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Abstract: With the increasing need for road lane detection used in lane departure warning systems
and autonomous vehicles, many studies have been conducted to turn road lane detection into a
virtual assistant to improve driving safety and reduce car accidents. Most of the previous research
approaches detect the central line of a road lane and not the accurate left and right boundaries of
the lane. In addition, they do not discriminate between dashed and solid lanes when detecting the
road lanes. However, this discrimination is necessary for the safety of autonomous vehicles and the
safety of vehicles driven by human drivers. To overcome these problems, we propose a method for
road lane detection that distinguishes between dashed and solid lanes. Experimental results with the
Caltech open database showed that our method outperforms conventional methods.

Keywords: road lane detection; left and right boundaries of road lane; dashed and solid road lanes;
autonomous vehicles

1. Introduction

Accurate detection of road lanes is an important issue in lane departure warning systems and
driver assistance systems. Detecting lane boundaries enables vehicles to avoid collisions and issue a
warning if a vehicle passes a lane boundary. However, lane boundaries are not always clearly visible.
This can be caused, for instance, by poor road conditions, insufficient quantity of paint used for marking
the lane boundary, environmental effects (e.g., shadows from objects like trees or other vehicles),
or illumination conditions (street lights, daytime and nighttime conditions, or fog). These factors make
it difficult to discriminate a road lane from the background in a captured image. To deal with these
problems, current research applies various methods ranging from low-level morphological operations
to probabilistic grouping and B-snakes [1–3]. Detail explanations of previous works are shown in
Section 2.

2. Related Works

The methods for lane departure warning can be classified into two categories: sensor-based
methods and vision-based methods. Sensor-based methods use devices such as radar, laser sensors,
and even global positioning systems (GPS) to detect whether a vehicle departed a lane based on
the information of the vehicle ahead or the position calculated by GPS. These devices can also be
used for obstacle detection. Their main advantage is their scanning distance (up to 100 m) and their
high reliability in dust, snow, and other poor weather conditions. However, these methods cannot
accurately detect the lane positions, and the information they provide is unreliable inside a tunnel or if
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no other vehicle is ahead. Therefore, most of the recent research approaches have been focusing on
developing vision-based solutions and using additional sensors to enhance the results.

The vision-based methods detect road lanes based on the features of a camera image such as color
gradient, histogram, or edge. We can divide vision-based solutions into two main classes. One is the
model-based methods [1–17], which create a mathematical model of the road structure. They use the
geometric coordinates of the camera and the road as input parameters and depend on their accuracy.
To determine the parameters, the initial configuration information is merged with feature points of
the lane markings taken from an image of the road. For example, Xu et al. used a B-spline based road
model to fit the lane markings and a maximum deviation of position shift method for identifying the
road model’s control points [1]. Li et al. used an extended Kalman filter in addition to a B-spline curves
model to guarantee a continuous lane detection [2]. Tan et al. focused on detecting a curve lane using
improved river flow and random sample consensus (RANSAC) under challenging conditions based on
a hyperbola-pair lane model [5]. Zhou et al. presented a lane detection method based on a geometrical
model of the lane and Gabor filter [6]. In earlier work [13], they had proposed a lane detection method
that used gradient-enhancing conversion to guarantee an illuminating-robust performance. In addition,
they used an adaptive canny edge detector, a Hough transformation (HT), and a quadratic curve
model. Li et al. employed an inverse perspective mapping (IPM) model [14] to detect a straight line
in an image. Chiu et al. introduced a lane detection method using color segmentation, thresholding,
and fitting with a quadratic function model [15]. Mu et al. determined candidate regions of lane
markings by object segmentation, applied a sober operator to extract redundancy edges, and used
piecewise fitting with a linear or parabolic model to detect lane markers [17]. With model-based
methods, lane detection becomes a problem of solving mathematical models. The accuracy of the
detection depends not only on the initial input parameters of the camera or the shape of the road but
also on the feature points extracted from a captured image of the road.

The other class of vision-based methods are the feature-based methods [18–23], which can
discriminate feature points of lane markings from the non-lane areas by characteristic features of
the road, such as color, gradient, or edge. Chang et al. applied a canny edge detector to investigate
boundaries and proposed an edge-pair scanning method and HT to verify that the edges belonged
to lane markings [18]. In previous research [19], they had introduced a method for determining the
adaptive road region-of-interest (ROI) and locating the road lane. Chen et al. proposed a method to
detect a lane with a downward looking color camera and a binormalized adjustable temple correlation
method [20]. Benligiray et al. suggest detecting lanes by detecting line segments based on the EDLines
algorithm [21]. In previous research [22], they had detected lanes using canny edge detector and HT
based on vanishing points. Sohn et al. proposed an illumination invariant lane detection algorithm
using ROI generation based on vanishing point detection and lane clustering [23]. The feature-based
methods are simple, but they require a clear and strong color contrast of the lane and good road
conditions with little changes in the surrounding environment. Most of the previous (model-based
and feature-based) methods detect the central line of the road lane and do not locate the accurate
left and right boundaries of the road lane. In particular, they do not discriminate the dashed and
solid lanes when detecting the road lanes. In previous research [24], they classified lanes based on
a linear–parabolic lane model, an automatic on-the-fly camera calibration, an adaptive smoothing
scheme, pairs of local maxima–minima of the gradient, and a Bayesian classifier using mixtures of
Gaussians. Although their method can classify the kinds of lane such as dashed, solid, dashed solid,
solid dashed, and double solid ones, their method did not detect the starting and ending positions
of lane. That is, with the lane region within ROI of image, their method classified only the kinds of
lane without detecting the exact starting and ending points. That is because the correct classification
based on Bayesian classifier can be possible even with a little (detection) error of starting and ending
points, and the little amount of error can be compensated by the Bayesian classifier. Therefore, in their
research [24], they did not show the accuracy of detecting the starting and ending points, but showed
only the classification error of five kinds of road lane.
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Different from their method, we correctly detect the starting and ending positions of lane with the
discrimination dashed and solid lanes. By studying pros and cons of the existing research approaches,
we decided to use a feature-based lane detection method and to detect a lane’s accurate left and right
boundaries by discriminating the dashed and solid lanes. Our research is novel in the following four
aspects compared to other work.

- In most previous researches, they detect only the centerline of the left and right boundaries of
a road lane. Different from them, our method can detect the accurate left and right boundaries of
a road lane.

- In most previous studies, they detected the starting and ending positions of a road lane without
discriminating the dashed and solid ones. In some research, they just classified the kinds of road
lane such as dashed, solid, dashed solid, solid dashed, and double solid ones without detecting
the starting and ending positions of a road lane. Different from them, our method correctly detects
the starting and ending positions of lane with the discrimination of dashed and solid lanes.

- We can remove incorrect line segments using the line segments’ angles and merging the line
segments according to their inter-distance. In order to detect curve lane, the angular condition is
adaptively changed within the upper area of ROI based on tracing information of angular changes
of line segments.

- Using a perspective camera model, the adaptive threshold is determined to measure the distance
and used to detect the final line segments of the road lane’s left and right boundaries.

Table 1 presents a summary of our comparison of existing research on lane detection and our
proposed method.

The remainder of this paper is organized as follows. We provide an overview of the proposed
method and an algorithm for road lane detection in Section 3. Section 4 discusses the experimental
results, and Section 5 presents the conclusions.
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Table 1. Comparison of previous and the proposed methods.

Category Model-Based Method

Feature-Based Method

Not Discriminating
Dashed and Solid Lanes

Discriminating Dashed and
Solid Lanes (Proposed Method)

Methods

- B-spline model [1–3,16].
- Hyperbola-pair lane model [5].
- Lane geometrical model [6].
- Vehicle directional control model

(DIRCON) [9].
- Quadratic function model [13,15]
- IPM model [10–12,14,25].
- Linear or parabolic model [17].

- Using edge features [18,22],
template correlation [20], EDLines
method [21], and illumination
invariant lane features [23].

- Detecting the lanes based on line segments.
- Incorrect line segments are removed based on

the line segments’ angles and by merging the
line segments according to their inter-distance.

- Using adaptive threshold for detecting the
correct lane boundaries.

Advantages

- More accurate results of lane detection can
be guaranteed using mathematic models.

- Its performance is less affected by noises
caused by shadows, water area,
and day light.

- Performance is not affected by the
initial input parameters of the
camera or the model parameters.

- Simple and fast processing speed.

- Detecting the accurate left and right boundaries
of a road lane.

- Discriminating the dashed and solid lanes when
detecting the road lanes.

Disadvantages

- The accuracy of the detection depends not
only on the initial input parameters of the
camera or the shape of the road, but also
on the feature points extracted from a
captured road image.

- The methods require a clear and
strong color contrast of a lane and
good road conditions with little
effect from changes in the
surrounding environment.

- More processing power is necessary for
detecting the left and right boundaries of a road
lane by discriminating the dashed and solid
lanes compared to the methods that only detect
the central line of the road lane.- They detect the central line of a road lane rather than locating the accurate left and

right boundaries of the road lane.
- They do not discriminate the dashed and solid lanes when detecting the road lanes.
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3. Proposed Method

3.1. Proposed Method

An overview of the proposed method is presented in Figure 1.
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Figure 1. Overall procedure of the proposed method.

Figure 1 depicts the whole procedure of our proposed method. In our lane detection system, the
algorithm has two main stages, main processing (Step 1 and Step 2) and post-processing (Step 3 to
Step 5). In the first step, we define the ROI of the captured image and locate the line segments in the
ROI. Then, we remove incorrect line segments based on the angles of the line segments and by merging
them according to their inter-distance. Finally, using the perspective camera model, we determine the
adaptive threshold to measure the distance and use it to detect the final line segments of the left and
right boundaries of the road lane.

3.2. Determination of ROI

Defining the ROI in the captured image gives us two advantages. First, lanes always appear
within the predetermined region of the image when the position and direction of the camera are fixed.
This is shown in Figures 2–4. Therefore, we do not need to perform lane detection in the whole image,
but only in the restricted area. If the lane detection is done only in the ROI and not in the whole
image, the effect of environmental noises such as rain, fog, or poor weather conditions can be lessened.
In addition, the complexity and computational time of the lane detection can be significantly reduced.

Previous research defined the ROI based on vanishing points [13]. However, this takes a lot
of processing time and might determine an incorrect ROI if the vanishing points were incorrect.
Our research is mainly focused on detecting the starting and ending positions of straight and curve
lanes with the discrimination of dashed and solid lanes within the ROI. Therefore, in our research,
we do not automatically estimate ROI, but use the predetermined ROI shown in the image (the ROI of
red box in Figure 4b), for lane detection. In our experiments, we used two kinds of open databases
such as Caltech and SLD datasets (see details in Section 4). All images have the size of 640 × 480 pixels.
Based on these dimensions, with Caltech dataset, the left-upper position (x and y coordinates) of ROI
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is determined as (100, 245), and the width and height of the ROI are empirically determined as 440 and
100 pixels. With SLD dataset, the left-upper position (x and y coordinates) of ROI is determined as
(120, 320), and the width and height of the ROI are also empirically determined as 440 and 100 pixels.
In the case of using images of different size, the left-upper position, width, and height of ROI are
proportionally changed based on the width and height of the original image.
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3.3. Lane Detection by Locating Line Segments

Some of the existing research approaches convert an input image into an IPM or bird’s eye view
image [10–12,14,25] to represent lanes as vertical and parallel in the image. However, in some cases,
the lanes cannot be vertical and parallel because we would need to adjust the set of parameters for
obtaining the IPM or bird’s eye view image according to the relative position of the lane to the camera.
The position of a vehicle and its camera can slightly change between two road lanes. Moreover, the
camera parameters need to be known in advance to obtain an accurate image by the IPM or bird’s
eye view image. In other research approaches, lanes were detected using HT [2,8,13–15,18,19,22,23].
However, it takes a long processing time and detects too many incorrect line segments, as shown in
Figure 5a. In addition, it cannot detect a lane by discriminating between the dashed and solid lanes.

To solve these problems, we use a line segment detector (LSD) [26,27] for locating the line
segments in an image. The LSD method is supposed to work on any digital image without
depending on parameter tunning. The LSD algorithm controls the number of false detections based on
previous research [28], and uses a contrario validation method based on Desolneux and coworker’s
research [29,30]. Let S = {s1, s2, . . . , sk} be the set of line segments extracted from an ROI image using
the LSD algorithm. Each line segment si, (i = 1, 2, . . . , k) is defined as.

si = {x1i, y1i, x2i, y2i, θi} , (i = 1, 2, . . . , k) (1)

where (x1i, y1i) and (x2i, y2i) are the coordinates of the starting point and the ending point of line
segment si, respectively. θi is the angle of line segment si and is calculated by Equation (2).

θi =
180
π

arctan
(

y2i − y1i
x2i − x1i

)
, (i = 1, 2, . . . , k) (2)



Sensors 2016, 16, 1313 8 of 23

As shown in Figure 5, the LSD method can detect more correct line segments than the HT method.
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Figure 5. Comparisons of line detection: (a) line detection using conventional edge detector and Hough
transformation (HT); and (b) line extraction using line segment detector (LSD).

We did not quantitatively compare the performance of line segment detection by LSD and
HT. Instead, with some images of Caltech database and SLD database (used in our experiments of
Section 4), we checked the performance. We used the already published LSD method. However, the
main contributions of our research are not LSD method but the post-processing in order to detect the
accurate starting and ending points of straight and curve lanes with the discrimination of the broken
(dashed) and unbroken (solid) lanes as shown in Section 3.4.

3.4. Correct Lane Detection Based on Post-Processing

We remove the line segments that were detected incorrectly and locate the accurate line segments
based on the features of the road lane, such as angle and inter-distance between left and right
boundaries of the lane.

3.4.1. Eliminating Incorrect Line Segment Based on Angle

As Figure 5b illustrates, the LSD algorithm also detects many incorrect line segments. We need to
eliminate the incorrect line segments to reduce the computational time and complexity. In our research,
we first use the angle of a road lane to eliminate the incorrect line segments. In Figure 6, the left
side (the rectangular region of acgh) and right side (the rectangular region of cefg) are divided, and
two angular ranges (θle f t

(
250 ∼ 750) and θright (1050 ∼ 1550)) for the correct line segments are

determined on each side, as shown in Equations (3) and (4). The same parameters of angular ranges of
Equations (3) and (4) are used in two open databases of our experiments in Section 4. Because vehicle
including camera usually moves between left and right road lanes, the left and right road lanes can be
estimated to be included in the areas of triangles (bdh) and (bdf) of Figure 6, respectively. Here, θle f t
defines the angular area between two lines of bh and dh of Figure 6. θright defines the angular area
between two lines of bf and df of Figure 6.

Sleft =
{

sL
i |x1i ≤ wROI

2 − 1, θL
i ∈

[
250, 750]} , (i = 1, 2, . . . , p) (i f ”HROI/3 ≤ y1i ≤ HROI − 1”)

Sleft =
{

sL
i |x1i ≤ wROI

2 − 1, θL
i ∈

[
θL∗

i − 100 ≤ θL
i ≤ θL∗

i + 100]} ,

(i = 1, 2, . . . , p) (else i f “0 ≤ y1i < HROI/3”)
(3)

Sright =
{

sR
i |x1i >

wROI
2 , θR

i ∈
[
1050, 1550]} , (i = 1, 2, . . . , q) (i f ”HROI/3 ≤ y1i ≤ HROI − 1”)

Sright =
{

sR
i |x1i >

wROI
2 , θR

i ∈
[

θR∗
i − 100 ≤ θR

i ≤ θR∗
i + 100]} , (i = 1, 2, . . . , q)

(else i f “0 ≤ y1i < HROI/3”)

(4)

where x1i is the x coordinate of the starting point of line segment si in Equation (1), and θi is the angle of
line segment si in Equation (2). In addition, WROI is the width of the ROI region (the distance between
a and e (or h and f) of Figure 6). As explained in Section 3.2, WROI is 440 pixels in our research. HROI is
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the height of the ROI region (the distance between a and h (or e and f) of Figure 6). As explained in
Section 3.2, HROI is 100 pixels in our research.

Each line segment has two positions, namely its starting and ending positions. In our research,
we consider the higher position (i.e., the position with a lower y coordinate) to be the starting point
in the image with the origin (0, 0) defined as the left-upper most corner. All line segments whose
starting point has an x-coordinate between 0 and WROI/2-1 are considered to belong to the left side
(the rectangular region of acgh of Figure 6) as shown in Equation (3). All other line segments belong to
the right side (the rectangular region of cefg of Figure 6) as shown in Equation (4). That is, the sets of
line segments (sL

i and sR
i ) satisfying the conditions of Equations (3) and (4) are obtained as Sleft and

Sright, respectively, and are considered correct line segments. Figure 7 shows the example where the
incorrect line segments are removed based on angle features.

As explained at the end of this Section, the conditions of Equations (3) and (4) are divided into
two parts (i f ”HROI/3 ≤ y1i ≤ HROI − 1” and else if “0 ≤ y1i < HROI/3”)) according to y1i
(the y coordinate of the starting point of line segment si in Equation (1)) in order to solve the detection
problem of curve lane. Detail explanations are shown at the end of this Section.

Figure 6 denotes the angular range of the correct line segments from a camera view. All valid
line segments should lie within these two areas, which are defined by the angular ranges of θle f t
(the angular area between two lines of bh and dh) and θright (the angular area between two lines of
bf and df). We consider the line segments outside these areas as incorrect and are eliminated them.
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detected line segments; and (b) image with the incorrect line segments removed.

As shown in [31,32], the curve lane having severe curvature is usually observed only in the
upper area of ROI. Therefore, our method uses the 2nd ones of Equations (3) and (4) (condition of
else if “0 ≤ y1i < HROI/3”) with Figure 6 within only the upper area of the ROI (where the
curve lane having severe curvature can be observed). That is, because the width and height of ROI
are, respectively, 440 and 100 pixels in our research (as explained in Section 3.2), the upper-left and
lower-right positions of upper area in the ROI are (0, 0) and (439, 33 (100/3)).
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In this upper area, the angular ranges of θright and θle f t are adaptively changed as shown in the
2nd ones of Equations (3) and (4) (condition of else if “0 ≤ y1i < HROI/3”). That is, based on
tracing information (θL∗

i and θR∗
i of the 2nd ones of Equations (3) and (4)) of the angular of previous

line segment (whose position is immediately below, but the closest to the current line segment to be
traced), our method adaptively changes the angular range (θL

i and θR
i ) in this upper area as shown in

“θL
i ∈

[
θL∗

i − 100 ≤ θL
i ≤ θL∗

i + 100] ” and θR
i ∈

[
θR∗

i − 100 ≤ θR
i ≤ θR∗

i + 100] of the 2nd ones of
Equations (3) and (4).

Based on this, our method can correctly detect curve lane. In addition, through the line combination
algorithm of Section 3.4.2, the pieces of line segments from a curve line can be correctly combined as a
curve line.

3.4.2. Combining the Pieces of Line Segments

Due to the impact of shadows, illumination changes, or incorrect detection of line segments, we
can detect multiple line segments from one boundary of road lanes. Our system checks the conditions
to determine whether two or more line segments should be combined into one longer line segment.

Figure 8 shows three cases where two or more line segments are combined into one longer one.
The first two cases make one straight line whereas the last one makes a curve line. As mentioned in the
previous section, we assume that the starting point of a line segment has a lower y-coordinate than the
ending point. The dashed lines in Figure 8 denote line segments, whereas the solid lines represent the
merged line segment. Blue and green circles represent the starting point and ending point, respectively.
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To evaluate the connectivity of two line segments, the following two conditions should be satisfied
based on the distance threshold (thrdst) and the angle threshold (thrangle). The thresholds were obtained,
empirically. In our research, thrdst and thrangle are 3 pixels and 2 degrees, respectively, on both Caltech
and SLD databases which were used in our experiments (see details in Section 4). However, thrdst is
proportionally changed based on the width and height of the original image.

We assume that the Euclidean distance between the starting point of the ith line and the ending
point of the jth line, or the ending point of the ith line and the starting point of the jth line is di f fdst.
If di f fdst is less than thrdst (the first condition), our system checks the second condition based on the
angle in order to decide whether two line segments are part of a straight line or a curve line.

As explained in the previous section, our system can obtain the angle of each line segment
and compare the angular difference of two line segments (called di f fangle) to a predefined threshold
(thrangle). Line H is the new line that is obtained by combining the ith line with the jth line.

Line H =

{
straight line, i f di f fangle ≤ thrangle (cases 1 and 2 of Figure 8)

curve line, otherwise (case 3 of Figure 8)
(5)



Sensors 2016, 16, 1313 11 of 23

The below Algorithm 1 provides more details. Rough explanations of this algorithm are as follows.
If the Y starting position of line I is lower than that of line J, the distance between the ending position
of line I and the starting one of line J is measured. If this distance is less than threshold (thrdst) and the
angle between these two lines is less than threshold (thrangle), these two lines are combined as a new
straight line (Case 1 of Figure 8). If the distance condition is satisfied, but the angle condition is not,
these two lines are combined as a new curve line (Case 3 of Figure 8).

If the Y starting position of line I is higher than that of line J, the distance between the starting
position of line I and the ending position of line J is measured. If this distance is less than threshold
(thrdst) and the angle between these two lines is less than threshold (thrangle), these two lines are
combined as a new straight line (Case 2 of Figure 8). If the distance condition is satisfied, but the angle
condition is not, these two lines are combined as a new curve line (Case 3 of Figure 8).

Algorithm 1. Line Combination Algorithm.

Input: Set of line segments S
Output: Set of combined lines

While (line I ∈ S)
{

Get starting point Is, ending point Ie, and angle Ia

While ((line J 6= lineI) and (J ∈ S))
{

Get starting point Js, ending point Je, and angle Ja

If (Is.y < Js.y)
{

di f fdst = d(Ie, Js)

If (di f fdst < thrdst)
{

di f fangle = |Ia – Ja|
If (di f fangle <= thrangle)
{

Define a new straight line K having Is and Je //Case 1 of Figure 8
Remove lines I and J

}
Else if (di f fangle > thrangle)
{

Ie = Js

Define a new curve line having Is, Js, and Je //Case 3 of Figure 8
}

}
}
Else if (Is.y >= Js.y)
{

di f fdst = d(Is, Je)

If (di f fdst < thrdst)
{

di f fangle = |Ia – Ja|
If (di f fangle <= thrangle)
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Algorithm 1. Cont.

{
Define a new straight line K having Js and Ie //Case 2 of Figure 8
Remove lines I and J

}
Else if (di f fangle > thrangle)
{
Is = Je

Define a new curve line having Js, Is, and Ie //Case 3 of Figure 8
}

}
}

}
}

3.4.3. Detecting the Left and Right Boundaries Based on Adaptive Threshold

Because of various factors such as varying illumination, shadows, and the abrasion of paint on the
road lane, we can divide the detected road line into several discrete parts. “Line Combination
Algorithm” (explained in Section 3.4.2) combines these parts into a line boundary, but further
processing is necessary to detect more accurate lane boundaries.

A road lane always includes a left and a right edge boundary. If a detected line is on the left
boundary, it has almost certainly a symmetrical counterpart on the right boundary and vice versa
(Figure 9). From a camera view, the road lane appears as a trapezoid in the image as shown in Figure 9.
This is because in a perspective camera model the further two points are away from the camera, the
smaller their distance appears. Therefore, the adaptive threshold is determined by measuring the
inter-distance between two starting points or ending points, as shown in Figure 9. Based on this
threshold, we combine the two lines together. If the distance between the two starting positions
and the distance between the two ending positions are less than the adaptive threshold (thradaptive of
Figure 9), the two lines are regarded as the correct left and right boundaries of the lane. In our research,
thradaptive has the range from 6 to 14 pixels. In the case of small thradaptive in Figure 9, 6 pixels are used,
whereas 14 pixels are used in the case of large thradaptive in Figure 9. In the case of intermediate position
between the upper and lower boundaries of Figure 9, the intermediate value by linear interpolation
from 6 to 14 pixels is used as thradaptive according to the Y position of line. Same parameter of thradaptive
is used in two open databases of our experiments in Section 4. However, thradaptive is proportionally
changed based on the width and height of the original image.

However, in the case of a curve lane, we detect several line segments from the left and right
boundaries as illustrated in Figure 10b. Consequently, we obtain several starting and ending positions
for each line segment of the left and right boundaries. We select the two starting positions that have
a y coordinate smaller than the other starting positions and the two ending positions that have a y
coordinate larger than the other ending positions. We then calculate the distance between the two
selected starting positions and the distance between the two selected ending positions. If the two
distances are less than the adaptive threshold from the perspective camera model, we assume that we
identified the correct left and right boundaries of the lane.

In our research, the curve line boundaries are also represented as the linear segments of small
size. Because the length of line segment on curve line boundaries is small, the representation by
linear segments as shown in Figure 10b produces small approximation error. The advantages of this
representation are that we can reduce the processing time by representing the curve lane with the
limited numbers of linear segments (not complicated polynomial curves).
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4. Experimental Results

We test our proposed method with the Caltech open database from [12], which consists of 866 total
frames with an image size of 640 × 480 pixels. We implemented the proposed algorithm in Microsoft
Visual Studio 2013 and OpenCV 3.0. Experiments were performed on a desktop computer with Intel
Core™ i7 3.47 GHz (Intel Corporation, Santa Clara, CA, USA) and 12 GB memory (Samsung Electronics
Co., Ltd., Suwon, Korea). Figure 11 shows the sample datasets used for the experiments.

To measure the accuracy of lane detection, the ground-truth (starting and ending) positions of
lane were manually marked in the images. Because our method can detect the left and right boundary
positions of a road lane by discriminating the dashed and solid lanes, all the ground-truth positions
were manually marked to measure the accuracy. Based on the inter-distance between two starting
positions (of ground-truth point and that detected by our method) and that between two ending
positions (of ground-truth point and that detected by our method) of the lane, we determined whether
the detection was successful or failed. If the two inter-distances are less than the threshold, the line
detected by our method is determined as correct one. If not, it is determined as false one.
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We define the correct lane point as positive data and the non-lane point as negative data. From that,
we can define two kinds of errors, false positive (FP) errors and false negative (FN) errors. In addition,
true positive (TP) is defined. Because we measure the accuracy only with the positive data and do
not have any negative data (i.e., ground-truth non-lane point), true negative (TN) errors are 0% in our
experiment. From that, we can obtain precision, recall, and F-measure [33,34]. The range of precision,
recall, and F-measure is 0 to 1, with 0 being the lowest accuracy and 1 being the highest accuracy.
In our evaluations, the numbers for TP, FP, and FN cases are represented as #TP, #FP, and #FN.

Table 2 shows the accuracies of our method. As indicated in Table 2, the precision, recall,
and F-measure are about 0.90, 0.94, and 0.90, respectively. The road lines in Cordova 2 dataset are less
distinctive compared to those in other datasets, which increases the FP detection by our method and
decreases the consequent precision. The Washington 2 dataset includes more symbol markings (such as
indicating words, crosswalk as shown in Figure 11d) on the road than other datasets. These symbol
markings cause FP detection by our method, which decreases the consequent precision. Based on the
results from Table 2, we can conclude that the proposed method works well with the images captured
in various environments.

Table 2. Experimental results with Caltech datasets.

Database #Images #TP #FP #FN Precision Recall F-Measure

Cordova 1 233 1252 53 92 0.96 0.93 0.94
Cordova 2 253 734 112 15 0.87 0.98 0.92

Washington 1 175 875 94 64 0.9 0.93 0.91
Washington 2 205 1180 196 79 0.86 0.94 0.90

Total 866 4041 455 250 0.90 0.94 0.90

In Figure 12, we show examples of correct detection by our method. Figure 13 shows examples of
false detection. As shown in Figure 13a, our method falsely detected the part of a crosswalk on the
road as a road lane. In Figure 13b, the part of a text symbol marking is falsely detected as a road lane.
In Figure 13c, the boundary of a non-road object is falsely detected as a road lane.

Next, we compare the performance of our method with that of Aly’s method [12]. Aly used
the IPM method to represent a road lane as a straight line in an image, a Gaussian filter and HT
to detect straight lines, and RANSAC to fit lane markers. Figure 14 shows the comparisons of
lane detection by [12] and our method. The lanes detected by Aly’s method are shown as thick
green lines, those detected by our method are represented as blue and red lines. In our comparison,
we empirically found the optimal thresholds for both our method and Aly’s method [12], respectively.
As shown in Figure 14, Aly’s method cannot accurately discriminate between the dashed and solid
lanes. Moreover, his method does not detect the left and right boundaries of each lane.

The reason why our method tries to detect all the boundaries of a road lane is that the type of
road lane can be discriminated among two lanes (left blue lanes of Figure 14b) and one lane (right red
lane of Figure 14b) by detecting all boundaries. In addition, the reason why our method tries to detect
a road lane by discriminating between the dashed and solid lanes is that this discrimination is also
important for the driving of an autonomous vehicle.
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In Table 3, we compare the lane detection accuracies of Aly’s method [12] and ours, and confirm
that our method outperforms Aly’s method [12]. The reason why Aly’s method is less accurate is
that Aly’s method cannot accurately discriminate between the dashed and solid lanes as shown in
Figure 14. In addition, his method does not detect the left and right boundaries (the red and blue lines
of Figure 14b) of each lane. As explained earlier, in our experiment, all the ground-truth positions
are marked at all the starting and ending points of the left and right boundaries of dashed and solid
lanes. Based on the inter-distance between the two starting positions (ground-truth position and that
detected by algorithm) and that between the two ending positions (ground-truth position and that
detected by algorithm), whether the detection is successful or has failed is determined. Therefore, Aly’s
method gave much higher error rates than our method.

In addition, we included the additional comparative experiments with Truong and coworker’s
method [35] with Caltech dataset as shown in Table 3. We empirically found the optimal thresholds for
their method, also. As shown in Table 3, our method outperforms Truong and coworker’s method [35],
also, because Truong and coworker’s method does not detect the left and right boundaries of each lane
with the correct discrimination of dashed and solid lanes, either.

Table 3. Comparative accuracies of lane detection on Caltech datasets.

Database Accuracies Cordova 1 Cordova 2 Washington 1 Washington 2

Precision
Ours 0.96 0.87 0.9 0.86
[12] 0.012 0.112 0.037 0.028
[35] 0.553 0.389 0.423 0.440

Recall
Ours 0.93 0.98 0.93 0.94
[12] 0.006 0.143 0.037 0.026
[35] 0.512 0.402 0.407 0.430

F-measure
Ours 0.94 0.92 0.91 0.90
[12] 0.008 0.126 0.037 0.027
[35] 0.532 0.395 0.415 0.435

As the next experiment, we measured the processing time per frame by our method as shown
in Table 4. The reason why the processing time with the Washington 1 dataset is larger than those
with others is that some images of Washington 1 dataset include many shadows which produced
many incorrect line segments, and this increases processing time. As shown in Table 4, we can confirm
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that our method can be operated at a fast speed (about 30.2 frames/sec (1000/33.09)). With all the
databases, the processing time for three steps of “Removing the incorrect line segments based on
angle”, “Combining two line segments based on inter-distance”, and “Detecting correct lane by the
adaptive threshold” of Figure 1 is 0 ms, respectively. Therefore, total processing time is same to
that of detecting line segments by LSD algorithm. In future work, we would research about more
sophisticated computational techniques to reduce the processing time on the step of detecting line
segments by LSD algorithm.

Table 4. Processing time per each frame (unit: ms).

Module Database Processing Time

Cordova 1 26.56
Cordova2 32.89

Washington1 37.80
Washington 2 35.12

Average 33.09

In addition, we included the comparative experiments by our method with Aly’s method [12]
and Truong and coworker’s method [35] with additional datasets of Santiago Lanes Dataset (SLD)
dataset [36] as shown in Table 5. The examples of SLD dataset are shown in Figure 15.
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Figure 15. Examples of images on Santiago Lanes Dataset (SLD) datasets.

As shown in Table 5, our method outperforms Aly’s method [12] and Truong and coworker’s
method [35] on SLD datasets, also, because their methods do not detect the left and right boundaries
of each lane with the correct discrimination of dashed and solid lanes, either, as shown in Figure 16.
The examples of detected results on SLD datasets are shown in Figure 16, which shows that our method
can detect the starting and ending positions of lane with the discrimination of dashed and solid lanes
more accurately than Aly’s method [12] and Truong and coworker’s method [35].

Table 5. Comparative accuracies of lane detection on SLD datasets.

Database Accuracies SLD Dataset

Precision
Ours 0.905
[12] 0.01
[35] 0.662

Recall
Ours 0.929
[12] 0.002
[35] 0.465

F-measure
Ours 0.917
[12] 0.003
[35] 0.546
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Figure 16. Examples of comparative results of lane detection on SLD datasets: (a) our method;
(b) Aly’s method [12]; and (c) Truong and coworker’s method [35].

Our method can correctly detect the curve lane, also. Because Caltech datasets do not include the
curve lanes, we include the detection results on SLD datasets by our method. As shown in Figure 17,
our method can correctly detect the curve lane, also. In addition, the errors of detection on curve lane
are already included in the results of Table 5.

The methods in [31,32] can not only detect lanes, curves as well as straight, but also predict
the direction of upcoming curves. However, their method did not detect the starting and ending
positions of lane in addition to no discrimination of dashed (broken) and solid (unbroken) road lanes.
Different from their methods, our method can correctly detect the starting and ending positions of
lane with the discrimination of dashed and solid lanes.
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The reason why the accurate detection of starting and ending points is important in our research
is as follows. In the case that the lane is changed from dashed lane to solid one, the car should not
change its current driving lane. If there exists the error to detect accurate starting and ending points of
dashed lane by autonomous car (self-driving car) at fast moving speed, it can causes the traffic accident.
For example, assuming that actually dashed lane is ended, but the autonomous car misrecognize the
situation as the dashed lane being still maintained due to the error to detect accurate starting and
ending points of dashed lane. In this case, the car can change its driving path by crossing of dashed
lane (but, actually solid lane). If there exists another vehicle (approaching at very fast speed) behind
the autonomous car, and the driver in this vehicle thinks that there would be no lane crossing by the
front car (autonomous car) because the dashed lane is ended, the dangerous situation of rear-end
collision can happen. These are why we are interest in detecting the accurate starting and ending
points of road lane (as shown in Figure 17) in our research.

5. Conclusions

In this paper, we presented our research on lane detection, which focuses on how to discriminate
between dashed and solid lanes under various environmental conditions. Although it has some
limitations in difficult scenarios such as blurred lane markings or shadows, the proposed method shows
a stable performance in detecting lanes with images from various environments. All the parameters of
our algorithm were empirically determined with some images of dataset without any optimization.
We experimentally compared our approach with an existing method and demonstrated the superiority
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of our method. Because we do not use any tracking information in successive image frames,
the detection of lanes by our method is not dependent on the car’s speed. Although our method can
detect the correct road lane even with a little amount of shadows, as shown in Figures 12, 14b and 16a,
the road lanes with severe amount of shadows cannot be detected due to the limitation of LSD-based
detection of line segments.

To overcome the above limitations, we plan to conduct further research on how to reduce the
impacts of unexpected noises to enhance the detection accuracy by LSD method and to make the
method robust to occlusion. We can also overcome these limitations by using additional classifiers
of road symbol markings or indicating text that is written on roads. In addition, the ROI calculation
using camera calibration information or the curvature of road markings would be researched in our
future work. Furthermore, we would research about the determination of adaptive threshold based on
the calibration parameters of camera.
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