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Abstract: Satellite capturing with free-floating space robots is still a challenging task due to the
non-fixed base and unknown mass property issues. In this paper gyro and eye-in-hand camera
data are adopted as an alternative choice for solving this problem. For this improved system, a new
modeling approach that reduces the complexity of system control and identification is proposed.
With the newly developed model, the space robot is equivalent to a ground-fixed manipulator system.
Accordingly, a self-tuning control scheme is applied to handle such a control problem including
unknown parameters. To determine the controller parameters, an estimator is designed based on
the least-squares technique for identifying the unknown mass properties in real time. The proposed
method is tested with a credible 3-dimensional ground verification experimental system, and the
experimental results confirm the effectiveness of the proposed control scheme.

Keywords: free-floating space robot; autonomous target capturing; space robot modeling; self-tuning
control; mass property estimation

1. Introduction

With development of space technology, modern space missions are becoming much more complex
than ever before, including tasks such as on-orbit refueling, damaged module replacement, target
satellite capture, etc. To complete such challenging missions, many attempts have been made to design
special robots for space applications. The free-floating space robot was invented as a particular kind
of robotic system for on-orbit satellite recovery and maintenance. It employs a free-flying satellite
and robotic manipulators mounted on it, so that it can perform on-orbit approaching and target
operating tasks. For extending the service life, the position and attitude of the carrier satellite are
totally uncontrolled during operations. There have been several successful free-flying space robots,
such as Engineering Test Satellite VII (ETS–VII) which is the first space robot project that successfully
captured an autonomous on-orbit target [1–3] and the orbital express plan of NASA [4–6], etc. Other
free-floating space robot projects have also been carried out as described in [7,8].

The kinematics, dynamics and control of a free-floating space robot are much more complex
compared to their ground counterparts, because of the free-floating base satellite. Since the base
satellite is free-floating, any robot arm movements may result in changes to the base satellite position
and attitude due to the dynamical interactions between the manipulator and the satellite carrier [9,10].
To solve this problem, a modeling technique was proposed by Umetani and Yoshida [11]. They
introduced the momentum conservation law into the space robot kinematics formulation, and put
forward the concept of the generalized Jacobian matrix. Another successful modeling technique known
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as the Virtual Manipulator (VM) technique was proposed by Vafa and Dubowsky [12]. They simplified
the kinematics equation by decoupling the system centroid translational degrees of freedom. The VM
technique sets up a virtual ground-fixed manipulator to describe the motions of the free-floating space
robot. Dubowsky and Papadopoulos compared the structure of the motion equations for space robots
and ground-fixed robots in [13]. They concluded that if the carrier satellite attitude can be measured
or calculated, almost all the ground robot control strategies can be applied to a free-floating space
robot. Based on these models and concepts, a number of control methods have been proposed for
free-floating space robots. A variable structure control strategy was presented by Fang [14], where
a neural network controller is used as the dynamic compensator. Huang et al. studied the tethered
space robot (TSR), and presented several trajectory planning and control methods [15–17]. To stabilize
the TSR during capture impact with target, Huang derived the impact dynamic model for target
capturing and an adaptive robust controller was designed accordingly [18]. Because the collision
during the capture and the original target rotation leads to a tumbling of the tethered space robot–target
combination system, a robust adaptive backstepping controller was designed to realize stabilization
after the target is captured [19]. Huang also investigated the spacecraft attitude takeover control
for extending the life time of fuel-exhausted spacecraft [20]. He designed a reconfigurable control
system handling the attitude control problem including the mass property changes. Pathak proposed
a robust overwhelming control method for space robot and verified it by numerical simulations [21].
Tsuchiya studied the satellite attitude dynamics of space robot and proposed an attitude control
scheme based on the reaction wheels [22]. Rastegari and Moosavian suggested a multiple impedance
control approach for free-flying space robots to track the path and tune the inner forces at the same
time [23]. Zarafshan and Moosavian investigated the dynamics of space robot with flexible elements
and proposed a hybrid suppression control method [24]. Considering that pure motion control is not
applicable for the satellite-capturing tasks, sensor-based control methods are also applied in space
robot engineering. One of the most effective sensor-based robot control strategies is the visual servoing.
Instead of the “looking” then “moving” mode which combines the visual sensor and the robotic
system in an open-loop fashion, visual servoing introduces a visual feedback control loop to increase
the accuracy of the overall system. The basic conceptual framework of visual servoing for robotic
manipulators is introduced in Hutchinson’s article [25]. In this paper, two major classes of visual
servoing systems were discussed in detail. Chaumette and Hutchinson described the basic approaches
and advanced techniques of visual servoing in [26,27] and the performance and stability issues of the
two visual servoing schemes were discussed. The visual servoing techniques have also been approved
in space robot engineering by several scholars as reported in [28–31].

Although a lot of achievements have been made in space robot modelling and control, there are
still several issues to be considered in practical engineering. One practical problem is that the mass
properties of the carrier satellite keep changing due to the fuel consumption, solar panel adjustments,
carrying a captured payload with undetermined mass, etc. These unknown properties are critical
and recognized as a challenging problem in space robot target capture control. Since few efforts
have been made for controller designing of space robots with unknown satellite mass properties,
the undetermined properties of robotic systems are need to be known in advance. Yoshida and
Abiko presented an approach for determining space robot inertia parameters [32]. Their identification
algorithm is designed based on the conservation of momentum and the gravity gradient torque.
In this method, only the reaction wheel motion rates need to be measured. Ma and Dang proposed
another method to identify the carrier satellite inertia properties [33]. By using the linear and
angular satellite velocities, this issue is treated as a linear identification problem. According to
the existing literatures, the unknown satellite mass properties are generally determined based on
the conservation-of-momentum principle. The largest advantages of such identification methods are:
(1) they don’t consume any fuel because the properties are estimated by manipulator motions; (2) since
the accelerations and forces aren’t directly involved in the calculation, in theory, only velocities need to
be measured, which are generally less noisy. However, several difficulties still must be considered in
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identifying the satellite mass, which plays a very important role in space robot dynamics. One difficulty
is that the carrier-satellite mass has quite low sensitivity to the angular motions of the satellite, which
means it can’t be identified only by reaction wheel motion rates or gyro signals. The other problem
is that although the satellite mass can be identified by the linear velocities of the carrier satellite and
no acceleration or force is directly involved in the computation, in fact, the linear velocities can’t be
measured as easily as the angular velocities. In engineering, linear velocities are usually integrated
from accelerometer data, which brings drifting errors. Based on such considerations, new identification
methods should be proposed trying to handle these issues.

In this paper, a new identification strategy is proposed to estimate the unknown mass properties
without computing the linear velocity of the carrier satellite. The eye-in-hand camera signals, which are
commonly used in space robot target capture, are adopted as well as the gyro data for identifying both
the satellite mass and the centroid position. Because the unknown mass properties are estimated in
real time, the self-tuning control scheme is applied to handle this capturing control problem including
unknown parameters. The whole approach is established based on a new space robot model for
reducing the computation complexity. The rest of this paper is organized as follows: Section 2 describes
the new space robot modeling method proposed in this paper; Section 3 designs the self-tuning scheme
and presents the new identification method; Section 4 introduces the ground verification experimental
system and gives the simulation results; and the results are discussed in Section 5.

2. Free-Floating Space Robot Kinematics Modeling

The space robot system, consisting of a carrier satellite and a space manipulator mounted on it, is
shown in Figure 1.
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Figure 1. Space robot system.

ai is the position vector from the ith joint of the robotic arm to the centroid of the ith link. bi is the
position vector from the centroid of the ith link to the i + 1th joint. ki is the rotation vector of the ith
joint. r0 represents the position of the carrier satellite. b0 is the position vector from the carrier satellite
centroid to the first joint.

According to Figure 1, the position of space robot end-effector can be determined as:

Pe = r0 +
n

∑
i=1

ai +
n

∑
i=0

bi (1)
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where r0 is not a constant vector, because the carrier satellite is free-floating in space. The centroid
position of the space robot system can be expressed as:

rg =

n
∑

i=1
miri + m0r0

M
(2)

where mi is the mass of the ith link; m0 is the mass of the carrier satellite; ri is the centroid position of
the ith link; M is the total mass of the space robot system. They can be obtained by:

ri = r0 +
i−1

∑
k=0

bk +
i

∑
k=1

ak (3)

M =
n

∑
i=0

mi (4)

Assuming that there is no external force acting on the space robot, the centroid position of the
space robot system will not change. By Equations (2)–(4), the position of the carrier satellite can be
determined as:

r0 = rg −
1
M

(
n

∑
i=1

(
n

∑
k=i

mk

)
ai

)
− 1

M

(
n−1

∑
i=0

(
n

∑
k=i+1

mk

)
bi

)
(5)

According to Equation (5), a hypothetical manipulator can be set up to describe the linear motion
of the carrier satellite. The length vector from the ith joint of the hypothetical manipulator to the joint
i + 1, is defined as:

li′ =


γ
_
b i i = 0

γ

(
_
a i +

_
b i

)
0 < i < n

γ
_
a i i = n

(6)

where: 

_
a i =

(
n
∑

k=i
mk

)
ai

_
b i =

(
n
∑

k=i+1
mk

)
bi

γ = − 1
M

(7)

Attaching the hypothetical manipulator to the centroid of the space robot system, the end position
of the hypothetical manipulator can be calculated as:

Pe′ = rg + γ
n
∑

i=1

_
a i + γ

n−1
∑

i=0

_
b i

= r0

(8)

According to Equation (8), the carrier satellite position can be obtained by the hypothetical
manipulator motion. In this case, the hypothetical manipulator is referred as the carrier manipulator.
The position of the space robot end-effector can be expressed as:

Pe = r0 +
n
∑

i=1
ai +

n
∑

i=0
bi

= Pe′ + L0e

(9)

where L0e is the position vector from the carrier satellite centroid to the space robot end. If the
carrier satellite is considered as the 0th link, the space robot can be considered as another hypothetical
manipulator mounted on the carrier manipulator end. Since it performs the same operation motions as
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the space manipulator, it is referred as the service manipulator. Consequently, the free-floating space
robot system is equivalent to a hypothetical ground-fixed robotic system including two manipulators.
The hypothetical robotic system can be described as Figure 2.
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According to Equation (9), the velocity vector of the service manipulator end, representing the
space robot end-effector, can be expressed as:

ve =
.
Pe =

.
Pe′ +

.
L0e (10)

where:
.
L0e =

n

∑
i=1

.
ai +

n

∑
i=0

.
bi (11)

.
Pe′ = γ

n

∑
k=1

.
_
a k + γ

n−1

∑
k=0

.
_
b k (12)

and
.
ai, as well as

.
bi can be determined by:{ .

ai = ωi × ai.
bi = ωi × bi

(13)

whereωi is the angular velocity of the ith link and can be described as:

ωi = ω0 +
i

∑
k=1

kk
.
θk (14)

andω0 is the satellite angular velocity;
.
θk is the angle velocity of the kth link. Substituting Equations (13)

and (14) into Equation (11) gives:

.
L0e =

n
∑

i=1

[(
ω0 +

i
∑

k=1
kk

.
θk

)
× ai

]
+

n
∑

i=1

[(
ω0 +

i
∑

k=1
kk

.
θk

)
× bi

]
+ω0 × b0

= ω0 ×
(

n
∑

i=0
bi +

n
∑

i=1
ai

)
+

n
∑

i=1

[
ki ×

(
n
∑

k=i
bk +

n
∑

k=i
ak

)
.
θi

] (15)
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Defining Lie as the position vector from the ith joint to the service manipulator end, it can be
determined as:

Lie =
n
∑

k=i
ak +

n
∑

k=i
bk n ≥ i > 1 (16)

According to Equations (15) and (16),
.
L0e is derived as:

.
L0e = ω0 × L0e +

n
∑

i=1

[
ki × Lie

.
θi

]
=
(

Jr − b̃0

)
ω0 + Jm

.
θ

(17)

where: {
Jr = −L̃1e

Jm =
[

k1 × L1e · · · ki × Lie · · · kn × Lne

]
According to Equations (7) and (13),

.
_
a k and

.
_
b k can be defined by:

.
_
a k = ωk ×

(
n
∑

q=k
mq

)
ak = ωk ×

_
a k

.
_
b k = ωk ×

(
n
∑

q=k+1
mq

)
bk = ωk ×

_
b k

(18)

Substituting Equations (14) and (18) into Equation (12), we have:

.
Pe′ = γ

n
∑

k=1

[(
ω0 +

k
∑

i=1
ki

.
θi

)
×_

a k

]
+ γ

n−1
∑

k=1

[(
ω0 +

k
∑

i=1
ki

.
θi

)
×

_
b k

]
+ γω0 ×

_
b 0

= γω0 ×
(

n−1
∑

k=0

_
b k +

n
∑

k=1

_
a k

)
+ γ

n
∑

i=1

[
ki ×

(
n−1
∑

k=i

_
b k +

n
∑

k=i

_
a k

)
.
θi

] (19)

Defining Li′e′ as the position vector from the ith joint to the end of the carrier manipulator, it can
be expressed as:

Li′e′ = γ
_
L ie (20)

where:

_
L ie =



_
a n i = n(

n
∑

k=i

_
a k +

n−1
∑

k=i

_
b k

)
0 < i < n(

n
∑

k=1

_
a k +

n−1
∑

k=0

_
b k

)
i = 0

(21)

According to Equations (19) and (20),
.
Pe′ can be further derived as:

.
Pe′ = ω0 × L0′e′ +

n
∑

i=1

[
ki × Li′e′

.
θi

]
=
(

Jr′ − γMmb̃0

)
ω0 + Jm′

.
θ

(22)

where: {
Jr′ = −L̃1′e′

Jm′ =
[

k1 × L1′e′ · · · ki × Li′e′ · · · kn × Ln′e′
]

and Mm is the total mass of the manipulator, known as:

Mm =
n

∑
i=1

mi (23)
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Defining the Jacobian matrices
_
J r and

_
J m as:

_
J r = −

_̃
L1e = 1

γ Jr′
_
J m =

[
k1 ×

_
L1e · · · ki ×

_
L ie · · · kn ×

_
Lne

]
= 1

γ Jm′

as a result,
.
Pe′ also takes the following form:

.
Pe′ = γ

[(
_
J r −Mmb̃0

)
ω0 +

_
J m

.
θ

]
(24)

In Equation (24), the unknown satellite mass is only contained in the parameter γ. According to
Equations (17) and (24), the differential kinematics equation of free-floating space robot translational
motion can be expressed as:

ve =

[
Jr + γ

_
J r − (1 + γMm) b̃0

]
ω0 +

(
Jm + γ

_
J m

)
.
θ (25)

where Jm and
_
J m are exactly the same as the Jacobian matrix of ground-fixed manipulators.

According to Equation (25), two linear velocities are defined as:{
veo = Jm

.
θ

vec =
_
J m

.
θ

(26)

where veo, as well as vec can be considered as the linear velocity of a ground-fixed manipulator.
Consequently, the end-effector velocity of space robot can be further expressed as:

ve = veo +ω0 × L1e + γ

(
vec +ω0 ×

_
L1e

)
+ω0 × b0 + γMmω0 × b0 (27)

The main advantage in using Equation (27) is that the unknown satellite mass properties will
not be involved in the calculation of veo and vec, and only two parameters, γ and b0 relating to the
undetermined satellite mass and centroid are to be determined. Accordingly, in this paper, γ will be
estimated instead of identifying the satellite mass. m0 can still be determined by Equations (4) and (7)
if necessary.

The proposed modeling method is derived by describing the carrier satellite translational motions
with a hypothetical manipulator fixed on the centroid of the robotic system and taking the free-floating
space robot as an equivalent ground-fixed manipulator system. Comparing with existing modeling
methods presented in [11] and [12], several advantages of using this new method are described
as follows:

(1) Since the free-floating space robot system is kinematically equivalent to the hypothetical robotic
system, this new space robot model is not complex to compute because only ground-fixed robot
kinematics are involved in the calculations.

(2) In the new translational-motion equations, the undetermined carrier satellite mass, which is a
challenge in parameter estimating as suggested in [32], only impacts a constant factor, namely γ.
Accordingly, this new modeling method is more convenient in identifying the satellite
mass properties.

3. Self-Tuning Control Designing

Because the mass properties of the carrier satellite are changing throughout the whole service
life, precise target capturing of free-floating space robots is considered as a challenging problem.
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For improving the control performance, a self-tuning target capturing control scheme is applied by
adopting the eye-in-hand camera and gyros. The self-tuning control concept is obtained based on the
certainty equivalence principle. By coupling a motion controller with an online parameter estimator,
the self-tuning controller can perform simultaneous identification of unknown properties. Accordingly,
instead of the unknown true values, the controller parameters are determined by the estimations.

Because the dynamic and kinematic parameters of the space manipulator mounted on the carrier
satellite are all constants, the satellite mass properties can be estimated in real time by end-effector
translations and satellite rotations. As a consequence, the proposed space robot self-tuning control
scheme is as shown in Figure 3.
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The self-tuning control operation is described as follows: the motion controller plans the space
robot end-effector motion based on the current relative position and attitude after transforming the
camera signals to the inertial frame. At each time instant, a set of property estimations identified
by the parameter estimator are sent to the inverse kinematics calculator, which is obtained from the
past joint motions and the sensor data from eye-in-hand camera and gyros. Based on these estimated
parameters and desired end-effector motions, the joint trajectories are planned by the space robot
inverse kinematics calculator. The free-floating space robot joints move following the control input
and generate a new output, updating the input data of the parameter estimator and motion controller.

3.1. Kinematics Calculator Designing

Because the outputs of the eye-in-hand camera are the relative position and attitude at the
end-effector frame, a kinematics calculator is applied to transform the camera signals to the inertial
frame. The relative position and attitude at the inertial frame are computed as:{

∆P = Ae (θ,ψ)∆Pe

∆Φ = Ae (θ,ψ)∆Φe (28)

where Ae is the rotation matrix; ∆Pe and ∆Φe are the relative position and attitude at the end-effector
frame; ψ is the satellite attitude. Based on the Euler axis/angle, ∆Φ is expressed as:

∆Φ = χρ (29)

where χ is the Euler rotation angle; ρ is the Euler equivalent axis.
The linear end-effector velocity, which is applied as the parameter estimator input, is also

computed by this calculator as:
ve = −∆

.
P + vt (30)

where vt is the linear velocity of the target satellite, which is assuming to be known or identified by
other approaches.
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3.2. Motion Controller Designing

Defining the relative pose as the control error of the free-floating space robot, it is written as:

e =

[
∆P
∆Φ

]
(31)

The ideal feed-back response of e is designed as follows:

Ke +
.
e = 0 (32)

where K is the matrix of control factors reflecting performance specifications. According to
Equations (31) and (32), the motion controller of the free-floating space robot is given by ignoring the
target rotation as: [

vd
ωd

]
= K

[
∆P
∆Φ

]
+

[
vt

0

]
(33)

3.3. Inverse Kinematics Calculating

According to Equation (25), the carrier satellite angular velocity is to be determined for performing
inverse kinematics calculations. There are several ways to obtain the satellite angular velocity. One
way is to substitute the angular momentum conservation equation into the kinematics equation. This,
however, requires cumbersome computations. Another way is measuring the angular motion directly
by gyros, which is especially convenient because almost all satellites are equipped with gyroscopes.
Another advantage in adopting gyro information is that it will be unnecessary to identify the satellite
inertia tensor matrix for calculating the inverse kinematics. Defining the measured satellite angular
velocity asω0, the angular velocity of space robot end-effector is calculated as:

ωe = ω0 + Jω
.
θ (34)

where:
Jω =

[
k1 · · · ki · · · k1

]
(35)

According to Equations (25) and (34), we have the following differential kinematics equation of
the free-floating space robot as:[

ve

ωe

]
=

[
Jr + γ

_
J r − (1 + γMm) b̃0

E

]
ω0 +

[
Jm + γ

_
J m

Jω

]
.
θ (36)

Consequently, the desired manipulator joint velocities can be obtained as:

.
θd =

[
Jm + γ

_
J m

Jω

]−1([
vd
ωd

]
−
[

Jr + γ
_
J r − (1 + γMm) b̃0

E

]
ω0

)
(37)

By Equation (37), once the mass properties, namely γ and b0, are determined, space manipulator
joint motions can be planned.

3.4. Mass Property Estimating

In this section, a real time estimator is proposed identifying the unknown mass properties relating
to the inverse kinematics calculation. According to Equation (37), only γ and b0 are to be estimated



Sensors 2016, 16, 1383 10 of 19

which indicate the system total mass and the satellite centroid position, respectively. Defining the
linear velocity of the end-effector as a function of γ and b0, it gives:

ve = f
(

γ, b0

)
(38)

Note that the unknown parameters γ and b0 appear nonlinearly in Equation (38), linear
identification techniques cannot be applied directly.

The estimation error is defined as:
e = v̂e − ve (39)

where ve is the true value of space robot end-effector velocity obtained by the eye-in-hand camera; v̂e is
the calculation employing the estimated mass properties γ̂ and b̂0. Defining temporarily identified
mass properties as γ̂tem and b̂0tem, according to Equation (38), e can be linearized as:

e =

 f
(

γ̂tem, b̂0tem

)
+

∂ f
(

γ̂tem, b̂0tem

)
∂γ

∆γ̂ +
∂ f
(

γ̂tem, b̂0tem

)
∂b0

∆b̂0

− ve (40)

where: {
∆γ̂ = γ̂− γ̂tem

∆b̂0 = b̂0 − b̂0tem
(41)

According to Equation (27),
∂ f
(

γ̂tem, b̂0tem
)

∂γ can be simply determined as:

∂ f
(

γ̂tem, b̂0tem

)
∂γ

= vec +ω0 ×
_
L1e + Mmω0 × b̂0tem (42)

Defining a new robot linear velocity as:

_
v = vec +ω0 ×

_
L1e + Mmω0 × b0 (43)

Equation (42) can be further derived as:

∂ f
(

γ̂tem, b̂0tem

)
∂γ

=
_
v
(

b̂0tem

)
(44)

Substituting Equation (27) into Equation (38),
∂ f
(

γ̂tem, b̂0tem
)

∂b0
can be determined as:

∂ f
(

γ̂tem, b̂0tem

)
∂b0

= [1 + Mmγ̂tem] ω̃0 (45)

Defining a robot angular velocity
_
ω as:

_
ω = [1 + Mmγ]ω0 (46)

Equation (45) can be further expressed as:

∂ f
(

γ̂tem, b̂0tem

)
∂b0

=
_̃
ω (γ̂tem) (47)
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Substituting Equations (44) and (47) into Equation (40), the estimation error can be calculated as:

e = f
(

γ̂tem, b̂0tem

)
+

_
v
(

b̂0tem

)
∆γ̂ +

_̃
ω (γ̂tem)∆b̂0 − ve (48)

Defining the end-effector velocity calculated by temporarily identified mass properties as
v̂tem

(
γ̂tem, b̂0tem

)
, Equation (48) can be further expressed as:

e = v̂tem

(
γ̂tem, b̂0tem

)
− ve +

_
v ec

(
b̂0tem

)
∆γ̂ +

_̃
ω0 (γ̂tem)∆b̂0 (49)

According to Equation (41), once parameter errors ∆γ̂ and ∆b̂0 are determined, the estimated
mass properties γ̂ and b̂0 can be simply identified. Since the number of the parameters to be identified
is larger than the number of equations described by Equation (49), ∆γ̂ and ∆b̂0 can’t be determined by
simply assuming that the estimation error vector is 0. To solve this problem, other constraints need to
be introduced.

Employing the least-squares technique, the total estimation error during the time interval(
t− ∆t, t

)
is defined as:

Q =
∫ t

t−∆t
e (r)T e (r)dr (50)

where ∆t is the length of the integral interval. To ensure the total estimation error is minimized,
first order partial differential equations of Q can be determined by:

∂Q
∂∆γ = 2

∫ t
t−∆t e (r)T ∂e(r)

∂∆γ dr = 0
∂Q

∂∆b0
= 2
∫ t

t−∆t
∂e(r)
∂∆b0

e (r)dr = 03×1
(51)

Substituting Equations (44), (47) and (48) into Equation (51), the following equations hold as:
∫ t

t−∆t
_
v

T_
v dr∆γ̂ +

∫ t
t−∆t

_
v

T_̃
ωdr∆b̂0 =

∫ t
t−∆t

_
v

T
(ve − v̂etem)dr∫ t

t−∆t
_̃
ω

_
v dr∆γ̂ +

∫ t
t−∆t

_̃
ω

_̃
ωdr∆b̂0 =

∫ t
t−∆t

_̃
ω (ve − v̂etem)dr

(52)

Defining the parameter error vector as:

X =

[
∆γ̂

∆b̂0

]
(53)

according to Equation (52), the identification equation can be formed as:

AX = B (54)

where:

A =

 ∫ t
t−∆t

_
v

T_
v dr

∫ t
t−∆t

_
v

T_̃
ωdr∫ t

t−∆t
_̃
ω

_
v dr

∫ t
t−∆t

_̃
ω

_̃
ωdr

 (55)

B =

 ∫ t
t−∆t

_
v

T
(ve − venom)dr∫ t

t−∆t
_̃
ω (ve − venom)dr

 (56)

According to Equation (54), the parameter error vector can be determined by:

X = A−1B (57)
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After all, the estimated mass properties γ̂ and b̂0 can be computed according to Equations (41),
(53) and (57).

Note that, the estimated mass properties are initialized by the nominal mass and centroid position
in this work. After that, the temporarily identified mass properties must be updated in real time
for more accurate estimations. In addition, the length of the integral interval has to be carefully
designed according to the specified system properties and the practical mission requirements because
the condition number of matrix A can be very large, even singular when ∆t is too small. On the other
hand, ∆t cannot be too large either. Although the velocities as

_
v and

_
ω are quite simple in calculation,

longer integral intervals still require greater computations which are against the on-line application.
Because the tuning process is based on the feedback of eye-in-hand camera images, which are usually
quite noisy, the identification error is investigated to indicate the impacts of the measurement errors.
The upper bound estimation of the identification error is given in the Appendix A of this paper.

4. Ground Testing Based on Hardware-in-the-Loop Simulation System

Generally, space robot target capture methods are tested with ground test systems [34–36]. Thus
a hardware-in-the-loop simulation system, illustrated by Figure 4, is employed for simulating the
satellite capture process. Two industrial robots are used to simulate the space robot motions and
the target satellite respectively: industrial robot A represents the space robot motions and the target
satellite is mounted on industrial robot B.

x 
Industrial Robot B 

y 

z~ 
X L E 

End-effector 

Space robot 

z 

x 
Industrial Robot A 

Figure 4. Kinematic equivalence diagram of hard-ware-in-the-loop simulation system.

To mimic the weightless condition in space, which are quite difficult to achieve in a ground
environment, a space robot dynamics simulation program is established for calculating the space robot
motions under microgravity. Since a carrier satellite was not available, gyro data is also output by
this program. Moreover, a joint electronic simulator employing the same electronic interface with real
space robot joints is used to simulate the robotic joint dynamics since the actual space robot is missing
too. The eye-in-hand camera system and the space robot central controller are both real.

The space robot hardware-in-the-loop simulation system consists of two industrial robots, the
space robot motion controller, the inverse kinematics calculator, an electronic simulator, the space robot
dynamics simulation system, the kinematic equivalence module, the eye-in-hand camera system and
the mass property estimator. The space robot motion controller, inverse kinematics calculations and
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the proposed mass property estimation algorithm are all realized by the space robot central controller.
The block diagram of designed experimental system is shown in Figure 5.

In the satellite capturing experimental system, the needed linear and angular velocities are
calculated through the relative position and attitude measured by the vision system. Meanwhile, the
mass property estimator determines the unknown parameters from the past joint trajectories and
sensor information in real time. Then, the joint motions are planned based on the estimations and
the desired end-effector motion. According to the joint motions, the electronic simulator determines
the output torques of the joints. Then the motions of the space robot are simulated by the dynamic
simulation system. Finally, the relative motions between the space robot and the target satellite are
demonstrated by the industrial robots based on kinematic equivalence.
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Figure 5. Block diagram of space robot ground test system.

The instruction cycle of the designed space robot central controller is 250 ms. The joint electronic
simulator’s control cycle is 25 ms. The required measurement accuracies of the eye-in-hand camera
system are 1 mm in distance and 1 deg in orientation. The measurement frequency is 4 Hz. A picture
of the laboratory setup is shown in Figure 6. Space robot kinematic and dynamic parameters are
expressed as Table 1.
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Table 1. Kinematic and dynamic parameters of space robot.

Parameter (unit) Base Pole 1 Pole 2 Pole 3 Pole 4 Pole 5 Pole 6

M (kg) 648 1.5 9.6 1.5 9.0 1.5 10.5
ax (mm) 0 0 −493.5 0 289 0 −112
ay (mm) 0 0 56 −123 −123 127 0
az (mm) 0 120 0 0 0 0 0
bx (mm) 539 0 −493.5 123 333 −123 −123
by (mm) 5 189 −56 0 12 0 0
bz (mm) 813 0 0 0 0 0 0

Ixx (kg·m2) 198 3.12× 10−3 3.71× 10−2 3.47× 10−3 0.82 3.42× 10−3 0.91
Iyy (kg·m2) 198 3.12× 10−3 1.92 3.47× 10−3 0.64 3.42× 10−3 0.91
Izz (kg·m2) 198 3.12× 10−3 1.92 3.47× 10−3 0.67 3.42× 10−3 0.11

In this test, the space robot is required to move the end-effector from the initial position to the
satellite with suitable posture. The nominal mass properties of carrier satellite are defined as: m0nom = 680(kg)

b0nom =
[

500 0 800
]T

(mm)
(58)

Although the satellite mass is not necessary in the self-tuning control scheme, it is computed by γ̂

for verifying the estimator. According to Equations (4) and (7), the estimated satellite mass can be
calculated as:

m̂0 = − 1
γ̂
−Mm (59)

Accordingly, the property estimation errors are computed as follows:{
δm0 = m̂0 −m0

δb0 = b̂0 − b0
(60)

To validate the proposed control scheme, both the closed-loop responses and the parameter
estimation errors are tested by the ground experimental system. The experimental results are shown
in Figures 7 and 8.
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Figure 7. Closed-loop responses of space robot system: (a) Position errors; (b) Angle errors.
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Figure 8. Property estimation errors: (a) estimation error of m0; (b) estimation error of b0.

The closed-loop responses are shown in Figure 7. It is seen that, the space robot end-effector
can approach the target satellite smoothly with the desired attitude, illustrating the effectiveness
of the proposed target capture control method. The mass property estimation errors are shown in
Figure 8. They suggest that although the nominal mass properties are initialized with obvious errors,
the estimated mass properties gradually approach the real values.

As the first attempt for estimating the satellite mass properties by eye-in-hand camera signals,
the following conclusions can be made by comparing the proposed method with other existing
identification methods:

(1) Compared with the propulsion-based methods as presented in [37], because the thrusters are not
applied in the proposed method, no satellite fuel will be consumed.

(2) Unlike the direct torque-sensing method proposed in [38], this proposed method doesn’t demand
any torque or acceleration measurements, not only in theory but also in engineering.

(3) Compared with the method based on measuring the reaction wheel motion rates presented in [32],
which has difficulty estimating the satellite mass, the proposed method identifies both satellite
mass and centroid position by adopting eye-in-hand camera signals and gyro information.

(4) Compared with the method presented in [33], which estimates the satellite mass properties base
on sensing the satellite rotation and translation, this proposed method doesn’t require the linear
velocity of the carrier satellite, which is usually integrated from accelerometer data and brings
drifting errors.

5. Conclusions

Target satellite capture is a challenging problem, especially for space robots with unknown mass
properties. Since most existing works for space robot motion control require accurate property values,
new efforts are being made for handling such control problems including unknown parameters. In this
paper, gyro and camera signals are adopted to improve the control performance. For this improved
system, a novel space robot modelling technique is proposed. By this newly established model, the
free-floating space robot is equivalent to a ground-fixed manipulator system, thus simplifying the
issue. Accordingly, a self-tuning target capturing controller is designed taking unknown parameters
into count. The control parameters are determined in real time by the estimator established based on
the least-squares technique. The experimental results suggest that the designed space robot target
capturing controller is effective. Because the proposed method does not demand accurate satellite mass
properties, it can be applied when the fuel consumption is unknown or carrying an undetermined
payload, etc. As further research, the proposed method has a potential to be applied in identifying
other space robot parameters, such as manipulator link lengths, to cope with contingent requirements.
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Appendix A

The measured velocity data is expressed as:{
ve = ve + ∆ve

ω0 = ω0 + ∆ω0
(A1)

where ∆ve, as well as ∆ω0, is the measurement error. According to Equations (43) and (46), the defined
velocities are computed as: 

_
v = vec −

_
L0e

(
b̂0tem

)
×ω0

_
ω = [1 + Mmγ̂tem]ω0

(A2)

According to Equation (54), the identification equation is determined as:

A X = B (A3)

where:

A = A + ∆A =

 ∫ t
t−∆t

_
v ·_v dr −

∫ t
t−∆t

(
_
ω×_

v
)T

dr∫ t
t−∆t

_
ω×_

v dr
∫ t

t−∆t
_
ω×

(
_
ω×

)
dr

 (A4)

B = B + ∆B =

 ∫ t
t−∆t

_
v · (ve − venom)dr∫ t

t−∆t
_
ω× (ve − venom)dr

 (A5)

and X is the identification result with the error δX; ∆A and ∆B are the errors of A and B caused by the
measurement errors ∆ve and ∆ω0. The error matrixes ∆A and ∆B is expressed as follows:{

∆A = εAEA

∆B = εBEB
(A6)

where: 
εA = ||∆A||
εB = ||∆B||
||EA|| = ||EB|| = 1

(A7)

In accordance with the theory presented in [33], the upper bound of the error for the identification
problem represented by Equation (A3) can be estimated by:

||δX|| ≤ ||A−1||
2
||r||εA + ||A−1||(||X||εA + εB) + N1ε (A8)

and the upper bound of the relative error in the identified parameters is:

||δX||
||X||

≤ (κ (A))2 εA

||A||
ζ + κ (A)

( εA

||A||
+

εB

||B||
γ
)
+ N2ε (A9)
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where r is the residual vector; κ is the condition number; N1ε, as well as N2ε, represents the second- and
higher-order terms of ε, which can be practically ignored. They and others are computed as follows:

r = B−AX
κ (A) = ||A−1||||A||
ζ = ||r||

||A||||X||
γ = ||B||

||A||||X||

(A10)

To determine the error bounds, ∆A as well as ∆B should be computed in terms of the measurement
errors ∆ve and ∆ω0. Substituting Equations (A1) and (A2) into Equations (A4) and (A5), ∆A and ∆B
are expressed as:

∆A =

 ∫ t
t−∆t ∆

_
v ·
(

2
_
v − ∆

_
v
)

dr −
∫ t

t−∆t

(
∆
_
ω×_

v +
_
ω× ∆

_
v − ∆

_
ω× ∆

_
v
)T

dr∫ t
t−∆t

(
∆
_
ω×_

v +
_
ω× ∆

_
v − ∆

_
ω× ∆

_
v
)

dr
∫ t

t−∆t

(
_
ω× ∆

_
ω×+∆

_
ω×_

ω×−∆
_
ω× ∆

_
ω×

)
dr

 (A11)

∆B =

 ∫ t
t−∆t

(
_
v · ∆ve + ∆

_
v · δve − ∆

_
v · ∆ve

)
dr∫ t

t−∆t

(
_
ω× ∆ve + ∆

_
ω× δve − ∆

_
ω× ∆ve

)
dr

 (A12)

where: 
∆
_
v =

_
v −_

v = −
_
L0e × ∆ω0

∆
_
ω =

_
ω−_

ω = [1 + Mmγ̂tem]∆ω0

δve = ve − venom

(A13)

Ignoring the second-order terms, ∆A and ∆B are rewritten as functions of ∆ω0 and ∆ve:

∆A =


−
∫ t

t−∆t

(
2
_
v

T_̃
L0e

)
∆ω0dr

∫ t
t−∆t

{[
(1 + Mmγ̂tem)

_̃
v +

_̃
ω

_̃
L0e

]
∆ω0

}T

dr

−
∫ t

t−∆t

[
(1 + Mmγ̂tem)

_̃
v +

_̃
ω

_̃
L0e

]
∆ω0dr (1 + Mmγ̂tem)

∫ t
t−∆t

[
_̃
ω∆ω̃0 +

(
_̃
ω∆ω̃0

)T
]

dr

 (A14)

∆B =

 ∫ t
t−∆t

_
v

T
∆ve − δvT

e
_̃
L0e∆ω0dr∫ t

t−∆t
_̃
ω∆ve − [1 + Mmγ̂tem] δṽe∆ω0dr

 (A15)
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