
the γ that corresponds to the more reliable measurement between the acceleration and magnetic field.
If the acceleration measurement is more reliable than the magnetic field measurement, then γ−z will
have a larger value, and vice versa. In the experiment, the values are determined through trial and
error, as well as based on the general rule.
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From the sine rotation vector, the rotation axis b and rotation angle β are found by using
Equations (18) and (19), as follows:

b = (b1, b2, b3)
T =

r(tk)

‖r(tk)‖
(18)

β = sin−1(‖r(tk)‖) (19)

The rotation matrix R(β, b) that is represented in terms of the rotation angle and rotation axis is
described in Equation (20), as follows:

R(β, b) =

 b2
1V(β) + C(β) b1b2V(β)− b3S(β) b1b3V(β) + b2S(β)

b1b2V(β) + b3S(β) b2
2V(β) + C(β) b2b3V(β)− b1S(β)

b1b3V(β)− b2S(β) b2b3V(β) + b1S(β) b2
3V(β) + C(β)

 (20)

where V(β) = 1− C(β) is applied. The rotation matrix can also be represented in terms of the Euler
angles (φ, θ, ψ) as the matrix R(φ, θ, ψ), which is shown in Equation (21).

R(φ, θ, ψ) =

 C(θ)C(ψ) S(φ)S(θ)C(ψ)− C(φ)S(ψ)
C(θ)S(ψ) S(φ)S(θ)S(ψ) + C(φ)C(ψ)
−S(θ) S(φ)C(θ)

C(φ)S(θ)C(ψ) + S(φ)S(ψ)
C(φ)S(θ)S(ψ)− S(φ)C(ψ)

C(φ)C(θ)


(21)

From the equivalence of the two rotation matrices R(β, b) and R(φ, θ, ψ), the Euler angles are
found by using Equation (22), as follows. φ

θ

ψ

 =

 atan2(R32, R33)

atan2(−R31,
√

R2
11 + R2

22)

atan2(R21, R11)


=

 atan2
(
b2b3V(β) + b1S(β), b2

3V(β) + C(β)
)

atan2(−b1b3V(β) + b2S(β),
√
(b2

1V(β) + C(β))2 + (b2
2V(β) + C(β))2

atan2(b1b2V(β) + b3S(β), b2
1V(β) + C(β))


(22)

The Euler angles in Equation (22) represent the rotation from the presumed attitude to the
measured attitude; consequently, it is concluded that the innovation ν(tk) = z(tk)− h(x−(tk)) that
was used for Equation (9) is found by using Equation (23), as follows:

ν(tk) = z(tk)− h(x−(tk))

=

 atan2
(
b2b3V(β) + b1S(β), b2

3V(β) + C(β)
)

atan2(−b1b3V(β) + b2S(β),
√
(b2

1V(β) + C(β))2 + (b2
2V(β) + C(β))2

atan2(b1b2V(β) + b3S(β), b2
1V(β) + C(β))

 (23)

A brief explanation regarding the calculation of the measurement z = (φ, θ, ψ)T from the
acceleration a = (ax, ay, az)T and magnetic field m = (mx, my, mz)T follows [22]. First, the roll φ

and pitch θ are calculated using the acceleration a = (ax, ay, az)T in Equations (24) and (25), as follows:

φ = atan2(−ay,−az) (24)

θ = atan2(ax,
√

a2
y + a2

z) (25)
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φ and θ are used to obtain the transformation matrix wRv through the use of Equation (26), as follows:

wRv(φ, θ) =

 C(θ) S(φ)S(θ) C(φ)S(θ)
0 −C(θ) −S(φ)

−S(θ) S(φ)C(θ) C(φ)C(θ)

 (26)

Then, the yaw ψ is calculated using Equation (27), as follows:

ψ = atan2(−wmy,w mz)

where, wm = (wmx,w my,w mz)T =w Rv(φ, θ)m
(27)

5.2. Sine Rotation Vector

The sine rotation vector is defined by the following Equation (28).

r = (sin β)b (28)

where b is the unit vector in the direction of the rotation axis and β is the angle of rotation. The sine
rotation vector is different from the rotation vector, which is defined by rb = βb [20,23]. The difference
between the sine rotation vector and rotation vector is the magnitude of the vectors. The magnitude of
the sine rotation vector is the sine of the rotation angle, while the magnitude of the rotation vector is
the rotation angle itself.

The use of the sine rotation vector improves the attitude estimation in calculating the innovation
vector in the EKF measurement update stage. First, the sine rotation vector uniquely determines the
physical rotation regardless of the attitude to be rotated. In the case of the Euler angle difference
between two attitudes represented in Euler angles, the rotation by the Euler angle difference does
not necessarily correspond to the rotation between the attitudes. For example, the rotation of the
attitude (φ1, θ1, ψ1) = (0, π

2 , π
3 ) by the rotation (φ2, θ2, ψ2) = (π

6 , π
6 , π

6 ) does not result in the attitude
(φ1 + φ2, θ1 + θ2, ψ1 + ψ2) = (0 + π

6 , π
2 + π

6 , π
3 + π

6 ). On the other hand, the rotation of the attitude
(φ1, θ1, ψ1) = (0, 0, 0) by the rotation (φ2, θ2, ψ2) = (π

6 , π
6 , π

6 ) does result in the attitude (φ1 + φ2, θ1 +

θ2, ψ1 + ψ2) = (0 + π
6 , 0 + π

6 , 0 + π
6 ). This example illustrates that the same rotation results in different

physical rotation depending on the attitude to which the rotation is applied. On the contrary, the sine
rotation vectors rx and r−z uniquely rotate the predicted directions xpres and −zpres to the measured
directions munit and aunit, regardless of the attitudes. In summary, the sine rotation vector uniquely
determines the physical rotation regardless of the attitude to be rotated.

Second, the sine rotation vector relieves the effect of the bias and interference in measurement of
the gravitational field and the magnetic field. The sine rotation vectors rx and r−z deal only with x and
−z directional measurements, respectively. rx is free from the bias in the direction of y and z. Likewise,
r−z is free from the bias in the direction of x and y. Therefore, use of the sine rotation vector mitigates
the effect of bias in the field measurement, even though the method does not explicitly estimate and
compensate the bias.

6. Experiments and Results

The method is tested in simulations and two experimental environments. The simulation uses
two measurement datasets, which are subject to both random Gaussian noise and bias. The first
experiment uses an underwater robot in a test pool. The second test uses a ground vehicle equipped
with GPS, AHRS and a high-precision FOG (fiber optic gyroscope). The results were analyzed and
compared to the results of other methods that calculate innovation ν(tk) by using the Euler angles
of Equations (24), (25) and (27), without transforming to the sine rotation vector; these other methods
include EKF, the unscented Kalman filter (UKF) and the complementary filter (CF).
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6.1. Test through Simulation

The sine rotation vector method is tested using simulation data. For comparison, EKF, which
calculates innovation by subtracting the measured Euler angles from the predicted Euler angles
without transforming to the sine rotation vector, is also implemented. Two simulated test datasets,
which differ in measurement error, are used. They assume the same robot motion, where the robot
moves with the linear velocity and angular velocity given as Equations (29) and (30), over the traveled
distance 600 m for the time period of 600 s. u(t)

v(t)
w(t)

 =

 1m/s
0m/s
0m/s

 (29)

 p(t)
q(t)
r(t)

 =

 0.03π sin(t/10)rad/s
0.03π cos(t/10)rad/s
0.03π sin(t/100)rad/s

 (30)

As for the measurement of linear velocity by a DVL, the measurement is assumed to have
Gaussian noise with zero mean and σ = 0.2 m of standard deviation in all of the x, y and z directions.
The measurement data for acceleration and magnetic field are generated by simulation, such that the
attitude includes some bias, as well as random Gaussian noise. Table 2 describes the bias and random
noise in attitude applied to produce the two simulated measurement datasets. Measurement data for
Simulation 1 are affected more by bias than the data for Simulation 2, while they are corrupted by the
same degree of random Gaussian noise.

Table 2. Uncertainty in the measurement in the simulation tests.

Simulation Measurement Uncertainty Value (degree)

Simulation 1

Acceleration bias (∆φ, ∆θ, ∆ψ) (5, 5, 1)
random noise (σφ, σθ , σψ) (1, 1, 1)

Magnetic field bias (∆φ, ∆θ, ∆ψ) (2, 2, 5)
random noise (σφ, σθ , σψ) (1, 1, 1)

Simulation 2

Acceleration bias (∆φ, ∆θ, ∆ψ) (5, 5, 5)
random noise (σφ, σθ , σψ) (1, 1, 1)

Magnetic field bias (∆φ, ∆θ, ∆ψ) (1, 1, 1)
random noise (σφ, σθ , σψ) (1, 1, 1)

Table 3 shows the error statistics for the simulation tests. The average and root mean square
(RMS) of the attitude estimation error in roll, pitch and yaw are shown together with the distance error
ratio relative to the traveled distance. In the table, the elements of a vector are ordered roll, pitch and
yaw. In both simulations, the proposed method performs better than the other methods. Because the
measurement data of the magnetic field for Simulation 2 are biased less than the data for Simulation 1
(while the measurement data of acceleration for Simulation 2 are biased a little more than the data
for Simulation 1), most methods work better in Simulation 2 than in Simulation 1. Figure 2 depicts
the roll error and estimated trajectory for Simulation 1. The robot starts at the origin and stops at the
destination (83.75,−3.49, 4.61) m.
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Table 3. Simulation test results: statistics of the estimation error. CF, complementary filter.

Simulation Statistics SRV EKF UKF CF

Simulation 1

Average (rad)

 0.0622
0.0657
0.0570

  0.0797
0.0799
0.0571

  0.0890
0.0820
0.0600

  0.0804
0.0798
0.0557


RMS (rad)

 0.0739
0.0789
0.0599

  0.0881
0.0883
0.0606

  0.1038
0.0959
0.0693

  0.0891
0.0883
0.0600


distance error ratio (%) 0.723 1.618 1.689 1.639

Simulation 2

Average (rad)

 0.0569
0.0614
0.0234

  0.0893
0.0876
0.0272

  0.1297
0.1206
0.0429

  0.1610
0.1236
0.0303


RMS (rad)

 0.0683
0.0744
0.0280

  0.1068
0.1050
0.0334

  0.1614
0.1512
0.0569

  0.2420
0.1767
0.0391


distance error ratio (%) 0.245 1.490 1.489 0.617
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Figure 2. Simulation 1 results: error of roll estimates and the estimated trajectory. (a) Error of roll
estimates of the sine rotation vector method and EKF; (b) Estimated trajectory on the xy plane by the
sine rotation vector method and EKF.
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6.2. Experiment in a Test Tank

The environment for the test-tank experiments is shown in Figure 3. The experiments involved
the use of an AHRS (Microstrain 3DM-GX3 25) [24] and a DVL (LinkQuest NavQuest 600 Micro) [25].
The robot navigated through the circular and rectangular trajectories shown in Figure 4. For each
trajectory, once the robot circulates and returns to its initial location, it turns back and traces the path
to the initial location in a reverse direction. One of the problems with the test tank experiment is
that the navigation range is limited, and the performance of the method in practical use is not fully
verifiable. In order to mitigate the limitation, the test tank experiment adopted turn around and trace
back motion. In the experiment, the robot repeats round trip circulation to extend the navigation
range, so that the traveled distance is 282.7 m and 100.8 m for the circular and rectangular motion,
respectively. In addition, once the robot circulates and returns to its initial location, it turns back and
traces the path to the initial location in the reverse direction. This large and sharp turning motion
provides a harsher and more serious circumstance to attitude estimation. The robot finally returns to
its initial location; thus, the destination of the navigation is the robot’s initial location.

Figure 3. Test tank.

Figure 4. The two trajectories for the navigation experiment.

Because the experiment does not involve the use of any instrument that can provide the true
attitude, the performance of the methods was verified indirectly from the estimated trajectories that
are calculated using the estimated attitude. The estimated location deviates from the true location, and
the deviation increases as the travel time and distance are extended. The deviation at the destination
reflects the performance of the attitude estimation method; therefore, the distance error between the
estimated destination and the actual destination is used as an index for the performance evaluation.
Table 4 presents a comparison of the distance errors of the four methods. The distance error ratio
indicates the ration of the distance error at the destination relative to the overall traveled distance.
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In Table 4, “SRV” denotes the method proposed in this paper, and the results show that it outperforms
the other methods.

Table 4. Test tank experiment result: the ratio of the distance error relative to the distance traveled.

Trajectory
Distance Error Ratio

SRV EKF UKF CF

Circular trajectory 1.08% 2.38% 2.68% 3.37%
Rectangular trajectory 2.06% 4.07% 4.82% 4.82%

Figure 5 shows the estimated trajectory for the SRV method. The blue line depicts the estimated
trajectory, while the red line indicates the trajectory provided by dead reckoning, whereby the velocity
is integrated (without any filtering) to estimate the attitude. Figure 6 shows the results of the pure EKF
method, which uses Equations (24), (25) and (27) for the Euler angle measurement. As in Figure 5, the
blue line is the estimated trajectory of the EKF, while the red line is the trajectory provided by dead
reckoning without filtering.
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Figure 5. Circular path test tank experiment: trajectory in the xy plane estimated by the proposed
method compared to the trajectories calculated without filtering and with the pure-EKF method.
(a) Trajectory estimated by the proposed method and that calculated without filtering; (b) Trajectory
estimated by the pure-EKF method and that calculated without filtering.
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Figure 6. Circular path test tank experiment: trajectory in the xz plane estimated by the proposed
method compared to the trajectories calculated without filtering and with the pure-EKF method. (a)
Trajectory by the proposed method and that calculated without filtering; (b) Trajectory by the pure-EKF
method and that calculated without filtering.

6.3. Experiment on the Ground

The experiment on the ground to test the proposed method uses a ground vehicle equipped
with GPS, AHRS (Microstrain 3DM-GX4 25) and FOG. The model’s FOG (Spatial FOG by Advanced
Navigation) [26] provides the attitude data used as the reference to compare the attitudes estimated by
the methods. Figure 7 shows the vehicle and sensors used for the experiment. The vehicle navigated
for 170 s over a distance of approximately 551 m. Figure 8 shows the route of the navigation.
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(a) (b)

Figure 7. Sensors for the test on the ground. GPS is used to calculate the velocity of the vehicle.
(a) Sensors on the roof of the test vehicle; (b) Fiber optic gyroscope (FOG) and attitude heading and
reference system (AHRS) inside the vehicle.

Figure 8. Route for the ground experiment.

Figure 9 shows the yaw estimates of the methods compared to the yaw provided by FOG, as well
as the error of the estimates. The results of the experiment are listed in Table 5, where the statistics of
the yaw error are shown. EKF, UKF and CF exhibit comparable error statistics, while the proposed
method outperforms these methods.

Table 5. Ground test estimation error: errors in yaw.

Statistics
Error (Rad)

SRV EKF UKF CF

Average 0.1264 0.2494 0.2505 0.2476
Root mean square error 0.1862 0.2994 0.3001 0.3016

Maximum error 0.4931 0.6749 0.6826 0.6877
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Figure 9. Ground test results: yaw estimates compared to the FOG measurement. (a) Yaw estimates of
the methods; (b) Error of the estimate with respect to the yaw by FOG.

7. Conclusions

This paper proposes a new method for estimating the attitude of an underwater robot. The
method uses the sine rotation vector to determine the rotational difference between the measured
attitude and the presumed attitude. Compared to existing methods that directly calculate the Euler
angle difference, the proposed method resolves the problem that arises from a non-unique mapping
between the rotation and the Euler angle difference, when the attitude is described by the parameters
of the Euler angles.

The experiments compared the proposed method to the existing methods that use EKFs, UKFs
and CFs based on the differences of the Euler angles. The proposed method outperforms all of the
other methods in terms of the location estimation of an underwater robot and the attitude estimation
of a ground vehicle.

An investigation especially through underwater experiment to compare the properties of the sine
rotation vector with other attitude representation methods, such as Euler angles, rotation matrices and
quaternions with respect to attitude estimation, remains as the focus of further research. Furthermore,
fusing more sensor measurements that provide directional information in the framework of the sine
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rotation vector is expected. Finally, it is expected that the proposed method will be implemented
for navigation in a lake or ocean environment for the verification of the practical applicability, in a
future study.
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