
Article

Mixed Criticality Scheduling for Industrial Wireless
Sensor Networks
Xi Jin 1, Changqing Xia 1, Huiting Xu 2, Jintao Wang 1,3 and Peng Zeng 1,*

1 Laboratory of Networked Control Systems, Shenyang Institute of Automation, Chinese Academy of Science,
Shenyang 110016, China; jinxi@sia.cn (X.J.); xiachangqing@sia.cn (C.X.); wangjintao@sia.cn (J.W.)

2 College of Information Science and Engineering, Northeastern University, Shenyang 110819, China;
xuht_neu@hotmail.com

3 School of Computer and Control Engineering, University of Chinese Academy of Science,
Beijing 100049, China

* Correspondence: zp@sia.cn; Tel.: +86-24-2397-0232

Academic Editor: Albert M. K. Cheng
Received: 2 June 2016; Accepted: 23 August 2016; Published: 27 August 2016

Abstract: Wireless sensor networks (WSNs) have been widely used in industrial systems.
Their real-time performance and reliability are fundamental to industrial production. Many works
have studied the two aspects, but only focus on single criticality WSNs. Mixed criticality requirements
exist in many advanced applications in which different data flows have different levels of importance
(or criticality). In this paper, first, we propose a scheduling algorithm, which guarantees the
real-time performance and reliability requirements of data flows with different levels of criticality.
The algorithm supports centralized optimization and adaptive adjustment. It is able to improve both
the scheduling performance and flexibility. Then, we provide the schedulability test through rigorous
theoretical analysis. We conduct extensive simulations, and the results demonstrate that the proposed
scheduling algorithm and analysis significantly outperform existing ones.

Keywords: mixed criticality; industrial wireless sensor networks; scheduling algorithm;
scheduling analysis

1. Introduction

Wireless sensor networks (WSNs) make industrial systems low-cost and easy-to-use.
Additionally, industrial wireless standards, e.g., WIA-PA (wireless network for industrial
automation–process automation) [1], WirelessHART [2,3] and ISA 100.11a (international society
of automation) [4], have been developed to promote the popularization of wireless technology.
The real-time performance and reliability are essential to industrial systems. Industrial WSNs, as the
communication media in industrial systems, must be capable of supporting real-time and reliable
communications. The strict requirements on the real-time performance and reliability are different
from normal WSNs. Researchers have proposed some scheduling and analyzing methods, e.g., [5–10],
to improve the two aspects.

However, these previous works do not consider the mixed criticality network. Mixed criticality
means that different data flows have different levels of importance (or criticality) [11]. For example,
Figure 1 shows an industrial WSN for cement manufacturing. The rotary kiln is the most
important equipment. If the rotary kiln has some exceptions and its temperature data are lost or
miss the deadline, workers cannot take measures in time. This will lead to production inefficiency.
By contrast, for the temperature data of pre-heaters, even if they cannot be delivered to the
destination within the deadlines, the temperature of materials can be sensed in the pre-calciner.
Therefore, the temperature data of the rotary kiln have more importance or higher criticality than

Sensors 2016, 16, 1376; doi:10.3390/s16091376 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
http://www.mdpi.com/journal/sensors

Sensors 2016, 16, 1376 2 of 20

those of pre-heaters. Usually, in mixed criticality networks, when the important equipment has an
exception, its sensed data have to be quickly and reliably delivered to the control room. This process
needs more network resources. In a network, flows with different levels of importance coexist.
For resource-constrained WSNs, when resources cannot guarantee the requirements of all levels,
the data flows that belong to less importance levels should be discarded. The discard strategy
is applied in almost all of the mixed criticality systems [12]. Thus, the flows are dynamic in
mixed criticality networks. To guarantee the real-time performance and reliability, previous works on
industrial single criticality WSNs apply totally centralized methods to manage networks, e.g., [5,13,14].
However, the totally centralized methods have difficulty coping with dynamic flows.

Coal

p
re

h
ea

te
r

precalciner

rotary kiln

cooler

pressure

temperature

temperature speed

motor
current

temperature

gateway
pressure

Raw
materials

Figure 1. An industrial wireless sensor network in a cement factory.

Intuitively, two types of methods can be used to schedule data flows in mixed criticality WSNs.
The first type is to schedule flows based on criticality monotonic priorities. The criticality monotonic
scheduling assigns the higher priority to the important flows and schedules them first. This method
does not cope with the dynamism and transmits important flows as soon as possible. In this
method, the criticality is considered as the temporality. However, actually, they are not equivalent.
The criticality means the importance, while the temporality means the urgency. The temperature
data of the rotary kiln are the most important, but the pressure data of pre-heaters are more urgent
than those, since the change of pressure is the most frequent. If the temperature data are transmitted
first, the urgent pressure data will miss their deadline, even though there are idle network resources
after their deadlines. Thus, the criticality monotonic scheduling algorithm cannot utilize resources
efficiently and is not suitable for mixed criticality systems. This has also been demonstrated in [15].
The second type is to use the algorithms that have been proposed for previous mixed criticality systems,
such as uniprocessor/multiprocessor systems [16–18] and networks [19–21], to solve our problem.
However, industrial WSNs are different from the previous systems. To guarantee the strict requirements
on the real-time performance and reliability, the main problem to be solved is how to avoid the
collision and interference between parallel data flows. Mixed criticality uniprocessor/mulitprocessor
systems only consider independent processors and do not have the interference between parallel tasks.
Mixed criticality wired networks and IEEE 802.11-based wireless networks are based on CSMA
(carrier sense multiple access) protocols, which are unacceptable by industrial WSNs due to the
unpredictability (we give more clarifications on the differences between our system and others in
Section 2). Therefore, previous algorithms cannot be used without modification in mixed criticality
industrial WSNs. In this paper, we present a holistic scheduling solution to guarantee the real-time and
reliability requirements of data flows in resource-constrained industrial WSNs. Our scheduling method
is implemented in the application layer. According to the generated schedules, each network node
transmits or receives packets in the MAC (medium access control) layer. The scheduling method of the
application layer manages all data flows based on global information. Thus, it can get the optimized
solution. Some MAC protocols, e.g., [22,23], are proposed to improve the real-time performance and
reliability for industrial wireless sensor networks. They are flexible and scalable, but are difficult to

Sensors 2016, 16, 1376 3 of 20

optimize globally because they transmit packets based on local information. We list our contributions
as follows.

First, we introduce the concept of mixed criticality into resource-constrained industrial WSNs.
The mixed criticality concept distinguishes important data flows from less important data flows.
It provides a new vision for resource-constrained networks to meet the high performance requirement
of important flows.

Second, we propose a scheduling algorithm for the mixed criticality network. The scheduling
algorithm not only implements the optimized global management for all flows, but also reserves
network resources for dynamic adjustments to enhance the real-time performance and reliability
of important flows. It makes a trade-off between the scheduling performance and the flexibility.
Performance evaluations demonstrate that the proposed scheduling algorithm outperforms
existing ones.

Third, we present a schedulability analysis for the proposed scheduling algorithm. We analyze
end-to-end delay for flows and determine whether they are all schedulable. Simulation results show
that our schedulability analysis is more effective than existing ones.

The rest of the paper is organized as follows. Section 2 introduces related works. Section 3 presents
our system model. Section 4 formulates our problem as a satisfiability modulo theories instance.
Section 5 proposes a heuristic scheduling algorithm for mixed criticality WSNs. Section 6 presents the
delay analysis and the schedulability test. Section 7 shows simulation results. Section 8 concludes
this paper.

2. Related Works

Scheduling algorithms and schedulability analysis methods have been widely studied in single
criticality WSNs. The work in [13] proposes a real-time scheduling algorithm and analyzes the
schedulability for industrial WSNs with linear topology, and the work in [24] presents similar methods
for binary-tree networks. Based on the above two works, the work in [25] takes the impact of packet
copying into account to enhance the channel utilization, and the work in [14] supports spatial reuse to
improve the schedulability. For mesh topology networks, the authors of [5,6,26] propose a scheduling
analysis, a fixed priority scheduling algorithm and two dynamic priority scheduling algorithms to
meet the real-time requirement of industrial applications. However, these previous works do not
consider the mixed criticality requirement.

Mixed criticality is first proposed in uniprocessor systems [16,27]. Then, it is introduced
to multiprocessor systems [17,18], controller area networks [19], network-on-chips [28,29], wired
networks [20,30] and IEEE 802.11-based wireless networks [21]. Uniprocessor systems [16,27] and
controller area networks [19] do not support parallel tasks (or data flows); while the serial mode is
unsuitable for industrial WSNs. The works in [17,18] focus on homogeneous multiprocessor systems.
As there is no interference between executing tasks, they do not need to consider how to avoid
the interference. However, in industrial WSNs, the interference must be avoided. Network-on-chips
use wormhole switching. For one data flow, the network-on-chip has to provide all nodes that the data
flow uses simultaneously [28,29], whereas the industrial WSN only provides two nodes for one hop.
Wired networks [20,30] and IEEE 802.11-based wireless networks [21] are based on the CSMA protocol,
which is unacceptable by reliable industrial systems. Therefore, the previous system models are
different from industrial WSNs.

In WSNs, some works about critical data flows have been proposed. The IEEE 802.15.4 standard,
which is widely used by WSNs, supports a hybrid TDMA/CSMA MAC protocol. In the TDMA frame,
the guaranteed time slots (GTSs) can be assigned for transmitting critical data flows. For the hybrid
protocol, the works in [31,32] propose time slot assignment algorithms to improve the performance
of critical data flows. However, due to the unpredictability of the CSMA protocol, industrial WSNs
cannot apply the hybrid protocol. The work in [22] considers a pure TDMA protocol. It proposes the
PriorityMAC protocol, which is a distributed method and allows critical data flows to be transmitted

Sensors 2016, 16, 1376 4 of 20

as soon as possible. The PriorityMAC protocol assumes that the most important data flows are
urgent; while in the mixed criticality industrial WSN, the importance and the urgency are independent
of each other. We have researched mixed criticality industrial WSNs in our previous work [33].
In that work, the network adopts a totally centralized management, and the end-to-end delay is
calculated. However, this strict centralized management is not flexible enough, and all exceptions
have to be submitted to the centralized manager and wait to be processed. In this paper, our proposed
mixed criticality network supports the dynamic adaptive strategy. The classical RM (rate-monotonic)
scheduling policy, which first schedules the flow with a shorter period, is a basic scheduling strategy
and has been widely used in industrial WSNs [1,2]. We will extend the classical RM policy and allow
the important data flows to preempt the resources assigned to less important data flows. Then, we will
analyze the schedulability of our extended RM policy.

3. System Model

Industrial WSNs must support the strict requirements on real-time performance and reliability.
Therefore, we consider an industrial WSN as follows. It consists of a gateway and some sensor devices
(as shown in Figure 1). We use the node set N = {n1, n2, ...} to denote these nodes. The physical layer of
our industrial WSNs is specified by the IEEE 802.15.4 protocol. It supports 16 non-overlapping channels.
However, due to external interference, not all of them can be accessed all of the time. We denote the
number of available channels as M (1 ≤ M ≤ 16). Our network serves the flow set F = { f1, f2, ...}.
Each element fi is characterized by < Ti, Πi, χi >. Each flow fi periodically generates a packet at its
period Ti and then sends it to the destination via the routing path Πi. The relative deadline of each
packet is equal to the period Ti, i.e., a packet is released at the time t, and it must be delivered to its
destination before the time (t + Ti + 1). In industrial wireless protocol, e.g., [1,2], periods conform to
the expression:

b× 2a (1)

where a is an integer value and b is the unit-period.
To keep consistent with related works on mixed criticality systems, our network also supports

two criticality levels, L-crit (low criticality) and H-crit (high criticality). The dual-criticality model can
be easily extended to the multi-criticality model. If the flow fi is important, its criticality level
χi is denoted as H. Otherwise, its criticality level χi is L. When the system is running in the
normal mode without any exception, all flows are delivered to their destinations within deadlines.
If an important equipment has an exception, the corresponding data must be submitted frequently
and via two paths to avoid faults on a single path. Thus, in our system model, the H-crit flows
have two parameter sets: the L-crit parameters < Ti(L), Πi(L) > in the normal mode; the H-crit
parameters < Ti(H), Πi(H) > in the exception mode and Ti(H) ≤ Ti(L). Πi(L) is a path that is
used by the H-crit flow in the normal mode. Πi(H) contains two paths that are used by the H-crit
flow in the exception mode, and the two paths transmit the same packet to improve the reliability.
In order to clearly distinguish these paths, they are denoted as Πi(L) = {π∗i } and Πi(H) = {π′i , π′′i }.
The path π∗i (and π′i , π′′i) is the set of links from the source to the destination. In this paper, we do
not consider how to select routing paths. We assume all paths have been given before generating
schedules. The dynamism this paper addresses refers to using different parameters in different modes.
Transmitting a packet through the j-th link of the path π∗i (or π′i , π′′i) is called the transmission τ∗ij (and
τ′ij, τ′′ij). Each transmission has two attributes < nα, nβ >, which denote the transmission’s source and
destination, respectively. As the constrained-resources must provide enough services to H-crit flows,
the L-crit flows cannot be transmitted when exceptions happen. Therefore, L-crit flows only have a
parameter set < Ti(L), Πi(L) >.

To improve the reliability of industrial networks, we adopt the TDMA scheme in the
MAC layer. The network manager, which is connected to the gateway, assigns a time slot
and a channel offset to each transmission. A transmission only is scheduled at the given time

Sensors 2016, 16, 1376 5 of 20

slot and on the given channel offset. Packets are generated periodically, and the schedules of
corresponding transmissions have the same period. The schedules with the same period are
organized within a superframe [2]. Transmitting a packet from the source to the destination has
to be done in a superframe. Thus, superframes repeat themselves periodically, and then, flows can
be transmitted successfully. Figure 2a shows a simple network, which contains two flows f1 and f2.
When the system is in normal mode, the flows use their L-crit parameters. Their periods are eight time
slots and four time slots, and their paths are {e52, e21} and {e98, e87, e74, e41}, where eij denotes the link
from the node ni to the node nj. Figure 2b shows their superframes with different periods. CH and TS
denote channel offset and time slot.

1

2

5

4

7

3

f2
f1

8 9

1=H

T1(L)=8

T1(H)=4
*

1

1'

1''

2=L

T2(L)=4

6

*

2

(a)

7 4 4 18 7

9 8

7 4 4 18 7

9 8

7 4 4 18 7

9 8

8 7

9 8

CH1

CH2

CH1

CH2

TS1 TS2 TS3 TS4 TS5 TS6 TS7 TS8 TS9 TS10 TS11 TS12 TS13 TS14

the 1
st
 period

the f2 superframe

the 2
nd

 period

the f2 superframe

the 1
st
 period

the f1 superframe

the 2
nd

 period

the f1 superframe

the 3
rd

 period

the f1 superframe

...

...

...

...

5 2

2 1

5 2

2 1

(b)

8 7

9 8

8 7

9 7

5 2 7 4 4 1

2 1

7 4 4 18 7

9 8

5 2 7 4 4 1

2 1

8 7

9 8

CH1

CH2

TS1 TS2 TS3 TS4 TS5 TS6 TS7 TS8 TS9 TS10 TS11 TS12 TS13 TS14

the 1
st
 period

of the hyper-frame

the 2
nd

 period

of the hyper-frame
...

...

(c)

8 7

9 8

8 7

9 8

8 7

9 8

8 7

9 8

5 6

6 3 5 2 2 1

5 6

6 3 5 2 2 1

5 6

6 3 5 2 2 1

5 6

6 3

CH1

CH2

TS1 TS2 TS3 TS4 TS5 TS6 TS7 TS8 TS9 TS10 TS11 TS12 TS13 TS14

the 1
st
 period ...

...

the 2
nd

 period the 3
rd

 period

Steal slots

3 1 3 1 3 1

(d)

Figure 2. Graph routing and superframe. (a) A network; (b) superframes with different periods;
(c) a hyper-frame; (d) the flow f2 steal slots from the flow f1.

Two types of improper schedules will lead to transmission interference, which seriously affects
the network reliability. The first type, called node interference, is that more than one transmission
uses the same node at the same time slot. Each node is only equipped with one transmitter.
Therefore, one node cannot serve more than one transmission at the same time. The second type
is called scheduling interference, which means that more than one transmission is scheduled at the
same time slot and on the same channel. These overlapping transmissions cannot be separated.
To avoid transmission interference between different superframes, we consider all superframes as a
hyper-frame whose period is the lowest common multiple of all superframes. According to the period’s
Expression (1), the hyper-period T = LCM(T1, T2, ...) = max

∀ fi∈F
{Ti}. Figure 2c shows the hyper-frame

of the simple example. We only consider how to schedule flows in the first hyper-period, since after
that, all schedules are repeated periodically. The network manager generates all schedules under
two situations: Situation 1: when the network is deployed; and Situation 2: when the deployment
is changed. Due to the requirement of industrial applications being fixed, the deployment is not
often changed. Thus, the schedules may be generated several times, but not frequently. According to
this schedule information, it obtains the working modes of each node at every time slot and then

Sensors 2016, 16, 1376 6 of 20

delivers them to the corresponding nodes. For the schedules in Figure 2c, from TS1 to TS4, working
modes of the node n2 are {receive, send, idle, idle}.

When a node intends to send a transmission of L-crit flows, it waits for a constant time and
then listens whether its channel is used. If the channel is used by H-crit flows, the node discards
its transmission. Otherwise, the node sends the transmission. Note that although the node uses the
carrier sense technique to determine whether an L-crit transmission is discarded or not, it is different
from the CSMA scheme. Since for L-crit flows, the node performs carrier sense within time slots
of the TDMA frame, if the L-crit transmission is not discarded, it is also scheduled based on the
TDMA scheme. When a node intends to send a transmission of H-crit flows, it immediately sends
it at the beginning of the assigned time slot. The scheduling algorithm assigns the proper time slot
and channel for each transmission and prevents H-crit transmissions from interfering with other
H-crit transmissions. Therefore, H-crit transmissions are sent directly without checking the channel.
In this way, the H-crit flow can steal slots from L-crit flows when it needs more resources to cope with
exceptions [34]. Note that the H-crit flow using H-crit parameters is not permitted to steal slots that are
used by any other H-crit flows even if these H-crit flows are using L-crit parameters. Figure 2d shows
an example of mixed criticality schedules. The period of the H-crit flow f1 is changed from eight to
four, and the new path {e56, e63, e31} begins to be used. In this case, there are not enough time slots.
The H-crit transmission 3 → 1 (the gray block) steals the resource of the L-crit transmission 7 → 4.
Based on the stealing strategy, the dynamic adjustment can be supported.

The schedulable flow set is defined as follows. When the system is in the normal mode, the flow
set is schedulable if all flows characterized by L-crit parameters can hit their deadlines. When there
are exceptions in the system, the flow set is schedulable if all H-crit flows can hit their deadlines no
matter which parameters they are using.

4. Mixed Criticality Scheduling Problem Statement

Based on the above system model, we describe the mixed criticality scheduling problem as follows.
Given the network and the flow set F, our objective is to schedule transmissions in the time slot and
channel dimensions, such that the flow set is schedulable.

To explain the problem more clearly, we formulate the problem as a satisfiability modulo theories
(SMT) specification. The transmission τ∗ij (and τ′ij, τ′′ij) is assigned the s∗ij-th (and s′ij-th, s′′ij-th) time
slot and the r∗ij-th (and r′ij-th, r′′ij-th) channel offset. Note that a transmission is scheduled periodically.

Therefore, the transmission uses all of the time slots sij + g · Ti (∀g ∈ [0, TTi
)) in a hyper-frame.

These assignments must respect the following constraints.

(a) Channel offset constraint:
∀ fi, ∀j ∈ [1, |π∗i |], 1 ≤ r∗ij ≤ M

For each transmission, its assigned channel offset must be in M available channels.
This expression is for transmissions in the path π∗i . Other transmissions τ′ij and τ′′ij in paths π′i
and π′′i have the same constraint, and we omit them for simplicity.

(b) Releasing sequence constraint:

∀ fi, ∀j ∈ [1, |π∗i | − 1], s∗i,j < s∗i,j+1

In a routing path, the transmission τi,j+1 is released after the transmission τi,j is scheduled.
We still omit paths π′i and π′′i .

(c) Real-time constraint:
∀ fi, 1 ≤ s∗i,|π∗i |

≤ Ti(L)

All transmissions cannot miss deadlines. Likewise, s′i,|π′i |
and s′′i,|π′′i |

have the same constraint.

Sensors 2016, 16, 1376 7 of 20

(d) Interference constraint: Assigning resources to transmissions must prevent the happening of
node interference and scheduling interference. We use δ(τa, τb) to denote whether there exists
interference between τa and τb,

δ(τa, τb) = (τa ∩ τb = ∅)?(η(sa, sb) ∧ (ra = rb)) : η(sa, sb)

where η(sa, sb) =
∨

∀h∈[0, TTa),∀k∈[0, TTb
)

(sa + h · Ta = sb + k · Tb) means whether the assigned time

slots of τa and τb overlap each other. If the two transmissions do not use the same node, i.e.,
τa ∩ τb = ∅, then they can be scheduled at different time slots or on the different channel offsets.
Otherwise, there exists node interference, and they cannot be scheduled at the same time slot.
The transmissions of the H-crit flow fi are classified into three sets Γ∗i = {τ∗ij |∀j ∈ [1, |π∗i |]},
Γ′i = {τ′ij|∀j ∈ [1, |π′i |]} and Γ′′i = {τ′′ij |∀j ∈ [1, |π′′i |]}. For the L-crit flow fi, Γ′i = Γ′′i = ∅, and
then, ∀ fi ∈ F, Γi = Γ∗i ∪ Γ′i ∪ Γ′′i . Thus, the interference constraint in the normal mode and
exception mode are as follows.

(d.1) Normal mode:
∀τa, τb ∈

∨
∀ fi∈F

Γ∗i , δ(τa, τb) = 0

(d.2) Exception mode:

∀ fi, fg ∈ F, χi = χg = H, ∀τa ∈ Γi, ∀τb ∈ Γg, δ(τa, τb) = 0

The mixed criticality scheduling problem is NP-hard [11]. Our SMT specification can be solved
by some solvers, such as Z3 [35] and Yices [36]. These solvers can find satisfying assignments for quite
many problems, and their solutions have been the excellent standard to evaluate the effectiveness
of other methods [37]. However, the running time may be unacceptable for complex networks and
flow sets. Therefore, we propose a heuristic scheduling algorithm in Section 5 to solve the problem.

5. Scheduling Algorithm

In this section, we first introduce how to schedule transmissions, and then, based on these
schedules, we determine working modes of each node at every time slot.

5.1. A Slot-Stealing Scheduling Algorithm

We propose a slot-stealing scheduling algorithm based on RM (StealRM). The proposed StealRM
optimizes the solution according to the global information and permits transmissions to share the
same resource when the transmissions have different levels of criticality. Hence, the schedules can be
adaptively adjusted based on the requirements of H-crit flows.

The proposed StealRM is shown in Algorithm 1. Each flow is assigned as the RM priority.
If two flows have the same RM priority, the flow with the smaller ID has the higher priority.
The transmission’s priority is equal to its flow’s priority. The set R contains all of schedulable
transmissions (Lines 1 and 17), and the set R′ denotes released transmissions at the current time
slot (Line 3). At every time slot t, we first sort elements of R′ according to the decreasing order of
priorities, and τ1 in the set R′ has the highest priority (Line 4). Then, for each transmission τa in the
set R′, we check whether it can be scheduled at the current time slot without any interference (lines
between 7 and 21). Let F (τa) denote the flow that the transmission τa belongs to (Line 6). The set YHL

t
contains the transmissions that have been scheduled at the time slot t and belong to H-crit flows with
L-crit parameters. The sets YH

t and YL
t correspond to those in H-crit flows with H-crit parameters and

L-crit flows, respectively. The transmissions in the set Y′ and the transmission τa cannot steal slots
from each other. According to the criticality level of τa, the set Y′ is assigned different transmissions
(lines between 7 and 12). If the transmission τa belongs to an H-crit flow with H-crit parameters,

Sensors 2016, 16, 1376 8 of 20

then it cannot steal slots from other H-crit transmissions (lines between 7 and 8). YH and YHL may
contain the transmissions belonging to the same flow with τa. These transmissions do not interfere the
scheduling of τa. Thus, the set {∀τ∗ig} needs to be excluded from YH and YHL (Line 8). Similarly, if the
transmission τa belongs to an H-crit flow with L-crit parameters, then it cannot steal slots from any
other transmissions (lines between 9 and 10). If the transmission τa belongs to an L-crit flow, then its
slots cannot be stolen by L-crit flows and H-crit flows with L-crit parameters (lines between 11 and 12).
When there is no node interference between τa and Y′ and at least one channel is idle (Line 13), the
transmission τa can be scheduled at this current time slot. Θ(Y′) denotes the channels that have been
used by Y′. However, if the current time slot has exceeded its deadline, the flow set is unschedulable
(Lines 14 and 15). Otherwise, the time slot and channel offset of the transmission τa are assigned
(Line 16), and the schedulable transmission set R and the scheduled transmission set YH

t (YL
t and YHL

t)
are updated (lines between 17 and 23).

Algorithm 1 StealRM.

Require: the flow set F
Ensure: the scheduling results ∀sa and ∀ra

1: the schedulable transmission set R← {τ∗i1, τ′i1, τ′′i1|∀ fi ∈ F};
2: for ∀t ∈ [1, T] do

3: R′ ← R;
4: sort R′ according to the decreasing order of priorities;
5: for each a from 1 to |R′| do

6: i← F (τa);
7: if χi == H and τa ∈ Γ′i ∪ Γ′′i then

8: Y′ ← ∪
∀h∈[0, T

Ti(H)
)
(YH

t+Ti(H)×h ∪YHL
t+Ti(H)×h)− {∀τ∗ig};

9: else if χi == H and τa ∈ Γ∗i then

10: Y′ ← (∪
∀h∈[0, TTi(L))

YL
t+Ti(L)×h) ∪ (∪

∀h∈[0, T
Ti(H)

)
(YH

t+Ti(H)×h ∪YHL
t+Ti(H)×h))− {∀τ′ig, τ′′ig};

11: else

12: Y′ ← (∪
∀h∈[0, TTi(L))

YL
t+Ti(L)×h) ∪ (∪

∀h∈[0, T
Ti(H)

)
YHL

t+Ti(H)×h);

13: if
∧

∀τb∈Y′
(τa ∩ τb 6= ∅) and |Θ(Y′)| < M then

14: if t exceeds the deadline of fi then

15: return unschedulable;
16: sa ← t; ra ← a random channel that is not in Θ(Y′);
17: R← R− {τa}+ the next transmission of τa;
18: if χi == H and τa ∈ Γ′i ∪ Γ′′i then

19: ∀h ∈ [0, T
Ti(H)

), YH
t+Ti(H)×h ← YH

t+Ti(H)×h + {τa};
20: else if χi == H and τa ∈ Γ∗i then

21: ∀h ∈ [0, T
Ti(L)), YHL

t+Ti(L)×h ← YHL
t+Ti(L)×h + {τa};

22: else

23: ∀h ∈ [0, T
Ti(L)), YL

t+Ti(L)×h ← YL
t+Ti(L)×h + {τa};

24: return ∀sa and ∀ra;

Sensors 2016, 16, 1376 9 of 20

The number of iterations of the for loop in Line 2 and the for loop in Line 5 is O(|T |) and
O(|Γ|), respectively. The complexity of Line 4, Line 13 and Line 19 is O(|Γ|log|Γ|), O(|Γ|) and
O(TTmin

), respectively. Therefore, the time complexity of Algorithm 1 is O(|T ||Γ|2 TTmin
).

5.2. Node Working Mode

Nodes have three working modes, including transmit mode (S), receive mode (R) and idle mode.
We use wH

α,t =< S (or R), ra > to denote that at the time slot t, the node nα transmits (or receives)
H-crit flows on the channel ra. Similarly, wL

α,t denotes that the node nα serves L-crit flows. Algorithm 2
determines the working mode for each node. For each transmission, we have assigned a time slot and
a channel offset in Algorithm 1. According to the assignments, the working modes of the sender node
and receiver node of the transmission can be obtained (lines between 4 and 9). The time complexity of
Algorithm 2 is O(|Γ| TTmin

).

Algorithm 2 Working mode.

Require: the scheduling results ∀sa and ∀ra

Ensure: all wL
∗,∗ and wH

∗,∗
1: all wL

∗,∗ and wH
∗,∗ are initiated as idle mode;

2: for ∀τa ∈ Γ do

3: i← F (τa); < nα, nβ > are the sender and receiver of τa;
4: if χi == H then

5: ∀h ∈ [0, T
Ti(H)

), wH
α,sa+Ti(H)×h ←< S, ra >;

6: ∀h ∈ [0, T
Ti(H)

), wH
β,sa+Ti(H)×h ←< R, ra >;

7: else

8: ∀h ∈ [0, T
Ti(L)), wL

α,sa+Ti(L)×h ←< S, ra >;
9: ∀h ∈ [0, T

Ti(L)), wL
β,sa+Ti(L)×h ←< R, ra >;

10: return all wL
∗,∗ and wH

∗,∗;

Note that a node may serve two flows at the same time slot, but the two flows must have different
criticality levels. Otherwise, node interference occurs. At the beginning of the time slot t, the node
works in mode wH

α,t. Then, in a constant time, if it needs to send an H-crit flow or has received a
flow, it continues working as the same mode at this time slot. Otherwise, it works in mode wL

α,t.
However, when its mode wL

α,t is S, it must determine whether the assigned channel is clear or not
before it sends the flow. If the channel has been occupied by H-crit flows, the flow has to be discarded.
The switch time between different modes is very short compared with a time slot. For example, the
switch time of the transceiver CC2420 is just 200 µs, while a time slot is 10 ms. Generally, at a time slot,
most nodes only serve one flow or are idle, while only a few nodes serve two flows.

6. Scheduling Analysis

In this section, we analyze the worst case end-to-end delay for each flow and use the delay to
test the schedulability of the flow set. If the worst case delay of all flows does not exceed deadlines,
the flow set is schedulable. For the sake of simplicity, we first explain how to compute the worst case
delay in single-criticality networks (in Section 6.1) and then extend it to mixed criticality networks
(in Section 6.2).

Sensors 2016, 16, 1376 10 of 20

6.1. Analyzing Method for Single-Criticality Networks

Besides transmitting time, the end-to-end delay is introduced by the interference from higher
priority flows. Therefore, in Section 6.1.1, we present the analyzing method of the total interference.
In Section 6.1.2, we distinguish the different types of interference and compute the worst case delay.

6.1.1. Total Interference

During the time interval between the release and completion of the flow fk, all of the active
transmissions that belong to the higher priority flows may have node interference or scheduling
interference to the flow fk. Therefore, in the worst case, the total interference is equal to the number
of those higher-priority transmissions. The method of computing the workload in a period has been
proposed in multiprocessor systems [38]. The mapping between the multiprocessor system model and
the network model has been explained in the work [6], in which a channel corresponds to a processor
and a flow is scheduled as a task. Therefore, we propose our analyzing method based on the work [38],
which is the start-of-the-art analysis for multiprocessor systems. To make our paper self-contained, we
first simply introduce the method of multiprocessor systems and then present our method.

For the simplicity of expression, the multiprocessor system uses the same notations as our
network model. For multiprocessor systems, the calculation of the worst case delay of the task fk is
based on the level-k busy period (as shown in Definition 1).

Definition 1. Level-k busy period for multiprocessor systems: The level-k busy period is the time interval
[t0, tk), in which tk is the finish time of the task fk, and t0 satisfies the following conditions:

1. t0 < tr where tr is the release time of the task fk.
2. ∀t ∈ [t0, tr], at the time t, all processors are occupied by higher-priority tasks.
3. ∀t < t0, ∃t′ ∈ [t, t0], at the time t′, at least one processor is occupied by lower-priority tasks.

If there is no t0 that satisfies all conditions, then t0 = tr.

The level-k busy period is determined by the workload of all higher-priority tasks. The set P̄(fk)

contains the tasks with higher priority than the task fk. If the task fi (fi ∈ P̄(fk)) has a job that is
released earlier than the level-k busy period and its deadline is in the busy period, then the task fi
has the carry-in workload in the level-k busy period. Otherwise, the task has no carry-in workload.
The two types of workloads are presented as follows, and the length of the level-k busy period is x.

(1) In the level-k busy period, if the task fi has no carry-in workload, the upper bound of its
workload is:

WNC
k (fi, x) =

⌊
x
Ti

⌋
· ci + min{x mod Ti, ci}

where ci is the execution time of the task fi.
(2) If the task fi has the carry-in workload, the upper bound of its workload is:

WCI
k (fi, x) =

⌊
max{x− ci, 0}

Ti

⌋
· ci + ci + α

where α = min{max{max{x − ci, 0} − (Ti − Di), 0}, ci − 1} and Di is the worst case delay of
the task fi.

Based on the upper bounds of workload, two types of interference of the task fi to the task fk are
as follows:

INC
k (fi, x) = min{max{WNC

k (fi, x), 0}, x− ck + 1}

ICI
k (fi, x) = min{max{WCI

k (fi, x), 0}, x− ck + 1}

Sensors 2016, 16, 1376 11 of 20

Therefore, the total interference suffered by the task fk is:

Ωk(x, P̄NC(fk), P̄CI(fk)) = ∑
∀ fi∈P̄NC(fk)

INC
k (fi, x) + ∑

∀ fi∈P̄CI(fk)

ICI
k (fi, x)

where P̄NC(fk) and P̄CI(fk) denote the set of tasks without carry-in workload and the set of tasks
with carry-in workload, respectively. In a busy period, at most M − 1 higher-priority tasks have
carry-in workload. Therefore, the set P̄CI contains M − 1 tasks that have maximal values of
ICI
k (fi, x)− INC

k (fi, x). Other tasks are in the set P̄NC.
In the following, we propose our analyzing method. Industrial WSNs apply strict periodic

schedules based on superframes, which can reduce system complexity and run time overhead. While in
multiprocessor systems and previous works about WSNs, schedules are variable, i.e., the assigned time
slots to a task (or a flow) are non-periodic, so our workload bounds are not the same as previous ones.
Our workload bounds are computed with Theorem 1. Definition 2 defines the level-k busy period in
the network.

Definition 2. Level-k busy period for networks: The level-k busy period is the time interval [t0, tk), in which tk
is the finish time of the flow fk and t0 satisfies the following conditions:

1. t0 < tr where tr is the release time of the flow fk.
2. ∀t ∈ [t0, tr], at the time t, all channels are occupied by higher-priority flows or there exists node interference

between the scheduled flows and the flow fk.
3. ∀t < t0, ∃t′ ∈ [t, t0], at the time t′, there is no node interference, and at least one channel is occupied by

lower-priority flows or idle.

If there is no t0 that satisfies all conditions, then t0 = tr.

Theorem 1. The workload bounds can be computed with:

WNC
k (fi, x) = WCI

k (fi, x) =
⌊

x
Ti

⌋
· ci + min{x mod Ti, ci}, (2)

where ci is the number of hops in the path πi, i.e., ci = |πi|

Proof of Theorem 1. The computation of the non-carry-in workload WNC
k (fi, x) is shown in Figure 3a.

There are
⌊

x
Ti

⌋
complete periods and a scheduling window (x mod Ti). In the scheduling window,

at most ci workloads exist. Therefore, the expression of the non-carry-in workload is shown as
Equation (2).

Ti Ti Ti

x
timex mod Ti

(a)

Ti Ti TiTi

timeBA
x

(b)

Figure 3. Illustration of Theorem 1. (a) WNC
k (fi, x); (b) WCI

k (fi, x).

Sensors 2016, 16, 1376 12 of 20

In the following, we compute WCI
k as shown in Figure 3b. The notations A and B

denote the two incomplete periods, respectively. We know that A < Ti, B < Ti and
A + B = (x mod Ti) or (x mod Ti + Ti). We discuss the two cases as follows.

Case 1: A + B = x mod Ti. We draw out the windows A and B in Figure 4a. We consider four
different value ranges of the windows A and B as shown in Table 1, in which if A ≥ Ti − Di and
B ≥ Di; it is Case 2. If A < Ti − Di, then there is no workload in A. If B ≥ Di, then all execution
time ci must be the available workload. In this case, the workload can also be expressed as min{B, ci}.
Therefore, only if A < Ti − Di, the workload is min{B, ci}. If A ≥ Ti − Di and B < Di, the time
interval Ti − Di does not contain any workload. Therefore, the available window A + B is equal to
(x mod Ti)− (Ti − Di).

Ti

B A

Di

Ti

B
A

x mod Ti

(a) (b)

Figure 4. Computation of WCI
k . (a) A + B = x mod Ti; (b) A + B = x mod Ti + Ti.

Table 1. The workload in the incomplete period under different value ranges of A and B.

Workload A < Ti – D i A ≥ Ti – D i

B ≥ Di ci Case 2
B < Di min{B, ci} min{x mod Ti − (Ti − Di), ci}

C1 min{B, ci} min{x mod Ti − (Ti − Di), ci}

In Case 1, we can get that the total workload is:⌊
x
Ti

⌋
· ci + C1 (3)

The notation C1 denotes the workload in the incomplete period as shown in Table 1. It is equal to
min{B, ci} or min{x mod Ti − (Ti − Di), ci}.

Case 2: A + B = x mod Ti + Ti, which is shown in Figure 4b. In this case, there are
⌊

x−Ti
Ti

⌋
complete periods. In the windows A and B, at most ci + min{x mod Ti, ci} workloads exist.
Therefore, the workload of Case 2 is:⌊

x− Ti
Ti

⌋
· ci + ci + min{x mod Ti, ci}

⇒
⌊

x
Ti

⌋
· ci + min{x mod Ti, ci} (4)

Comparing with Equations (3) and (4), the upper bound of workload is Equation (4).
Since (x mod Ti) is not less than B and (x mod Ti) − (Ti − Di), Equation (4) is the same as
Equation (2). The theorem holds.

Due to the two types of workload having the same computing formula, we do not distinguish
them in the following and use Wk(fi, x) to denote them. Based on the workload bound, the interference
of the flow fi to the flow fk is:

Ik(fi, x) = min{max{Wk(fi, x), 0}, x− ck + 1}

Sensors 2016, 16, 1376 13 of 20

Thus, the total interference suffered by the flow fk is:

Ωtotal
k (x, P̄(fk)) = ∑

∀ fi∈P̄(fk)

Ik(fi, x)

6.1.2. Worst Case Delay in Single-Criticality Networks

Ωn
k (x, P̄(fk)) and Ωs

k(x, P̄(fk)) denote node interference and scheduling interference suffered by
the flow fk in the level-k busy period. If there exists a node interference at a time slot, the flow fk cannot
be transmitted at this time slot, no matter how many channels are idle, i.e., the flow fk is delayed one
time slot due to the node interference. However, only when M transmissions are scheduled at a time
slot, the flow fk suffers scheduling interference and is delayed for one time slot. In the worst case,
all of the node interference and scheduling interference will introduce delay to the flow fk. Therefore,
the worst case delay is:

Ωn
k (x, P̄(fk)) +

⌊
Ωs

k(x, P̄(fk))

M

⌋
+ ck (5)

From Equation (5), we know that node interference introduces more delay. Since the sum of
node interference and scheduling interference is Ωtotal

k (x, P̄(fk)), so when as much as possible node
interference occurs, the end-to-end delay is the worst case.

The upper bound of node interference introduced by h consecutive hops of the flow fi to the flow
fk is computed as:

Rk,i(h) = max
∀a∈[1,ci−h]

{|{τiy|∀τiy, y ∈ [a, a + h], ∃τkz such that τiy ∩ τkz 6= ∅}|}

Thus, the workload introduced by transmissions that have node interference is:

Wn
k (fi, x) =

⌊
x
Ti

⌋
· Rk,i(ci) + Rk,i(min{x mod Ti, ci})

Then,
In
k (fi, x) = min{max{Wn

k (fi, x), 0}, x− ck + 1}

and:
Ωn

k (x, P̄(fk)) = ∑
∀ fi∈P̄(fk)

In
k (fi, x)

Then, we can get that the worst case delay of the flow fk in the single-criticality network is:

Dk = Ωn
k (x, P̄(fk)) +

⌊
Ωtotal

k (x, P̄(fk))−Ωn
k (x, P̄(fk))

M

⌋
+ ck

From the definition of the level-k busy period, we know that the length x is the upper bound of
the delay Dk (shown in Theorem 2).

Theorem 2. For the flow fk and the level-k busy period, the following holds:

x ≥ Dk

Proof of Theorem 2. We assume by contradiction that x < Dk. From the definition of the level-k
busy period (Definition 2), we know that the finish times of the busy period and the flow fk are the
same, and t0 must be less than (the first condition) or equal to tr (when t0 does not satisfy at lest
one condition). If x < Dk, then tr < t0, as shown in Figure 5. It is not consistent with the definition.
The above assumption does not hold.

Sensors 2016, 16, 1376 14 of 20

tr t0

x
ck

Dk

tk

Figure 5. Illustration of Theorem 2.

According to Theorem 2, the solution of Equation (6) is the upper bound of end-to-end delay Dk.

x = Ωn
k (x, P̄(fk)) +

⌊
Ωtotal

k (x, P̄(fk))−Ωn
k (x, P̄(fk))

M

⌋
+ ck (6)

Equation (6) can be solved by the iterative fixed point search [39]. The iterative calculation of x
starts with x = ck; until the value of x does not change.

6.2. Mixed Criticality Scheduling Analysis

In dual-criticality networks, there are three types of worst case delay.

(1) DL
k : the worst case end-to-end delay of the L-crit flow.

(2) DHL
k : the worst case end-to-end delay of the H-crit flow with the L-crit parameter.

(3) DH
k : the worst case end-to-end delay of the H-crit flow with the H-crit parameter.

We use D(x, Q, c) to denote Ωn
k (x, Q) +

⌊
Ωtotal

k (x,Q)−Ωn
k (x,Q)

M

⌋
+ c. The methods of computing

these types of delay are similar. The only difference is that the higher-priority flows they suffered are
different, i.e., their interference sets Q are different. H-crit flows have multiple paths. These paths
suffer different interference and cause different delays. Therefore, we use sub-flows f ∗k , f ′k and f ′′k to
distinguish them.

If there are H-crit flows with H-crit parameters in networks, L-crit flows can be discarded.
Therefore, when we compute the delay DL

k , all flows have L-crit parameters. Thus, DL
k = D(x, QL

k , c∗k),
where QL

k = { f ∗i |∀ f ∗i , Ti(L) < Tk(L)} and c∗k = |π∗k |.
Similarly, for H-crit flows with L-crit parameters, the interference set is

QHL
k = { f ′i , f ′′i |∀ f ′i ,∀ f ′′i , χi = H, Ti(H) < Tk(L)} ∪ { f ∗i |∀ f ∗i , Ti(L) < Tk(L)}. Thus, DHL

k = D(x, QHL
k , c∗k),

where c∗k = |π∗k |.
An H-crit flow with its H-crit parameter suffers the interference from H-crit flows with

H-crit parameters. The H-crit flow has two sub-flows f ′k and f ′′k . For these sub-flows, their
interference set is QH

k = { f ′i , f ′′i |∀ f ′i ,∀ f ′′i , χi = H, Ti(H) < Tk(H)} ∪ { f ∗i |∀ f ∗i , χi = H, Ti(L) <

Tk(H)} and c′k = |π
′
k|, c′′k = |π′′k |. Thus, D′Hk = D(x, QH

k , c′k) and D′′Hk = D(x, QH
k , c′′k), and then,

DH
k = max{D′Hk , D′′Hk }.

According to the above delays, the schedulability test is as follows. For the L-crit flow fk,
if DL

k ≤ Tk(L), it is schedulable; otherwise, unschedulable. For the H-crit flow fk, if DHL
k ≤ Tk(L) and

DH
k ≤ Tk(H), it is schedulable; otherwise, unschedulable. If all flows in a flow set are schedulable,

the set is schedulable.

7. Evaluation

In this section, we conduct experiments to evaluate the performance of our proposed methods.

7.1. Scheduling Algorithm

We consider three comparison methods: (1) SMT uses the Z3 solver [35], which is
a high-performance solver being developed at Microsoft Research and whose solution has been
regarded as an excellent standard, to solve our SMT specification (Section 4); (2) noStealRM applies the

Sensors 2016, 16, 1376 15 of 20

RM priority and does not allow slots to be stolen; (3) StealCM allows slots to be stolen and applies
the criticality monotonic priority. Our method is StealRM. The performance metric we used is the
schedulable ratio, which is defined as the percentage of flow sets for which a scheduling algorithm can
find a schedulable solution.

We randomly generate a number of test cases to evaluate these methods. For each test case,
the number of channels M and the number of nodes |N| are given. According to the suggestion

in the work [40], these nodes are placed randomly in the square area A, and A = |N|d2
√

27
2π , where

the transmitting range d is 40 m. Except the gateway, each node has a data flow from itself to the
gateway or vice versa. There are two necessary schedulability conditions for flow sets: (1) the network
utilization U is not larger than one; (2) the utilization of each node is not larger than one. If a flow set
does not satisfy the two conditions, it cannot be scheduled. Thus, in order to make flow sets available,
we specify the network utilization U(U < 1) and use the method UUniFast [41] to assign the utilization
ui for each flow, where U = ∑

∀ fi∈F
ui. Then, if the flow set can satisfy the condition (2), it is an available

flow set. Otherwise, discard it, and repeat the process until an available set is found. The period of
each flow can be obtained according to Ti =

ci
ui

. The high-crit probability of the flows is controlled by
the parameter ρ. Routing paths are selected randomly.

In order to make test cases solvable by the Z3 solver, the parameters are set as ρ = 0.3, M = 2
and U = 0.8. For each configuration, 100 test cases are checked using the four algorithms. Figure 6
shows their schedulable ratios. Our algorithm StealRM is close to the result of Z3. In these simple test
cases, the method StealCM has similar results with our algorithm StealRM. Figure 7 shows the average
execution time of the solvable test cases in Figure 6. When the number of nodes is 25, the execution
time of the method SMT is about 16.5 min. We also use the method SMT to solve the network with
30 nodes, but cannot get the result within 3 h. Except the method SMT, the execution time of other
methods is not more than 10 milliseconds. Therefore, from the perspective of execution time, heuristic
algorithms are significantly more efficient than the method SMT.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

10 15 20 25

sc
h

e
d

u
la

b
le

 r
at

io

the number of nodes

SMT StealRM

StealCM noStealRM

Figure 6. Schedulability comparison among all methods. SMT, satisfiability modulo theories;
StealRM, slot-stealing scheduling algorithm based on rate-monotonic; StealCM, slot-stealing scheduling
algorithm based on criticality monotonic.

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

10 15 20 25

ex
e

cu
ti

o
n

 t
im

e
 (

m
s)

the number of nodes

SMT StealRM

StealCM noStealRM

Figure 7. Execution time comparison among all methods.

Since the execution time of the method SMT is too long, the following experiments do not
contain it. Figure 8 shows the schedulable ratios of the three scheduling algorithms. For each

Sensors 2016, 16, 1376 16 of 20

point in the figure, 500 test cases are randomly generated. From the figure, we can know that our
algorithm StealRM has the highest schedulable ratio no matter with which parameters, while the
algorithm noStealRM has the worst result. Therefore, the stealing mechanism can significantly improve
the algorithm’s performance. Our algorithm StealRM has better performance than the algorithm
StealCM, especially when the node numbers are higher. This demonstrates that: (1) the priority
should correspond to the urgency, but not the importance, while the stealing mechanism reflects the
importance; (2) the urgency and the importance have to be distinguished, except in very small networks.
Comparing among these subfigures, we observe that schedulable ratios decrease with the increases
of ρ, |N|, U and M. The reasons are as follows. An H-crit flow can be regarded as two L-crit flows.
Thus, a larger value of the parameter ρ leads to more flows, which are hard to schedule. A test case
contains |N| − 1 flows. Likewise, the larger |N| makes scheduling hard. The network utilization
U corresponds to the network workload. Heavy workloads lead to scheduling failures. Note that
comparing with Figure 8a, Figure 8d has three additional channels, but its schedulable ratios decrease.
Because the two subfigures generate test cases according to the respective numbers of channels.
Their test cases are different. Although the number of channels increases, the utilization is not changed.
When the utilization U is constant, with the increase of the number of channels M, the packets that
need to be transmitted increase. The increased packets will introduce more interference, which have a
negative impact on the scheduling performance. Therefore, Figure 8d has a lower schedulable ratio
than Figure 8a.

0

0.2

0.4

0.6

0.8

1

20 30 40 50 60 70 80 90

sc
h

e
d

u
la

b
le

 r
at

io

the number of nodes

0

0.2

0.4

0.6

0.8

1

20 30 40 50 60 70 80 90

sc
h

e
d

u
la

b
le

 r
at

io

the number of nodes

StealRM

StealCM

noStealRM

(a) (b)

0

0.2

0.4

0.6

0.8

1

20 30 40 50 60 70 80 90

sc
h

e
d

u
la

b
le

 r
at

io

the number of nodes

0

0.2

0.4

0.6

0.8

1

20 30 40 50 60 70 80 90

sc
h

e
d

u
la

b
le

 r
at

io

the number of nodes

(c) (d)

Figure 8. Schedulability comparison among StealRM, StealCM and noStealRM.
(a) M = 6, U = 0.5, ρ = 0.3; (b) M = 6, U = 0.5, ρ = 0.4; (c) M = 6, U = 0.6, ρ = 0.3;
(d) M = 9, U = 0.5, ρ = 0.3.

Figure 9 shows the average execution time of Figure 8. As the results are similar, we only show
two subfigures for Figure 8a,d. Comparing with our algorithm StealRM, the algorithms StealCM and
noStealRM need more time to find feasible solutions. Therefore, their execution time slightly increases.
From the figure, we know that our algorithm StealRM does not introduce extra time cost. For the three
algorithms, the execution time increases with the increases of the number of nodes, since more data
flows need to be scheduled.

Sensors 2016, 16, 1376 17 of 20

0

40

80

120

160

200

20 30 40 50 60 70 80 90

ex
e

cu
ti

o
n

 t
im

e
 (

m
s)

the number of nodes

StealRM

StealCM

noStealRM

0

40

80

120

160

200

20 30 40 50 60 70 80 90

ex
e

cu
ti

o
n

 t
im

e
 (

m
s)

the number of nodes

StealRM

StealCM

noStealRM

(a) (b)

Figure 9. Average execution time. (a) M = 6, U = 0.5, ρ = 0.3; (b) M = 9, U = 0.5, ρ = 0.3.

7.2. Analyzing Method

The comparison method is SingleAna, in which flow sets are tested using the
single-criticality analysis. Our mixed criticality analysis method is MixedAna. The performance
metrics are the analyzable ratio (the percentage of flow sets which are tested as schedulable by an
analyzing method) and the pessimism ratio (the proportion of analyzed delay to the delay observed
in StealRM). Figure 10 shows the comparison of the analyzable ratios. For each point, 500 test cases
are analyzed. Our method MixedAna outperforms SingleAna. The analyzable ratios decrease with
the increases of these parameters. The reasons are similar to those in Figure 8. The increases of U
and M lead to more packets, and the increases of |N| and ρ lead to more flows. These will cause
more interference. Thus, the analysis introduces more pessimism, and the analyzable ratios decrease.
Figure 11 shows the pessimism ratios of experiments in Figure 10. The pessimism ratios of MixedAna
are less than two, while the pessimism ratios of SingleAna are all larger than two. This is because the
interference that does not exist between H-crit and L-crit flows is eliminated in MixedAna.

0

0.2

0.4

0.6

0.8

1

0.1 0.2 0.3 0.4 0.5 0.6

an
al

yz
ab

le
 r

at
io

U

MixedAna

SingleAna
0

0.2

0.4

0.6

0.8

1

0.1 0.2 0.3 0.4 0.5 0.6

an
al

yz
ab

le
 r

at
io

U

(a) (b)

0

0.2

0.4

0.6

0.8

1

0.1 0.2 0.3 0.4 0.5 0.6

an
al

yz
ab

le
 r

at
io

U

0

0.2

0.4

0.6

0.8

1

0.1 0.2 0.3 0.4 0.5 0.6

an
al

yz
ab

le
 r

at
io

U

(c) (d)

Figure 10. Schedulability comparison among analyzing algorithms. (a) |N| = 20, M = 6, ρ = 0.1;
(b) |N| = 20, M = 6, ρ = 0.3; (c) |N| = 20, M = 9, ρ = 0.1; (d) |N| = 60, M = 6, ρ = 0.1. MixedAna,
mixed criticality analysis.

Sensors 2016, 16, 1376 18 of 20

1

1.5

2

2.5

3

3.5

4

4.5

0.1 0.2 0.3 0.4 0.5 0.6

p
e

ss
im

is
m

 r
at

io

U

MixedAna

SingleAna

1

1.5

2

2.5

3

3.5

4

4.5

0.1 0.2 0.3 0.4 0.5 0.6

p
e

ss
im

is
m

 r
at

io

U

(a) (b)

1

1.5

2

2.5

3

3.5

4

4.5

0.1 0.2 0.3 0.4 0.5 0.6

p
e

ss
im

is
m

 r
at

io

U

1

1.5

2

2.5

3

3.5

4

4.5

0.1 0.2 0.3 0.4 0.5 0.6

p
e

ss
im

is
m

 r
at

io

U

(c) (d)

Figure 11. Delay comparison with StealRM being used as the baseline. (a) |N| = 20, M = 6, ρ = 0.1;
(b) |N| = 20, M = 6, ρ = 0.3; (c) |N| = 20, M = 9, ρ = 0.1; (d) |N| = 60, M = 6, ρ = 0.1.

8. Conclusions

Multiple criticality levels coexist in advanced industrial applications. They share the network
resource, but their requirements for the real-time performance and reliability are different. In this paper,
we propose a scheduling algorithm to guarantee their different requirements and then analyze the
schedulability for this scheduling algorithm. Simulation results show that our scheduling algorithm
and analysis have more performance than existing ones. In the future work, we will propose a routing
algorithm for mixed criticality WSNs to enhance the reliability and design a network deployment
method and a parameter adjustment method to improve the schedulability. Finally, we will implement
these algorithms in a real network.

Acknowledgments: We would like to thank the anonymous reviewers for their constructive comments. This work
was partially supported by the Important National Science and Technology Specific Project (2013ZX03005004) and
the National Natural Science Foundation of China (61502474 and 61233007).

Author Contributions: X.J.proposed the scheduling and analyzing algorithms. C.X. and J.W. designed experiments.
X.J., H.X. and P.Z. wrote the paper.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Liang, W.; Zhang, X.; Xiao, Y.; Wang, F.; Zeng, P.; Yu, H. Survey and experiments of WIA–PA specification of
industrial wireless network. Wirel. Commun. Mob. Comput. 2011, 11, 1197–1212.

2. Std, IEC. Industrial Communication Networks—Wireless Communication Network and Communication
Profiles–WirelessHART; IEC 62591; International Electrotechnical Commission: Geneva, Switzerland, 2009.

3. Nobre, M.; Silva, I.; Guedes, L.A. Routing and scheduling algorithms for wirelessHART networks: A survey.
Sensors 2015, 15, 9703–9740.

4. Quang, P.T.A.; Kim, D.S. Throughput-aware routing for industrial sensor networks: Application to
ISA100. 11a. IEEE Trans. Ind. Inf. 2014, 10, 351–363.

5. Saifullah, A.; Xu, Y.; Lu, C.; Chen, Y. Real-time scheduling for WirelessHART networks. In Proceedings of
the 2010 IEEE 31st Real-Time Systems Symposium (RTSS), San Diego, CA, USA, 30 November–3 December 2010;
pp. 150–159.

Sensors 2016, 16, 1376 19 of 20

6. Saifullah, A.; Xu, Y.; Lu, C.; Chen, Y. End-to-end delay analysis for fixed priority scheduling in WirelessHART
networks. In Proceedings of the 2011 17th IEEE Real-Time and Embedded Technology and Applications
Symposium (RTAS), Chicago, IL, USA, 11–14 April 2011; pp. 13–22.

7. Zhang, H.; Cheng, P.; Shi, L.; Chen, J. Optimal DoS attack scheduling in wireless networked control system.
IEEE Trans. Control Syst. Technol. 2015, 24, 843–852.

8. Cheng, P.; Qi, Y.; Xin, K.; Chen, J.; Xie, L. Energy-efficient data forwarding for state estimation in multi-hop
wireless sensor networks. IEEE Trans. Autom. Control 2015, 61, 1322–1327.

9. Liu, X.; Hou, K.M.; de Vaulx, C.; Shi, H.; Gholami, K.E. MIROS: A hybrid real-time energy-efficient operating
system for the resource-constrained wireless sensor nodes. Sensors 2014, 14, 17621–17654.

10. Yu, S.; Zhang, X.; Liang, W. Concurrent transmission performance modeling of wireless multimedia sensor
network and its experimental evaluation. Inf. Control 2016, 45, 328–334.

11. Baruah, S.; Bonifaci, V.; D’Angelo, G.; Li, H.; Marchetti-Spaccamela, A.; Megow, N.; Stougie, L.
Scheduling real-time mixed-criticality jobs. IEEE Trans. Comput. 2012, 61, 1140–1152.

12. Burns, A.; Davis, R. Mixed criticality systems-a review. Tech. Rep. 2015, 1, 1–61.
13. Zhang, H.; Soldati, P.; Johansson, M. Optimal link scheduling and channel assignment for convergecast

in linear WirelessHART networks. In Proceedings of the WiOPT 2009 7th International Symposium on
Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks, Seoul, Korea, 23–27 June 2009;
pp. 1–8.

14. Chipara, O.; Lu, C.; Roman, G.C. Real-time query scheduling for wireless sensor networks. IEEE Trans. Comput.
2013, 62, 1850–1865.

15. Huang, H.M.; Gill, C.; Lu, C. Implementation and evaluation of mixed-criticality scheduling approaches for
sporadic tasks. ACM Trans. Embed. Comput. Syst. 2014, 13, 1–25.

16. Vestal, S. Preemptive scheduling of multi-criticality systems with varying degrees of execution
time assurance. In Proceedings of the RTSS 2007 28th IEEE International Real-Time Systems Symposium,
San Antonio, TX, USA, 3–6 December 2007; pp. 239–243.

17. Burns, A.; Fleming, T.; Baruah, S. Cyclic executives, multi-core platforms and mixed criticality applications.
In Proceedings of the 2015 27th Euromicro Conference on Real-Time Systems (ECRTS), Lund, Sweden,
8–10 July 2015; pp. 3–12.

18. Lee, J.; Phan, K.M.; Gu, X.; Lee, J.; Easwaran, A.; Shin, I.; Lee, I. Mc-fluid: Fluid model-based mixed-criticality
scheduling on multiprocessors. In Proceedings of the 2014 IEEE Real-Time Systems Symposium, Rome, Italy,
2–5 December 2014; pp. 41–52.

19. Burns, A.; Davis, R.I. Mixed criticality on controller area network. In Proceedings of the 2013 25th Euromicro
Conference on Real-Time Systems (ECRTS), Paris, France, 9–12 July 2013; pp. 125–134.

20. Cros, O.; Fauberteau, F.; George, L.; Li, X. Mixed-criticality over switched ethernet networks. Ada User J.
Proc. Workshop Mixed Crit. Ind. Syst. 2014, 35, 138–143.

21. Addisu, A.; George, L.; Sciandra, V.; Agueh, M. Mixed criticality scheduling applied to jpeg2000 video
streaming over wireless multimedia sensor networks. In Proceedings of the 2013 19th International
Conferecne on Embedded and Real-Time Computing Systems and Applications (RTCSA) Workshop on
Mixed Criticality Systems (WMC), Taipei, Taiwan, 19–21 Augest 2013; pp. 55–60.

22. Shen, W.; Zhang, T.; Barac, F.; Gidlund, M. PriorityMAC: A priority-enhanced MAC protocol for critical
traffic in industrial wireless sensor and actuator networks. IEEE Trans. Ind. Inf. 2014, 10, 824–835.

23. Hussain, S.W.; Khan, T.; Zaidi, S.H. Latency and energy efficient MAC (LEEMAC) Protocol for event
critical applications in WSNs. In Proceedings of the CTS 2006 International Symposium on Collaborative
Technologies and Systems, Las Vegas, NV, USA, 14–17 May 2006; pp. 370–378.

24. Soldati, P.; Zhang, H.; Johansson, M. Deadline-constrained transmission scheduling and data evacuation in
WirelessHART networks. In Proceedings of the 2009 European Control Conference, Budapest, Hungary,
23–26 August 2009.

25. Zhang, H.; Osterlind, F.; Soldati, P.; Voigt, T.; Johansson, M. Time-optimal convergecast with separated
packet copying: Scheduling policies and performance. IEEE Trans. Veh. Technol. 2015, 64, 793–803.

26. Saifullah, A.; Xu, Y.; Lu, C.; Chen, Y. Priority assignment for real-time flows in WirelessHART networks.
In Proceedings of the 2011 23rd Euromicro Conference on Real-Time Systems (ECRTS), Porto, Portugal,
5–8 July 2011; pp. 35–44.

Sensors 2016, 16, 1376 20 of 20

27. Baruah, S.; Vestal, S. Schedulability analysis of sporadic tasks with multiple criticality specifications.
In Proceedings of the ECRTS ’08 Euromicro Conference on Real-Time Systems, Prague, Czech Republic,
2–4 July 2008; pp. 147–155.

28. Burns, A.; Harbin, J.; Indrusiak, L.S. A wormhole noc protocol for mixed criticality systems. In Proceedings
of the IEEE Real-Time Systems Symposium (RTSS), Rome, Italy, 2–5 December 2014; pp. 184–195.

29. Tobuschat, S.; Axer, P.; Ernst, R.; Diemer, J. IDAMC: A NoC for mixed criticality systems. In Proceedings
of the 2013 IEEE 19th International Conference on Embedded and Real-Time Computing Systems and
Applications (RTCSA), Taipei, Taiwan, 19–21 August 2013; pp. 149–156.

30. Carvajal, G.; Fischmeister, S. An open platform for mixed-criticality real-time ethernet. In Proceedings of the
IEEE Design, Automation & Test in Europe Conference & Exhibition, Grenoble, France, 18–22 March 2013;
pp. 153–156.

31. Koubâa, A.; Alves, M.; Tovar, E.; Cunha, A. An implicit GTS allocation mechanism in IEEE 802.15. 4 for
time-sensitive wireless sensor networks: Theory and practice. Real-Time Syst. 2008, 39, 169–204.

32. Zhan, Y.; Xia, Y.; Anwar, M. GTS size adaptation algorithm for IEEE 802.15. 4 wireless networks. Ad Hoc Netw.
2016, 37, 486–498.

33. Jin, X.; Wang, J.; Zeng, P. End-to-end delay analysis for mixed-criticality wirelesshart networks. IEEE/CAA J.
Autom. Sin. 2015, 2, 282–289.

34. Li, B.; Nie, L.; Wu, C.; Gonzalez, H.; Lu, C. Incorporating emergency alarms in reliable wireless
process control. In Proceedings of the ACM/IEEE Sixth International Conference on Cyber-Physical
Systems, Seattle, WA, USA, 14–16 April 2015; pp. 218–227.

35. De Moura, L.; Bjørner, N. Z3: An efficient SMT solver. In Tools and Algorithms for the Construction and Analysis
of Systems; Springer: London, UK, 2008; pp. 337–340.

36. Dutertre, B.; de Moura, L. System description: Yices 1.0. In Proceedings of the Satisfiability Modulo Theories
Competition, Seattle, WA; USA, 17–19 August 2006.

37. Pellizzoni, R.; Paryab, N.; Yoon, M.K.; Bak, S.; Mohan, S.; Bobba, R.B. A generalized model for preventing
information leakage in hard real-time systems. In Proceedings of the IEEE Real-Time and Embedded
Technology and Applications Symposium (RTAS), Seattle, WA, USA, 13–16 April 2015; pp. 271–282.

38. Guan, N.; Stigge, M.; Yi, W.; Yu, G. New response time bounds for fixed priority multiprocessor scheduling.
In Proceedings of the 30th IEEE Real-Time Systems Symposium, Washington, WA, USA, 1–4 December 2009;
pp. 387–397.

39. Joseph, M.; Pandya, P. Finding response times in a real-time system. Comp. J. 1986, 29, 390–395.
40. Camilo, T.; Silva, J.S.; Rodrigues, A.; Boavida, F. Gensen: A topology generator for real wireless sensor

networks deployment. In Software Technologies for Embedded and Ubiquitous Systems; Springer: Heidelberg,
Germany, 2007; pp. 436–445.

41. Bini, E.; Buttazzo, G.C. Measuring the performance of schedulability tests. Real-Time Syst. 2005, 30, 129–154.

c© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC-BY) license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Works
	System Model
	Mixed Criticality Scheduling Problem Statement
	Scheduling Algorithm
	A Slot-Stealing Scheduling Algorithm
	Node Working Mode

	Scheduling Analysis
	Analyzing Method for Single-Criticality Networks
	Total Interference
	Worst Case Delay in Single-Criticality Networks

	Mixed Criticality Scheduling Analysis

	Evaluation
	Scheduling Algorithm
	Analyzing Method

	Conclusions

