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Abstract: An electronic nose (E-nose) is an intelligent system that we will use in this paper to
distinguish three indoor pollutant gases (benzene (C6H6), toluene (C7H8), formaldehyde (CH2O))
and carbon monoxide (CO). The algorithm is a key part of an E-nose system mainly composed of
data processing and pattern recognition. In this paper, we employ support vector machine (SVM) to
distinguish indoor pollutant gases and two of its parameters need to be optimized, so in order to
improve the performance of SVM, in other words, to get a higher gas recognition rate, an effective
enhanced krill herd algorithm (EKH) based on a novel decision weighting factor computing method
is proposed to optimize the two SVM parameters. Krill herd (KH) is an effective method in practice,
however, on occasion, it cannot avoid the influence of some local best solutions so it cannot always
find the global optimization value. In addition its search ability relies fully on randomness, so it
cannot always converge rapidly. To address these issues we propose an enhanced KH (EKH) to
improve the global searching and convergence speed performance of KH. To obtain a more accurate
model of the krill behavior, an updated crossover operator is added to the approach. We can guarantee
the krill group are diversiform at the early stage of iterations, and have a good performance in local
searching ability at the later stage of iterations. The recognition results of EKH are compared with
those of other optimization algorithms (including KH, chaotic KH (CKH), quantum-behaved particle
swarm optimization (QPSO), particle swarm optimization (PSO) and genetic algorithm (GA)), and
we can find that EKH is better than the other considered methods. The research results verify that
EKH not only significantly improves the performance of our E-nose system, but also provides a good
beginning and theoretical basis for further study about other improved krill algorithms’ applications
in all E-nose application areas.

Keywords: EKH; electronic nose; optimization algorithm; decision weighting factor; indoor pollutant gas

1. Introduction

An electronic nose (E-nose) is a device composed of a gas sensor array and an artificial
intelligence algorithm. It is effective in dealing with odor analysis problems [1–3], and during the
past decades, much work has been done to prove the efficiency of E-nose technology in many fields
such as environmental monitoring [4,5], food engineering [6–8], disease diagnosis [9–12], explosives
detection [13–15] and spaceflight applications [16]. This paper is mainly about E-nose research in
indoor pollutant gas detection.

With the modern improvement of life quality, people demand higher indoor air quality.
Because most of the time during a person’s life is spent indoors, it is necessary for people’s health to be
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able to detect indoor pollutant gases, which mainly dfff4 include benzene (C6H6), toluene (C7H8), and
so on. They are hard to detect, and will do the body harm after long-term intake, so a high recognition
rate of gas detection equipment is vital. Consequently, there has been a resurgence of interest in
developing measuring techniques for air quality monitoring. Our previous work has proved that
E-noses are an effective way to classify indoor pollutant gases [17,18].

When an E-nose is applied to detect an indoor pollutant gas, in addition to some factors like the
quality of samples, the parameter settings of the algorithm system also plays a significant role in the
performance of the E-nose. In this paper, we employ support vector machine (SVM) to distinguish
indoor pollutant gases and two of its parameters need to be optimized for this purpose. To make
the performance of E-nose ideal, some optimization algorithms need be employed to set the value of
its parameters.

Genetic algorithm (GA) is a robust and frequently-used stochastic meta-heuristic search method
for global optimization in a large search space. The genetic information is encoded as a genome.
The genome is implemented in an uncommon way that permits asexual reproduction which leads to
offspring that are genetically the same as the parent. Meanwhile asexual reproduction can exchange
and reorder chromosomes, giving birth to offspring containing a hybridization of genetic information
from all parents. This operation is frequently called crossover because of the chromosomes’ crossover
when swapping genetic information. To evade premature convergence, mutation emerges to increase
the diversity of the population. Particle swarm optimization (PSO) is an evolutionary computation
algorithm based on swarm intelligence theory. The algorithm comes from the simulation of the bird
predation behavior, and its emphases lie in the cooperation and competition between individuals.
Quantum-behaved particle swarm optimization (QPSO) is a new PSO algorithm and is inspired by the
consideration of quantum mechanics with the PSO algorithms. It is superior to the traditional PSO
algorithm not only in search ability, but also in its accuracy. Particles of this model based on a delta
potential well can appear in any point of search space with a certain probability.

According to the research on optimization algorithms during the past twenty years, there are
some optimization methods which have been introduced to E-nose research. They mainly include
GA [19–21], PSO [22,23] and QPSO [24,25]. A new integer-based GA approach [19] was used to
enhance the performance of E-noses by sensor selection. The PSO [22] was posed to analyze signals
of wound infection detection based on an E-nose. A new feature selection method based on QPSO
was proposed to optimize the gas sensor array and reduce the dimensions of the feature matrix [24].
Furthermore, an enhanced QPSO based on genetic algorithm (G-QPSO) [25] was employed to improve
the performance of the sensor array and the E-nose classifier. However, up to now, we haven’t seen
anyone apply the krill algorithm (KH) to E-noses. Considering the good performance of KH in global
optimization, we propose to apply it to the E-nose in indoor pollutant gas classification.

The KH [26] algorithm was first proposed by Gandomi and Alavi in 2012. It has excellent local
exploitation ability, while its global exploring ability is not strong, so it easily falls into local minima
and has a slow convergence speed. To solve this issue, Wang et al. presented a new krill migration
(KM) operator [27] which updated the krill to deal with optimization problems more efficiently. In [28]
harmony search (HS) is applied to mutate between krill during the process of krill updating instead of
using physical diffusion to improve the convergence speed of the algorithm and the ability to jump
out of local extreme. In 2014, an improved KH [29] was proposed with linear decreasing Ct which can
adjust the balance between exploration and exploitation. To overcome the poor exploitation of the KH
algorithm, Wang et al. presented a hybrid differential evolution KH (DEKH) [30] method for function
optimization. The IKH [31] method using a new Lévy flight distribution and elitism scheme to update
the KH motion calculation was proposed by Guo et al.

In this paper, a new algorithm approach for air quality detection with an E-nose is presented.
For an E-nose, the algorithm parameter setting plays an important role in practical application
performance. So far, most of the E-noses are optimized by PSO, QPSO and GA. In order to make a
further contribution to E-nose research and explore different optimization algorithms in the application
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of E-noses, we decide to adopt the KH as the optimization method of an E-nose and apply it to detect
indoor harmful gaseous pollution. For the better performance of the E-nose, based on KH with an
updated crossover operator [32] (defined as the standard KH in the paper), we propose a novel way
of computing the decision weighting factor for KH to guarantee the krill are diversiform at the early
stage of iterations, and have good local searching ability performance at the later stage of iteration.
The added decision weighting factor updates the krill’s position according to the influence of other
individuals and their foraging behavior under different iterations. The proposed EKH method is
verified via the data obtained by our self-made E-nose.

The rest of the paper is structured as follows: materials and experiments are described clearly
in Section 2. An overview of the standard KH algorithm and the proposed EKH are discussed in
Section 3. Our method is compared with other optimization techniques (including CKH, KH, QPSO,
PSO and GA) and the classification results presented, analyzed and compared in Section 4. Finally, the
conclusions of this paper are drawn in Section 5.

2. Materials and Experiments

The data used in the paper were obtained by a self-made E-nose, whose detailed information
can be found in our previous publication [9]. However, to make the paper self-contained, the system
structure and experimental setup are briefly repeated in the following subsections.

2.1. Target Gas and Experimental Setup

Four common kinds of indoor pollutant gases including C6H6, C7H8, CH2O and CO are the
target gases which will be distinguished by the E-nose in our project. The sensor array of the E-nose
presented in this paper contains five sensors: three metal oxide semi-conductor gas sensors (TGS 2201,
TGS 2620 and TGS 2602 purchased from Figaro Company (Osaka, Japan); the TGS 2201 has two outputs
defined as TGS 2201A and TGS 2201B), one temperature sensor and one humidity sensor. The sensitive
characteristics of the three gas sensors are shown in Table 1.

Table 1. Main sensitive characteristics of gas sensors.

Sensors Main Sensitive Characteristics

TGS2201 Carbon monoxide, nitrogen dioxide, nitric oxide,
TGS2620 Carbon monoxide, VOCs, methane, ethanol, isobutane,
TGS2602 Ammonia, VOCs, toluene, ethanol, hepatic gas, formaldehyde

Note: the responses of these three sensors is non-specific. Besides their main sensitive gas listed in Table 1,
they are also sensitive to other gases.

A 12-bit analog-digital converter (A/D) is used as interface between the sensor array and a
field programmable gate array (FPGA) processor. The A/D converts analog signals taken from the
sensor array into digital signals, and the sampling frequency is set as 1 Hz. As shown in Figure 1,
the experimental platform mainly consists of the E-nose system, a PC, a temperature-humidity
controlling chamber (coated with Teflon to avoid the attachment of VOCs), a flow meter and an
air pump. There are two ports on the sidewall of the chamber, and the target gas and the clean air are
put into the chamber through ports 1 and 2, respectively. Data collected from the sensor array can be
saved in a PC through a joint test action group (JTAG) port with its related software. An image of the
experimental setup is shown in Figure 2.
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Figure 1. Schematic diagram of the experimental system. The experimental platform mainly consists of
the E-nose system, a PC, a temperature-humidity controlling chamber, a flow meter and an air pump.
There are two ports on the sidewall of the chamber, and the target gas and the clean air are put into the
chamber through ports 1 and 2, respectively.
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Figure 2. Image of the experimental setup. Data collected from the sensor array can be saved on a PC
through a joint test action group (JTAG) port with its related software.

2.2. Sampling Experiments and Data Pre-Processing

Before sampling experiments, we firstly set the temperature and humidity of the chamber as
25 ◦C and 40%, respectively. Then we can begin the gas sampling experiments. A single sampling
experiment will implement the following three phases:

Phase 1: All sensors are exposed to clean air for 2 min to obtain the baseline;
Phase 2: Target gas is introduced into the chamber for 4 min;
Phase 3: The array of sensors is exposed to clean air for 9 min again to wash the sensors and make

them recover their baseline.

Figure 3 illustrates the response of sensors when formaldehyde is introduced into the chamber.
We can see that each response curve rises obviously from the third minute when the target gas begins
to pass over the sensor array, and recovers to the baseline after the seventh minute when clean air is
conveyed to wash the sensors.
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Figure 3. Response of the sensors array. It illustrates the response of sensors when formaldehyde is
introduced into the chamber.

To get the real concentration of gas in the chamber, we extract each gas from the chamber and take
it into a gas bag. Then a spectrophotometric method is employed to determine the concentration of
formaldehyde and carbon monoxide, and the concentration of benzene and toluene are determined by
gas chromatography (GC). For each gas, there are 12, 11, 21 and 29 concentration points, respectively,
and 12 sampling experiments are made on each concentration point. The real concentration and the
numbers of samples of the four kinds of gases are shown in Table 2. We set different concentrations
of gas mainly in order to improve the generalization of algorithm, and try to avoid the misjudgment
of the results when the concentration of the test gas is not the same concentrations with the gas of
experiment. And the purpose of our work is to distinguish four indoor pollutant gases with E-nose.

Table 2. Concentration of the target gas.

Gas Concentration Range (ppm) Number of Samples

Benzene [0.1721, 0.7056] 432 (12 × 12)
Toluene [0.0668, 0.1425] 396 (12 × 11)

Formaldehyde [0.0565, 1.2856] 756 (12 × 21)
Carbon monoxide [4, 12] 348 (12 × 29)

Then the maximum value of the steady-state response of sensors is extracted to create the feature
matrix of the E-nose. There are 1932 samples in this matrix and the dimension of each sample is 4.
We randomly select 70% of the samples of each gas to establish the training data set, and the rest are
used as the test data set. Detailed information is shown in Table 3.

Table 3. Amount of samples in training set and test set.

Gas Training Set Test Set

Benzene 288 144
Toluene 264 132

Formaldehyde 504 252
CO 232 116

All-4 1288 644
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3. KH Algorithm

3.1. Overview of Standard KH Algorithm

KH is a new generic stochastic optimization approach for the global optimization problem. It is
inspired by the behavior of krill swarms. When hunting for the food and communicating with each
other, the KH approach repeats the implementation of the three movements and follows search
directions that enhance the objective function value. The time-relied position is mostly determined by
three movements:

i Foraging action;
ii Movement influenced by other krill;
iii Physical diffusion.

Regular KH approach adopts the Lagrangian model as shown in the following expression:

dxi
dt

= Ni + Fi + Di, (1)

where Ni, Fi and Di denote the foraging motion, which is influenced by other krill and the physical
diffusion of krill i, respectively. The first motion Fi covers two parts: the current food location and the
information about the previous location. For krill i, we formulate this motion as below:

Fi = Vf βi + w f Fold
i (2)

where:
βi = β

f ood
i + βbest

i (3)

and Vf is the foraging speed, wf is the inertia weight of the foraging motion in (0, 1), is the last
foraging motion.

The direction led by the second movement Ni , ai is estimated by the three effects: target effect,
local effect, and repulsive effect. For a krill i, it can be formulated as below:

Nnew
i = Nmaxai + wnNold

i Nnew
i = Nmaxai + wnNold

i , (4)

where Nmax is the maximum induced speed, wn is the inertia weight of the second motion in (0, 1),
is the last motion influenced by other krill.

For the i-th krill, in practice, the physical diffusion is a random process. This motion includes
two components: a maximum diffusion speed and an oriented vector. The expression of physical
diffusion can be given below:

Di = Dmaxδ, (5)

where Dmax is the maximum diffusion speed and δ is the oriented vector whose value is a random
number between −1 and 1.

According to the three above-analyzed actions, the time-relied position from time t to t + ∆t can
be formulated by the following equation:

Xi (t + ∆t) = Xi (t) + ∆t
dxi
dt

. (6)

For more detailed information about the KH method readers may referred to [26].
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3.2. EKH

It has been proved that KH is an effective method in exploitation. However because the search
relies fully on randomness, it cannot converge rapidly. In the group strategy optimization algorithm,
the number of iterations could affect the performance of the algorithm, and sometimes even determines
whether we can find the global optimal point. We should also also consider the factor of time
(the optimization process should be as quick as possible), so we present a novel way of computing
the decision weighting factor to give KH better global searching ability performance and a higher
convergence speed. Its equation is shown as Equation (7):

dxi
dt

=
MI − I

MI
Fi +

I
MI

Ni + Di, (7)

where MI is the maximum iteration, and I is the current number of iterations. At the early stage of
iterations, (MI – I)/MI > I/MI, their foraging actions should have more influence on their decisions for
the next position. Because each krill doesn’t know the correct direction, that krill start with their own
feelings can effectively help them avoid premature. At the later stage of iterations, (MI – I)/MI < I/MI,
the experience of other krill has more influence when they update their next position. After all, the
correctness of the group direction tends to be higher than that of the individuals. Finally, we define
the KH with an updated crossover operator as the standard krill swarm algorithm. The method we
proposed as the enhanced KH (EKH). The basic framework of the EKH method and its responding
flowchart are shown in Algorithm 1 and Figure 4.

Algorithm 1. EKH algorithm

Begin
Step 1: Initialization. Initialize the Iteration counter I=1, the population P of NP krill, Vf, Dmax and Nmax.
Step 2: Fitness calculation. Calculate fitness for each krill according to its initial position.
Step 3: While I < Maximum Iteration do
Sort all the population according to their fitness.

for i=1:NP (all krill) do
Perform the following motion calculation.
Motion induced by other individuals
Foraging motion
Physical diffusion
Compute dxi/dt according to Equation (7).
Implement the crossover operator.
Updating the krill individual position in the search space.
Calculate fitness for each krill according to its new position.

end for i
I = I+1.

Step 4: end while
End.
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Figure 4. Simplified flowchart of EKH. In addition to the basic steps of krill algorithm, the flowchart of
EKH also includes the novel computing way of decision weighting factor used in Equation (7) and an
updated crossover operator.

4. Results and Discussion

To evaluate the effectiveness of the optimization algorithm we analyze the discrimination of four
different gases with our self-made E-nose. We compare EKH with QPSO, PSO and GA which have
been frequently used in E-noses. We also compare EKH with the standard KH and the chaotic KH
(CKH) [33]. In CKH, various one-dimensional chaotic maps are employed in place of the parameters
used in the KH to accelerate the convergence speed of it. According to the results of [33], we choose
Singer map as the proper chaotic map to form the best CKH. It is shown in Equation (8).

Singer map:
xk+1 = u(7.86xk − 23.31x2

k + 28.75x3
k − 13.30x4

k), (8)

The parameter setting in all experiments for each algorithm is shown in Table 4.

Table 4. Parameter setting.

Algorithms Parameters

EKH The foraging speed Vf = 0.02, the maximum diffusion speed Dmax = 0.005,
the maximum induced speed Nmax = 0.01

CKH The foraging speed Vf = 0.02, the maximum diffusion speed Dmax = 0.005,
the maximum induced speed Nmax = 0.01

KH The foraging speed Vf = 0.02, the maximum diffusion speed Dmax = 0.005,
the maximum induced speed Nmax = 0.01

QPSO An inertial constant = 0.3, a cognitive constant = 1, and a social constant for swarm
interaction = 1

PSO An inertial constant = 0.3, a cognitive constant = 1, and a social constant for swarm
interaction = 1

GA Roulette wheel selection, single point, two point and uniform crossover with
a crossover probability of 0.6, and a mutation probability of 0.01

The flow of data processing is as follows: firstly, a normalization processing is performed. Then the
SVM [34,35] is employed as the classifier. Its two parameters are optimized by the six considered
optimization algorithms. The flow diagram of the experiment is shown in Figure 5. All of the
optimization algorithms to optimize parameters of SVM are mainly based on the training data set.
Finally SVM will distinguish the class label of each sample in test data set with the knowledge it has
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learned, and the ratio (the number of points distinguished directly to the number of all points in test
data) will be used to evaluate the performance of the different optimization algorithms.Sensors 2016, 16, 1275 9 of 15 
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Figure 5. Flow diagram of experiment. Firstly, a normalization processing is made. Then the support
vector machine (SVM) is employed as the classifier. Its two parameters are optimized by the six
considered optimization algorithms. All of the optimization algorithms to optimize parameters of SVM
are mainly based on the training data set.

There are two parameters need to be set in SVM (the spread factor of the Gaussian RBF kernel
function and the penalty factor), so krill group search in the two-dimensional space. Each kind of
particle number optimization algorithm is set to 30, and in order to compare the differences between
the algorithms, we set the number of iterations, to 50, 200 and 400, respectively. To make sure the
accuracy of experimental results is correct, each program was repeated 10 times. Then we take the
ten times’ classification accuracy (the training data set and test data set) in maximum, minimum and
average value as a reference to evaluate the performance of the six kinds of optimization algorithms.
Tables 5–7 show the classification accuracy of the different optimization algorithms with the number of
iterations set as 50, 200 and 400. The best classification accuracy of the four kinds of gases and all the
classification accuracies with different optimization algorithms are shown in Tables 8–12. To make our
research more persuasive, we use the 10-fold cross validation method to train and test the data and the
particle number is set to 50. All the results of algorithms after using 10-fold cross validation are shown
in Tables 13–15. It also reachs the same conclusion that the EKH has the best performance. When the
particle number is set to 50, the results with the number of iterations set as 50, 200 and 400 are shown
in Tables 16–18. In Table 18, the standard deviations (SD) of each kind of algorithm after running for
100 times are shown to evaluate the performance of the algorithm more precisely.

Table 5. Classification accuracy of different optimization algorithm (%).

EKH CKH KH QPSO PSO GA

Training set
best 91.85 85.33 83.85 81.21 81.37 83.79

mean 90.94 79.71 82.17 80.20 79.01 82.92
worst 90.37 76.78 80.67 78.73 77.64 82.14

Test set
best 87.89 85.40 85.55 83.39 83.85 80.90

mean 86.80 82.81 84.52 83.13 82.66 80.25
worst 86.18 81.21 83.38 82.30 81.99 79.43

Note: the iterations are 50.
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Table 6. Classification accuracy of different optimization algorithm (%).

EKH CKH KH QPSO PSO GA

Training set
best 93.01 90.06 85.95 87.89 80.98 84.16

mean 92.26 84.19 83.20 86.16 80.67 83.38
worst 91.77 77.25 81.13 85.02 80.43 82.92

Test set
best 88.04 85.71 85.09 86.18 84.16 81.06

mean 87.63 84.42 84.68 85.14 83.75 80.83
worst 87.27 81.83 84.16 84.16 83.07 80.43

Note: the iterations are 200.

Table 7. Classification accuracy of different optimization algorithm (%).

EKH CKH KH QPSO PSO GA

Training set
best 93.79 90.45 85.95 89.59 84.39 84.94

mean 93.01 86.85 83.39 86.39 82.61 84.89
worst 92.08 84.47 80.05 84.32 81.06 84.78

Test set
best 88.20 86.49 85.56 86.65 85.56 84.08

mean 87.73 85.35 84.63 85.87 84.94 83.88
worst 87.27 84.47 83.39 85.25 84.47 83.62

Note: the iterations are 400.

Table 8. Classification accuracy of benzene by different optimization algorithm (%).

EKH CKH KH QPSO PSO GA

Training set 83.33 75.69 66.67 71.88 60.76 57.64
Test set 48.61 51.39 52.83 50.69 52.83 49.31

Table 9. Classification accuracy of toluene by different optimization algorithm (%).

EKH CKH KH QPSO PSO GA

Training set 100.00 100.00 100.00 100.00 98.48 100.00
Test set 100.00 100.00 100.00 100.00 98.48 100.00

Table 10. Classification accuracy of formaldehyde by different optimization algorithm (%).

EKH CKH KH QPSO PSO GA

Training set 99.21 96.43 93.25 97.02 93.85 94.44
Test set 99.21 95.24 92.06 96.03 92.86 93.65

Table 11. Classification accuracy of carbon monoxide by different optimization algorithm (%).

EKH CKH KH QPSO PSO GA

Training set 87.93 84.91 78.02 83.62 77.16 78.02
Test set 94.83 95.69 96.55 83.62 96.55 96.55

Table 12. Classification accuracy of total by different optimization algorithm (%).

EKH CKH KH QPSO PSO GA

Training set 93.79 90.45 85.95 89.59 84.39 84.94
Test set 87.27 86.49 85.56 86.65 85.56 84.08
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Table 13. Classification accuracy by different optimization algorithm (%).

EKH CKH KH QPSO PSO GA

Training set 92.39 88.90 86.57 89.21 85.25 85.32
Test set 88.20 86.02 84.94 86.49 83.54 83.70

Note: the iterations are 50.

Table 14. Classification accuracy by different optimization algorithm (%).

EKH CKH KH QPSO PSO GA

Training set 93.56 91.38 89.13 90.45 86.96 87.34
Test set 88.51 87.42 86.18 86.96 84.63 86.02

Note: the iterations are 200.

Table 15. Classification accuracy by different optimization algorithm (%).

EKH CKH KH QPSO PSO GA

Training set 94.07 91.42 89.93 90.56 87.05 87.56
Test set 89.64 87.56 86.53 87.04 85.49 86.53

Note: the iterations are 400.

Table 16. Classification accuracy by different optimization algorithm (%).

EKH CKH KH QPSO PSO GA

Training set 92.16 88.66 86.18 88.82 84.47 84.94
Test set 87.89 85.56 84.78 85.71 82.38 81.52

Note: the iterations are 50.

Table 17. Classification accuracy by different optimization algorithm (%).

EKH CKH KH QPSO PSO GA

Training set 93.32 91.61 88.90 90.61 84.94 85.79
Test set 87.73 86.96 86.02 86.49 83.62 85.25

Note: the iterations are 200.

Table 18. Classification accuracy of different optimization algorithm (%).

EKH CKH KH QPSO PSO GA

Training set
best 94.02 91.85 89.21 91.15 85.87 85.95

mean 93.98 91.81 89.16 91.11 85.82 85.88
SD 0.058 0.067 0.086 0.083 0.101 0.096

Test set
best 87.58 87.42 85.71 86.80 85.17 85.40

mean 87.53 87.39 85.67 86.74 84.95 85.25
SD 0.075 0.084 0.098 0.093 0.326 0.183

Note: the iterations are 400.

EKH and CKH are both the enhanced optimization algorithms based on the KH. and comparing
the results of EKH, CKH and KH from Tables 5–7, we can find that the best results are obtained by EKH.
In the case of a higher number of iterations, the CKH performs a little better than KH, however, when it
comes to the maximum, minimum or the average value of classification accuracy, the EKH significantly
outperforms CKH and KH. This verifies that the EKH we proposed is more appropriate than CKH in
the application of E-noses in gas identification. What’s more, it’s easy to see whatever the number of
iterations given, the worst classification accuracy of EKH is higher than the best classification accuracy
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of CKH and KH. The results when the number of iterations is 200 and 400 are very close. All of these
results prove that the global searching and convergence of EKH has been improved with the influence
of the novel way of computing the decision weighting factor.

Comparing the EKH with different algorithms (QPSO, PSO and GA), it can be found from
Tables 5–7 that GA has the worst performance, while PSO and QPSO are better. In terms of the truth
that the EKH has the highest classification accuracy in the same iterations, relative to the three other
algorithms, once again it proves that the krill algorithm can be applied well in E-noses.

Tables 8–11, respectively, show the classification accuracy of four kinds of gases being measured
under the condition that total classification accuracy is best. We can also draw a conclusion from the
data that C6H6 is harder to distinguish compared with other gases. For EKH, except for the fact the
recognition rate of C6H6 of the test set is a bit low, the other results are very reasonable, not only in
terms of itself but also with other algorithms. According to the results in Table 18, we can know that
the SD of EKH is the smallest. It suggests that the EKH result is more stable. That is to say, the EKH is
better in average performance than KH and other algorithms. In Figures 6 and 7, through the colorful
bar chart, we can clearly see the classification results of training set and test set based with different
optimization algorithms and the discrepancies between each other.
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Figure 6. Classification accuracy based on training set. The classification results of training set based
on different optimization algorithms and the discrepancy between each other. The iteration is 400 and
the particle number is 30.
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Figure 7. Classification accuracy based on test set. The classification results of test set based on different
optimization algorithms and the discrepancy between each other. The iteration is 400 and the particle
number is 30.

5. Conclusions

There is no doubt that E-noses play an important role in the field of environmental monitoring
and control of pollution emissions. In this experiment an E-nose is applied to distinguish four kinds
of indoor pollutant gases. We all know that an E-nose device which has a high recognition rate for
pollutant gases is significant to the improvement of the quality of people’s indoor life, so we have
undertaken further research on the E-nose algorithm to improve its gas recognition rate.

An E-nose mainly consists of an array of sensors and an appropriate pattern-recognition system.
The pattern-recognition system has a significant effect in helping E-noses make a correct decision
via the algorithm. Furthermore, the value of parameters determines the performance of the pattern
recognition system, so some algorithms must be employed to select the appropriate parameters. KH is
a new optimization algorithm put forward in recent years, that has not been applied yet to the E-nose
technology, so we have creatively applied the krill algorithm to the classification problem of E-noses
for indoor pollutant gases. Considering the practical application we propose an EKH based on a novel
way of computing the decision weighting factor.

The KH technique has a good performance in exploitation, but it cannot always converge rapidly
to find the global optimum. In this paper, we present an effective EKH algorithm based on a novel
way of computing decision weighting factors and apply it to optimize the parameters of our self-made
E-nose which is employed to distinguish different indoor pollutant gases. Through comparing EKH
with other optimization methods, we find that the performance of EKH is better than KH, CKH,
QPSO, PSO and GA. We can draw the conclusion according to the results that EKH is an ideal
optimization method for E-noses in distinguishing indoor pollutant gases. Of course, we will continue
to further study the krill algorithm in the future, and we believe the performance of E-nose will be
further improved.
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