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Abstract: A linearized programming method of memristor-based neural weights is proposed.
Memristor is known as an ideal element to implement a neural synapse due to its embedded functions
of analog memory and analog multiplication. Its resistance variation with a voltage input is generally
a nonlinear function of time. Linearization of memristance variation about time is very important for
the easiness of memristor programming. In this paper, a method utilizing an anti-serial architecture
for linear programming is proposed. The anti-serial architecture is composed of two memristors
with opposite polarities. It linearizes the variation of memristance due to complimentary actions
of two memristors. For programming a memristor, additional memristor with opposite polarity is
employed. The linearization effect of weight programming of an anti-serial architecture is investigated
and memristor bridge synapse which is built with two sets of anti-serial memristor architecture is
taken as an application example of the proposed method. Simulations are performed with memristors
of both linear drift model and nonlinear model.

Keywords: weight programming; complimentary action; anti-serial architecture; linearity weight
programming; complimentary action; anti-serial architecture; linearity

1. Introduction

Memristor is a new circuit element postulated by Leon Chua in 1971 [1] and fabricated recently
by the Stanley Williams group [2] from Hewlett-Packard (HP). It exhibits excellent features of both
memory [3–6] and neuromorphic applications [2,7–11]. For memory applications, it is nonvolatile and
has an extremely small size of a few nanometers [3–5]. For neuromorphic applications, it has features
of pulse-based operation and adjustable resistance, which are ideal for tuning the synaptic weights of
neuromorphic cells [2,7–10,12,13].

A convenient way of programming a memristor with a certain value is by applying a rectangular
voltage pulse whose magnitude of voltage is constant during pulse period and zero during non-pulse
period. However, the variation of its resistance is a nonlinear function of the applied voltage pulse
width even it is a linear model. We call the resistance of memristor memristance.

Fortunately, when two memristors with opposite polarities are combined together, the nonlinearity
of memristance is reduced dramatically due to the complementary action of two memristors. Kim et al.
presented an efficient weighting circuit for synaptic operation by building a bridge structure combining
two opposite anti-serial memristor circuits [7].

Waser’s group reported a fabrication result of complementary resistive switch (CRS) consisting of
two back-to-back (anti-serial) memristive elements for the construction of large passive crossbar arrays
by solving the sneak path problem [14]. Later, the CRS architecture has been further investigated
via an analytical approach [15]. T. Liu et al. also reported the Current-Voltage (I-V) characteristics
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of antiparallel resistive switches (APRS) that strongly depend on the parameters of the individual
switches [16].

In this paper, we propose a linearized programming method utilizing an anti-serial architecture.
To program a target memristor, the same type of a subsidiary memristor is prepared and connected to
the target memristor in series with opposite polarity. Since composite memristance of the anti-serial
circuit is a constant value, the current through the circuit is constant. It follows that the memristance
variation of the individual memristor is a linear function of pulse width since the memristance variation
is a linear function of charge.

The principle of such linear programming is explained theoretically and verified via simulations
in this paper. Section 2 describes a reason that memristor is a useful element for building a neural
synapse. Section 3 demonstrates nonlinearity in programing of a memristor with rectangular voltage
pulses. To resolve the nonlinearity problem of voltage controlled memristor, an anti-serial architecture
is proposed in Section 4. Simulation results to support the proposed idea are provided in Section 4.
Section 5 is the conclusion.

2. Memristor as a Promising Element for the Implementation of Neural Synapses

In biological neural systems, each neuron is connected to other neuron through a synapse between
them. A synapse is a very special place in a neural cell, where memory and analog multiplication
are performed. Figure 1 shows input and output connections of a biological neuron where inputs
(dendrites) are denoted as “b” and output (axon) is denoted as “a”. Typically, about 10,000 inputs
(dendrites) are connected at a single neuron. Thus, the same number of synaptic weights is needed in
a neuron. Therefore, the implementation of huge number of neural synapses in a chip is a big roadblock
for the development of an artificial neuron system. To make matters worse, one synaptic circuit is
composed of many transistors as shown in Figure 2. Therefore, the implementation of an artificial
neural system that mimics a biological neural system is seemingly far beyond our reach with the
current circuit technologies.
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Figure 3. (a) Structure of TiO2 memristor, TiO2−x and TiO2 layers are sandwiched between two 
platinum electrodes. When a voltage/current is applied, its memristance is altered; (b) equivalent 
circuit and (c) symbol of the Memristor. 
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Figure 3 shows a structure of a memristor fabricated successfully by HP [2]. In an HP TiO2

(Titanium dioxide) memristor model [2], an undoped region with highly resistive TiO2 and a doped
region with a highly conductive oxygen vacancy TiO2−x layer are sandwiched between two platinum
electrodes. When a voltage or current signal is applied to the device, the border line between the
doped and undoped layers shifts as a function of the applied voltage or current. In consequence,
the resistance between the two electrodes is altered. Figure 3b,c are equivalent circuits.
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In the TiO2 memristor, a thin titanium dioxide (TiO2) layer and a thin oxygen-poor titanium
dioxide (TiO2−x) layer are sandwiched between two platinum electrodes. When a voltage or current is
applied to the device, the resistance between the two electrodes is altered.

The memristor is defined [7] by

v(t) = R(t)i(t) =
dϕ

dt
· dt

dq
i(t) (1)

where ϕ(t) and q(t) denote the flux and charge, respectively, at time t. Thus, the resistance can be
interpreted as the slope at the operating point q = qQ at time t on the memristor ϕ_q curve. If the ϕ_q
curve is nonlinear; the resistance will vary with the operating point.

Since the flux ϕ is defined by ϕ (t) =
∫ t
−∞ v (τ) dτ, the resistance of the memristor, called the

memristance, M, can be controlled by applying a voltage or current signal across the memristor, where

R = M =
dϕ

dq

∣∣∣∣
(qQ ·ϕQ)

(2)

Equation (2) shows that a memristor is a kind of resistor that is variable depending upon
an operation point on a charge and flux plane. In this sense, it is a programmable resistance.

Let the input of a memristor be a current and the voltage across the memristor be the output of
a single memristor circuit as shown in Figure 4. Then, according to Ohm’s law, the voltage output is
an analog multiplication between the current input and the resistance of a memristor as in Equation (3).

v = i × M (3)
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Figure 4. Memristor as an ideal element for a neural synapse where voltage across the memristor is
a multiplication between an input current and a memristance.

Therefore, memristor is, in fact, an analog multiplier. Note that the resistance of a memristor is
distinguished from that of an ordinary resistor in the sense that its resistance is programmable.
It follows that the resistance of a memristor is called memristance. Since the memristance of
a memristor can be altered (programmed) by input voltage/current and an analog multiplication is
performed within a single device, the memristor is known as an ideal element for the implementation
of synapses.

3. Nonlinearity in Memristor

In the TiO2 memristor, a thin TiO2 layer and a thin oxygen-poor TiO2−x layer are sandwiched
between two platinum electrodes. The TiO2 layer and the TiO2−x layer are referred to as un-doped,
and doped layers, respectively. When a voltage or current is applied to the device, the dividing line
between the TiO2 and TiO2−x layers shifts as a function of the applied voltage or current. As a result,
the resistance between the two electrodes is altered.
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Let D and w denote the thickness of the sandwiched area and the doped area (oxygen deficient
area) in the TiO2 memristor, respectively, and let RON and ROFF denote the resistances at high and low
dopant concentration areas, respectively.

The relationship between the flux and the charge of the TiO2 memristor is given by [2]

ϕ(t) = Ro f f

{
q(t)

[
1 +

w0

D

(
RON
ROFF

− 1
)]

− µvRON
2D2

(
1 − RON

ROFF

)
q(t)2

}
+ ϕ0 (4)

where µν is the dopant mobility and w (t) /D is the state variable x.
The memristance M of a memristor can be computed with M = dϕ

dq as

M =
dϕ

dq
= Ro f f

{[
1 +

w0

D

(
RON
ROFF

− 1
)]

− µvRON
D2

(
1 − RON

ROFF

)
q(t)

}
(5)

Assume that the applied input is a current i(t), then, Equation (5) is

M = Ro f f

{[
1 +

w0

D

(
RON
ROFF

− 1
)]

− µvRON

D2

(
1 − RON

ROFF

) ∫
i(t)dt

}
(6)

The derivative of Equation (6) with respect to time gives

dM(t)
dt

= −Ro f f
µvRON

D2

(
1 − RON

ROFF

)
i(t) (7)

It follows from Equation (7)

M (t)
dM (t)

dt
= −Ro f f

µvRON
D2

(
1 − RON

ROFF

)
v(t) (8)

Assume that a constant voltage V is applied as an input voltage. Integrating both sides of
Equation (8) results in

M (t)2

2
= C − Ro f f

µvRON
D2

(
1 − RON

ROFF

)
V · t (9)

where C is the constant of integration.
It follows from Equation (9) that M (t) can be written as,

M (t) =

√
2
{

C − Ro f f
µvRON

D2

(
1 − RON

ROFF

)
V · t

}
(10)

Equation (10) exhibits a fact that memristance is a nonlinear function of time t. Thus,
programming the memristor with an arbitrary value is very difficult.

Differently from the linear drift model described above, the nonlinear phenomenon appears often
at the boundaries of nano-scale devices; with even the small voltage applied across nanometer devices,
a large electric field is produced, and, therefore, the ion boundary position is moved in a non-linear
fashion in nano-scale devices [14].

Several different types of nonlinear memristor models have been investigated [11,19,20]. One of
them is the window model in which the state equation is multiplied by window function Fp (w), namely

dw(t)
dt

= µv
RON

D
i(t)Fp(w) (11)

where p is an integer parameter and Fp (w) is defined by

Fp(w) = 1 −
(

2
w
D

− 1
)2p

(12)
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This is called the nonlinear drift model or memristive model. It is difficult to find the solution
satisfying both Equations (11) and (12) analytically. However, w (t) can be computed numerically as

w(t + ∆t) = µv
RON

D

(
1 −

(
2

w
D

− 1
)2p
)

∆q + w(t) (13)

where ∆q is the charge increment fed to the memristor during the time interval ∆t and computed by
integrating the input current as

∆q =
∫

I(t)dt = I∆t (14)

Substituting the value of w from Equation (7) in Equation (8), we get

M ≈ RON
D

w0

(
1 − ROFF

RON

)
+

RON
D

K∆q × Fp(w)

(
1 − ROFF

ROFF

)
(15)

The current voltage relationship can be obtained as

v(t) =
{

RON
D

w0

(
1 − ROFF

RON

)
+

RON
D

K∆q × Fp(w)

(
1 − ROFF

ROFF

)}
i(t) (16)

Figure 5 shows the graphs of the memristance vs. time and the memristance vs. time charge of
the nonlinear models of memristors when a rectangular pulse is applied. The memristance is more
nonlinear about time than that of charge. In addition, as the number p becomes smaller, the nonlinearity
increases. On the other hand, as the integer p increases, the model tends to the linear model.
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4. Linearization in Memristor Programming with Anti-Serial Architecture

Anti-serial memristor circuit is a circuit of two memristors in serial connection with opposite
polarities as shown in Figure 6. When a positive voltage (or current) signal is applied to a circuit
with two memristors connected in series, but with opposite polarities, then the memristance of M1
decreases, whereas the memristance of M2 increases. As a result, the composite memristance becomes
constant, due to their complementary action [21].
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Let us assume that the polarity of M1 is the same as that of the predefined reference polarity,
and the polarity of M2 is opposite to that of the reference. If charge q(t) is injected into the positive
terminal of the composite device, it acts as positive charge for M1, whereas it acts as negative charge
for M2. Thus,

q2(t) = −q(t) (17)

Similarly, the sign of flux ϕ2(t) is opposite to the reference, i.e.,

ϕc2(t) = −ϕ2(t) (18)

Thus, flux ϕ1(t) and ϕ2(t) of memristor M1 and M2 can be written as functions of charge q(t), as

ϕ1(t) = Ro f f

{
q(t)

[
1 + w01

D

(
Ron
Ro f f

− 1
)]

− µvRon
2D2

(
1 − Ron

Ro f f

)
q(t)2

}
+ ϕ1(0)

(19)

ϕ2(t) = Ro f f

{
q(t)

[
1 + w02

D

(
Ron
Ro f f

− 1
)]

+ µvRon
2D2

(
1 − Ron

Ro f f

)
q(t)2

}
− ϕ2(0)

(20)

The total flux ϕC(t) is the sum of ϕ1(t) and ϕ2(t).
When two memristors are assumed to be identical, and they are in the stable composite

memristance state, the flux of the composite memristor becomes

ϕC(t) = 2Ro f f q(t)

[
1 +

w0

D

(
Ron

Ro f f
− 1

)]
(21)
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where w01 = w02 = w0. Furthermore, the memristance of the composite memristor can be obtained by
differentiating Equation (21) with respect to q(t), as

MC =
dϕC(t)
dq(t)

= 2

{
Ro f f

[
1 +

w0

D

(
Ron

Ro f f
− 1

)]}
= 2MO (22)

where, MC is the composite memristance, and M0 is a constant value of Ro f f

[
1 + w0

D

(
Ron
Ro f f

− 1
)]

.
Note that MC in Equation (22) is a constant, since all the related parameters of M0 are constant.
Let M2 is a target memristor to program. From Equation (6), the expression of memristance

MTarget is

Mtarget = Ro f f

{[
1 +

w0

D

(
RON
ROFF

− 1
)]

− µvRON
D2

(
1 − RON

ROFF

) ∫
i(t)dt

}
(23)

when a rectangular voltage pulse with V volt is applied, current i(t) during a non-zero pulse period
can be computed as

i (t) =
V

MO
(24)

Plugging Equation (24) into Equation (23), we obtain

Mtarget = Ro f f

{[
1 +

w0

D

(
RON
ROFF

− 1
)]

− µvRON
D2

(
1 − RON

ROFF

)
V

MO
t
}

(25)

All the parameters of the right side of Equation (25) are constant except time t. Therefore, it is
a linear function of time. Comparing Equations (25) with (10) which is a nonlinear equation about
time t, programing a memristor with Equation (25) is much easier than with Equation (10).

To program a target memristor with this method, the same type of a subsidiary memristor
is prepared and connected to the target memristor in series with opposite polarity as in Figure 7.
Since composite memristance of the anti-serial circuit is a constant value, the current through the
circuit is constant. It follows that the memristance variation of the individual memristor is a linear
function of pulse width since the memristance variation is a linear function of charge.
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Figure 7. Proposed linearized programming method with anti-serial architecture. It is a circuit of
two memristors in serial connection with opposite polarities. Though the individual behavior of
memristance variation of two memristors is nonlinear about time, it becomes linear in an anti-serial
connection due to the complementary action of two memristors with opposite polarities.
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5. Application of the Anti-Serial Memristor Architecture to the Weight Programming of
a Memristor Bridge Synapse

Anti-serial connections of memristor circuit are utilized to build a memristor bridge weighting
circuit [7], which can be programmed linearly due to the cooperation of two sets of anti-serial
memristor circuits.

The memristor bridge circuit consists of four identical memristors with different polarities
indicated in Figure 8. When a positive or a negative pulse Vin (t) is applied at the input,
the memristance of each memristor is increased or decreased linearly depending upon its polarity.
For instance, when a positive pulse is applied as input, the memristances of M1 and M4
(whose polarities are forward-biased) will decrease. On the other hand, the memristances of M2
and M3 (whose polarities are reverse-biased) will increase. It follows that the voltage VA at node A
(with respect to ground) becomes larger than the voltage VB at node B for a positive input signal pulse.
In this case, the circuit produces a positive output voltage Vout representing a positive synaptic weight.
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Figure 8. An application of the proposed anti-serial memristor circuit to the implementation of
neural networks. With two different types of anti-serial memristor circuits, synaptic weights of neural
networks can be programmed linearly about time when a direct current DC voltage signal is applied
for the programing of a neural synapse.

On the other hand, when a negative strong pulse is applied, the memristances are varied in the
opposite direction and the voltage at node B becomes larger than that at node A. In this case, the circuit
produces a negative output voltage Vout representing a negative synaptic weight.

6. Simulation

The linearity in programing with several memristor circuits such as single and anti-serial circuit
has been tested. The memristor models employed for these simulations are a linear drift model of HP
TiO2 [2] and a nonlinear model with window function with p = 1 [16].

When we want to program a memristor to a certain memristance value, one of the easiest ways is
by applying a constant voltage or current for a certain length of time. If memristance variation about
time is linear, the desired value of memristance can be programmed easily since the programmed
memristance would be proportional to the width of a voltage pulse.

Figure 9 shows the memristance variation about time when a constant voltage of 1 V is applied
to a TiO2 memristor model. Though the memristance curve is linear about charge, it is non-linear
about applied time (pulse width) as shown with a solid line in Figure 9. Such a nonlinearity about time
makes the programing of a memristor difficult. The desirable memristance curve is the dotted line.
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Figure 9. Nonlinear variation of the memristance about time of TiO2 memristor model when a constant
voltage (rectangular pulse) is applied.

Figure 10 shows a memristance variations of two memristors in the proposed anti-serial connection
in Figure 7 when a constant voltage source is applied. Upon applying a constant voltage source to
the anti-serial circuit, the subsidiary and target memristors are cooperating in complimentary fashion.
The resultant memristance variation is linearized about time as shown in the figure.
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Figure 10. Linear variation of memristance when a constant voltage source is applied to the proposed
anti-serial connection of two memristors.

Simulations to demonstrate the linearity in programming the memristor bridge synapse circuit
have also been performed. If the memristance variation of each memristor of anti-serial memristor
circuit is linear, the voltage change at each node of the circuit is supposed to be linear. In consequence,
the weight of the memristor bridge synapse can be programmed linearly since the memristor bridge
synapse circuit is composed of two different sets of anti-serial circuits.

Figure 11 shows a weight programming scenario where Figure 11a is the changes of two voltages
(Vp and Vn) at middle points starting with 15.6 kΩ. When +1 V is applied for a long time as in
Figure 11e, memristances of M1 and M4 are reduced gradually until 400 Ω is reached while M2 and
M3 are kept with its highest memristance 15.6 kΩ. The change of memristance is a nonlinear function
about time during this period. Then, when −1 V is applied afterwards, the memristances of M2 and
M3 are reduced linearly while those of M1 and M4 are increased until M2, M3 and M1, M4 reach the
minimum and maximum values, respectively. Then, when +1 V is applied again, the memristances of
M2 and M3 are increased while those of M1 and M4 are decreased linearly.
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Figure 11. Linear programming of the memristor bridge synapse that is composed of two different
types of anti- serial linear memristors. (a) variation of memristances; (b) changes of voltages Vp and
Vn; (c) difference of middle voltage (Vp − Vn); (d) weight changes of the memristor bridge synapses;
and, (e) wide pulse for programming.

Figure 11b shows the changes of voltages Vp and Vn which are the voltages at middle points
of two anti-serial circuits during the period of Figure 11a. As seen in the middle of the figure,
voltage changes linearly about time due to the linear change of memristances in Figure 11a. As the
result, the voltage difference of middle voltage (Vp − Vn) is also linear as in Figure 11c and finally,
weight changes of the memristor bridge synapses becomes also linear as in Figure 11d.

The effect of the nonlinearity of memristor models to the performance of our memristor circuit
has also been investigated. Figure 12a shows the memristance variations for each memristor of
anti-serially connected non-linear memristor circuit. It is assumed that M1 and M2 have initial
values of 15.6 kΩ and 400 Ω, respectively. When a positive DC input with +1 V is applied at the
anti-serial circuit, the memristance of M1 is reduced and that of M2 is increased. Observe the region
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at the middle where graphs are almost linear though some nonlinear regions can be seen at the end
of the curves. Since weighting operations are performed only in the linear region at the center as
indicated with a box, linear programming can be performed with the proposed anti-serial architecture.
Meanwhile Figure 12b is the variations of memristances when the programming signal is applied at
individual memristors. As seen in the figure, the memristance changes as functions of time are highly
nonlinear in all the range of the curves.Sensors 2016, 16, 1320  12 of 15 
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Figure 12. Linearized variation of memristance at the middle of the graph when a constant voltage 
source is applied at an anti-serial connection of two nonlinear memristors (a) and nonlinear variation 
of memristance of individual memristors for comparison when the programming signal is applied at 
each memristor individually (b). 

Comparing Figure 12a and b, the memristances of anti-serial memristors are linearized 
significantly than those without the anti-serial connection. 

The effect of weight programming of memristor bridge synapses with non-linear model of 
memristors is also investigated. Figure 13 shows parameter variation of a memristor bridge synapse 
while the programming input signal as in Figure 13e is applied. All the necessary arrangements are 
the same as the linear memristor case in Figure 11 except that nonlinear memristors are employed. 

Observe the memristance especially in Figure 13a and weight variation in Figure 13d at the time 
periods of [5.355, 6.247] s and [8.318, 9.209] s are all linearized very much. 

Figure 12. Linearized variation of memristance at the middle of the graph when a constant voltage
source is applied at an anti-serial connection of two nonlinear memristors (a) and nonlinear variation
of memristance of individual memristors for comparison when the programming signal is applied at
each memristor individually (b).

Comparing Figures 12a and 12b, the memristances of anti-serial memristors are linearized
significantly than those without the anti-serial connection.

The effect of weight programming of memristor bridge synapses with non-linear model of
memristors is also investigated. Figure 13 shows parameter variation of a memristor bridge synapse
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while the programming input signal as in Figure 13e is applied. All the necessary arrangements are
the same as the linear memristor case in Figure 11 except that nonlinear memristors are employed.

Observe the memristance especially in Figure 13a and weight variation in Figure 13d at the time
periods of [5.355, 6.247] s and [8.318, 9.209] s are all linearized very much.Sensors 2016, 16, 1320  13 of 15 
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Figure 13. Linearized programming of the memristor bridge synapse which is composed of
two different types of anti-serial non-linear memristors. (a) variation of memristances; (b) changes of
voltages Vp and Vn; (c) difference of middle voltage (Vp − Vn); (d) weight changes of the memristor
bridge synapses; and, (e) wide pulse for programming.

7. Conclusions

In neuromorphic applications of memristors, a linear programming of memristance about time is
important. In this paper, we proposed a method utilizing an anti-serial architecture.

Anti-serial architecture is a serial connection of two memristors with opposite polarities. It exhibits
linearization in programming due to a complimentary action of two memristors; when the memristance
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of one memristor increases, the other decreases. Since composite memristance of the anti-serial circuit
is a constant value, the current through the circuit is constant. It follows that the memristance variation
of the individual memristor is a linear function about pulse width since the memristance variation is
a linear function of charge.

Our proposed idea of linear programming of a memristor is by employing an additional
subsidiary memristor with an opposite polarity when programming a target memristor is needed.
When programming a target memristor is needed, a subsidiary memristor with an opposite polarity is
prepared so that the subsidiary and target memristors construct an anti-serial architecture.

The validity of the proposed idea has been proved with linear drift model of HP TiO2 memristor.
In addition, it has been applied in building a memristor synapse circuit that is composed of
two different sets of anti-serial architectures. Due to the anti-serial architecture, weights have been
programmed linearly about applied pulse width.

The proposed architecture has also been tested with memristor models of highly nonlinear
characteristics. Memristances of the anti-serial memristor circuits and weights of memristor
bridge synapse circuits are all linearized significantly around zero memristance and zero weight
regions, respectively.
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