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Abstract: A robot-based three-dimensional (3D) measurement system is presented. In the presented
system, a structured light vision sensor is mounted on the arm of an industrial robot. Measurement
accuracy is one of the most important aspects of any 3D measurement system. To improve the
measuring accuracy of the structured light vision sensor, a novel sensor calibration approach is
proposed to improve the calibration accuracy. The approach is based on a number of fixed concentric
circles manufactured in a calibration target. The concentric circle is employed to determine the
real projected centres of the circles. Then, a calibration point generation procedure is used with
the help of the calibrated robot. When enough calibration points are ready, the radial alignment
constraint (RAC) method is adopted to calibrate the camera model. A multilayer perceptron neural
network (MLPNN) is then employed to identify the calibration residuals after the application of the
RAC method. Therefore, the hybrid pinhole model and the MLPNN are used to represent the real
camera model. Using a standard ball to validate the effectiveness of the presented technique, the
experimental results demonstrate that the proposed novel calibration approach can achieve a highly
accurate model of the structured light vision sensor.

Keywords: robot based 3D measurement system; MLPNN; structured light vision sensor calibration;
concentric circle

1. Introduction

Structured light vision sensors are widely applied in many fields, such as for three-dimensional
(3D) measurements and quality control in manufacturing, because of their high measuring speed and
appropriate accuracy. The sensor working modes can be roughly classified into two categories. One is
a portable handheld mode based on self-positioning technology, such as Handyscan® 3D scanners [1]
and the ZScanner® [2]. These handheld scanners are able to provide flexible and freeform off-line
inspections. The other category is based on moving devices, such as coordinate measuring machines
(CMMs) [3], industrial robots [4–7] or other specially designed mechanisms [8]. In regard to on-line
inspection, the second category is suitable in this situation. The structured light sensor is fixed on
the moving device, and the 3D information of the object part is obtained when it passes through the
measuring range of the sensor. The obtained information is then compared with the original CAD
model so that a closed-loop manufacturing process is formed; therefore, quality control is provided.
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In the robot-based 3D measurement system, a structured light vision sensor is mounted on the
arm of the robot. Calibrating the structured light vision sensor is a key aspect in this measurement
system, as the system accuracy depends on the sensor calibration accuracy. This mainly consists of
two steps. The first step is camera calibration; the second step is projector calibration. In the camera
calibration step, two types of parameters, namely, the intrinsic parameters and the extrinsic parameters,
should be calibrated. The extrinsic parameters denote the transformation relationships between the
world coordinate frame, the camera coordinate frame and the image coordinate frame. The intrinsic
parameters include the effective focal length, the lens distortion, the optical centre in the image plane
and the length-width ratio of each pixel.

Existing camera calibration methodologies can be roughly classified into two categories. One is
self-calibration (also known as 0D object-based calibration) methods and the other are object-based
calibrations. Self-calibration [9–13] was first proposed by Maybank and Faugeras in [13]. Using this
technique, the camera can be calibrated through point/line correspondences between images without
a calibration object. This technique can be easily applied in uncontrolled environments where the
geometry is unknown. However, one limitation of this approach is that a large number of parameters
must be estimated so it is of low robustness and stability. Another limitation is that in regard to
high accuracy 3D surface measurements, it is not adequate because of its relatively low accuracy
compared with that of pre-calibration [14]. Object-based calibration utilizes a calibration object that
has pre-known geometry information. The calibration object can be 3D, 2D or 1D. The 3D calibration
object [15–17], which usually consists of two or three planes orthogonal to each other, is used to
generate 3D calibration points. In this technique, the calibration object should be manufactured with
high accuracy. Later, Zhang [18] proposed a flexible camera calibration technique that is based on a 2D
calibration object. The calibration is achieved by viewing a plane from different unknown orientations,
and high accuracy calibration points can be obtained. Recently, the use of a 1D calibration object
for camera calibration has been proposed by many researchers [19–22]. As [20] has noted, in the 1D
object based calibration technique, a very simple calibration object can be used to achieve a reasonable
camera model without any pre-measurement.

In addition, it is well-known that circular features are widely adopted for camera calibration in
computer vision. However, it should be noted that the centres of the projected circles are not exactly the
projected centres of these circles. Therefore, many methods to obtain the real projected centres of the
circles have been proposed. For instance, Heikkilä presented an iterative technique to obtain the real
projected centres [23]. Later, Kim et al. [24] reported that the projected circle centre can be recovered
accurately by using concentric circles. Xing et al. [25] proposed a novel approach to determine the
real projected centres based on the theory of perspective projection and spatial analytical geometry
using concentric circles. The method is simple and can be easily implemented in real experiments. In
this study, a 2D target that consists of a set of concentric circles is designed, and sufficient calibration
points are generated with the help of the robot. This procedure will be introduced in detail in the
following section.

As far as the camera model is concerned, Tsai [26] proposed a two-stage calibration approach
based on the radial alignment constraint (RAC). The radial distortion is considered in the method.
Weng et al. [27] presented a camera model that accounts for all the major sources of camera distortion,
namely, radial, decentring and thin prism distortions. Salvi et al. [28] compared many calibration
techniques, including Tsai’s RAC two-stage approach [26] and the method of Weng et al. [27]. They
concluded that the complete method in [27] does not achieve better accuracy than the simple iterative
method modelling only radial distortion. In this study, only radial distortion is considered at first, and
the division model (DM) [29,30] of the radial distortion is then adopted.

For projector calibration, the aim of this step is to find the relationship between the laser plane
and the CCD array plane. Many methods [31–35] have been presented to determine the relationship
between these two planes. In this study, the 3D world coordinate frame is chosen in the laser plane so
that the laser plane equation can be easily obtained.
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In addition to the aforementioned structured light vision sensor calibration technique, the artificial
neural network technique [36,37] is also applied to solve the problem because of its strong non-linear
approximation ability. For instance, Zhang and Wei [36] proposed an improved training algorithm
for a multilayer perceptron neural network (MLPNN), and the improved MLPNN was successfully
applied to calibrate a structured light vision sensor. The technique chose the world coordinate as the
output of the network and the corresponding image coordinate as the input of the network so that the
structured light vision sensor could be calibrated using the sole MLPNN.

In this study, a novel structured light vision sensor calibration technique is proposed. This
technique combines the advantages of Tsai’s RAC two-stage method and the artificial neural network
approach. To be specific, Tsai’s RAC two-stage method is first employed to generate an accurate
calibration solution, and an MLPNN is then applied to identify the calibration residuals to achieve a
much more accurate calibration result by compensating the residuals.

This paper is organized as follows: in Section 2, the robot-based 3D measurement system is
introduced briefly. In Section 3, the camera model is given in detail. In Section 4, the camera
calibration, including calibration point generation and the novel high precision calibration method are
presented. The novel training algorithm for the MLPNN is also derived in this section. In Section 5, real
experimental data are used to validate the effectiveness of the presented calibration method. Finally,
some conclusions are given to summarize the study.

2. System Setup

The robot based 3D measurement system is depicted in Figure 1, and it mainly consists of the
following parts:

(1) Motoman-Hp6 robot;
(2) Structured light vision sensor [9]; Its specifications are as follows: measuring accuracy is smaller

than 0.06 mm; measuring range is (90 mm, 190 mm); sampling speed is 12,000 pts/s; measuring
depth of field is 100 mm;

(3) Master computer and measurement software system;
(4) Robot controller;
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Figure 1. Robot-based 3D measurement system. 

When a CMM-based 3D laser measurement system is used to scan a part, the measured object is 
difficult to scan without blind points when the scanned object surface is complex. The presented 
robot-based 3D measurement system is different from the CMM-based approach. In the new 
measuring approach, a measured object is placed in an experimental area at a standstill; all of the 
surface information of the object is obtained from once-off scanning because of the agility of the robot, 
which has six degrees of freedom while the CMM which just has three degrees of freedom. Because 
an adaptive structured light vision sensor developed by our group [9] is used, this system can 
measure an object to have profile containing the 3D coordinate information of the measured points. 
The 3D coordinate information of the measured points is obtained via the following stages: first, the 
laser emitted from the structured light vision sensor is projected on the object surface to form a light 
stripe. The distorted light stripe is captured by a CCD camera, and the 2D image coordinates of the 

Figure 1. Robot-based 3D measurement system.

When a CMM-based 3D laser measurement system is used to scan a part, the measured object
is difficult to scan without blind points when the scanned object surface is complex. The presented
robot-based 3D measurement system is different from the CMM-based approach. In the new measuring
approach, a measured object is placed in an experimental area at a standstill; all of the surface
information of the object is obtained from once-off scanning because of the agility of the robot, which
has six degrees of freedom while the CMM which just has three degrees of freedom. Because an
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adaptive structured light vision sensor developed by our group [9] is used, this system can measure
an object to have profile containing the 3D coordinate information of the measured points. The 3D
coordinate information of the measured points is obtained via the following stages: first, the laser
emitted from the structured light vision sensor is projected on the object surface to form a light stripe.
The distorted light stripe is captured by a CCD camera, and the 2D image coordinates of the obtained
light stripe are calculated; Second, the 3D coordinate information in the defined vision sensor frame is
obtained by the vision sensor model and the 2D image coordinates; Finally, the 3D coordinates in the
robot base frame are determined from the hand-to-eye model [38] and robot kinematics model. The
presented 3D measurement system principle is illustrated in Figure 2.
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3. Camera Model

The camera model is described in [26]. The principle of the perspective projection and radial lens
distortion is illustrated in Figure 3. There are three types of distortion: radial distortion, decentring
and thin prism distortion. The radial distortion is first considered when establishing the camera model
in this study because it is the main factor that affects the measurement accuracy.

Sensors 2016, 16, 1388 4 of 18 

 

obtained light stripe are calculated; Second, the 3D coordinate information in the defined vision 
sensor frame is obtained by the vision sensor model and the 2D image coordinates; Finally, the 3D 
coordinates in the robot base frame are determined from the hand-to-eye model [38] and robot 
kinematics model. The presented 3D measurement system principle is illustrated in Figure 2. 

 
Figure 2. The presented 3D measurement system principle. 

3. Camera Model 

The camera model is described in [26]. The principle of the perspective projection and radial lens 
distortion is illustrated in Figure 3. There are three types of distortion: radial distortion, decentring 
and thin prism distortion. The radial distortion is first considered when establishing the camera 
model in this study because it is the main factor that affects the measurement accuracy. 

o x

y

Y

X

xw
z

zw

ywow

oi

pd(Xd,Yd)

pu(Xu,Yu)

P(x,y,z) or
P(xw,yw,zw)

O u

v

 
Figure 3. Principle of the perspective projection and camera model. 

In Figure 3, ow,xw,yw,zw is defined as the 3D world coordinate frame, OiXY is the CCD array plane 
coordinate frame, and Oi is the intersection of the CCD array plane and the optical axis. oxyz is the 

Figure 3. Principle of the perspective projection and camera model.



Sensors 2016, 16, 1388 5 of 18

In Figure 3, ow,xw,yw,zw is defined as the 3D world coordinate frame, OiXY is the CCD array plane
coordinate frame, and Oi is the intersection of the CCD array plane and the optical axis. oxyz is the 3D
camera coordinate frame, where o is the projection centre of the camera, the z axis is the optical axis of
the camera lens, and x and y are parallel to X and Y, respectively. P is a point in oxyz or ow,xw,yw,zw.
Its corresponding point is Pd(Xd,Yd) instead of Pu(Xu,Yu) because of lens distortion. f is the effective
focal length. O’uv is the computer image coordinate frame and O’ is the origin of the image; the unit
of the u axis and v axis is a pixel. Assume (u0,v0) be the coordinates of Oi in O’uv and (u0,v0) is the
principal point. The relationship between ow,xw,yw,zw and O’uv can be derived by the following steps:

The relationship between oxyz and OiXY is:

ρ

 X
Y
1

 =

 f 0 0
0 f 0
0 0 1


 x

y
z

, (1)

The transformation from ow,xw,yw,zw to oxyz is: x
y
z

 = R

 xw

yw

zw

+ T, (2)

where R =

 r1 r2 r3

r4 r5 r6

r7 r8 r9

, T =

 Tx

Ty

Tz

, R is the rotation matrix and T is the translation vector.

The relationship between O’uv and OiXY is:{
u = X

dX + u0

v = Y
dY + v0

, (3)

where dX and dY are the lengths of the pixel on the computer image.
Combining Equations (1)–(3), the camera model without lens distortion can be obtained as follows:

ρ

 u
v
1

 =


f r4
dX + r7u0

f r2
dX + r8u0

f r3
dX + r9u0

f Tx
dX + txu0

f r4
dY + r7v0

f r5
dY + r8v0

f r6
dY + r9v0

f Ty
dY + tyv0

r7 r8 r9 Tz




xw

yw

zw

1

, (4)

Taking the radial distortion into consideration, the polynomial model (PM) that is often used to
describe radial distortion can be written as:{

X = Xd(1 + k1r2 + k2r4 + · · · )
Y = Yd(1 + k1r2 + k2r4 + · · · ) , (5)

Fitzgibbon [29] suggested the DM as: X = Xd
(1+k1r2+k2r4+··· )

Y = Yd
(1+k1r2+k2r4+··· )

, (6)
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Compared with the PM, DM is able to express high distortion at a much lower order. In this study,
the single parameter DM is employed as suggested in [30]{

X = Xd
1+kr2

Y = Yd
1+kr2

, (7)

as the distortion model. In Equation (7), r =
√

X2
d + Y2

d and k is the radial distortion coefficient.
In the above camera model with radial distortion (Equations (4) and (7)), the parameters r1~r9, Tx,

Ty, Tz, f, u0, v0 and k are unknown and need to be determined via camera calibration.
It should be noted that the camera model introduced here is a simple one. It doesn’t take every

factor into the model like the model given in [34]. However, the camera model given in [26] can still
be employed in some specific applications. The merit of the model in [26] is that it is easy to use for
engineers. For high accuracy requirement, there are two possible directions: one is to take as many
factors as possible into consideration just as the work proposed in [34]; the other one is that taking all
of the factors that aren’t considered in the camera model into an ANN model and that is the approach
taken in this paper.

4. Camera Calibration

4.1. Extraction of the Calibration Points

As mentioned before, concentric circles are used to generate the calibration points. Obtaining the
real projective centre is based on the conclusion given in [25]:

Conclusion: The perspective projection of a concentric circle will produce two ellipses.
A straight line will be obtained by the centres of the two ellipses, and the true concentric
circle centre perspective projection is exactly on the line.

Based on the above conclusion, a concentric circle calibration target is manufactured. The sub-pixel
edges of the projected ellipses are then obtained via the Sobel+Zernike method [39]. The centres of
the ellipses are calculated. If the distance between the two centres is smaller than a threshold value,
i.e., 0.01 pixels, then the real circle projected centre is the average of the centres of the projected circles.
Otherwise, the real circle projected centre will be determined via linear invariance and cross-ratio
invariance. The procedure is as follows: first, establish the straight line equation from the two centres
of the projected circles. Second, obtain the four points of intersection of the straight line and two
projected circles and assume the points of intersection are A(ua,va), B(ub,vb), D(ud,vd), and E(ue,ve).
Furthermore, assume the real circle projected centre is O(uo,vo), as illustrated in Figure 4. The following
equations can be obtained via linear invariance and cross-ratio invariance:

uo − ua

uo − ub
:

ud − ua

ud − ub
=

Rb
Rs

:
Rb + Rs

2Rs
, (8)

vo − va

vo − vb
:

vd − va

vd − vb
=

Rb
Rs

:
Rb + Rs

2Rs
, (9)

ud − ub
ud − uo

:
ue − ub
ue − uo

=
2Rs

Rs
:

Rb + Rs

Rb
, (10)

vd − vb
vd − vo

:
ve − vb
ve − vo

=
2Rs

Rs
:

Rb + Rs

Rb
, (11)
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A sub-pixel edge detection based on an improved moment is presented in [39]. The presented
approach in [39] is employed to determine the edge of the projected concentric circles. The experimental
results are given in Figure 5. The real projected centre of the concentric circle is then obtained via the
above procedure, and the result of one example is shown in Figure 6.
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4.2. Solving Camera Model

The radial alignment constraint (RAC) two-stage method [26] is employed to solve the camera
model. Equation (2) can be expressed as:

x = r1xw + r2yw + r3zw + Tx

y = r4xw + r5yw + r6zw + Ty

z = r7xw + r8yw + r9zw + Tz

(12)
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According to RAC, it follows that:

X
Y

=
x
y
=

r1xw + r2yw + r3zw + Tx

r4xw + r5yw + r6zw + Ty
(13)

Changing the form of Equation (13) gives:[
xwY ywY zwY Y −xwX −ywX −zwX

]


r1/Ty

r2/Ty

r3/Ty

Tx/Ty

r4/Ty

r5/Ty

r6/Ty


= X

(14)

Because xw = 0, it follows that:

[
ywY zwY Y −ywY −zwX

]
·


r2/Ty

r3/Ty

Tx/Ty

r5/Ty

r6/Ty

 = X, (15)

According to Equation (15), an over-determined linear equations set is established, and the
parameters in Equation (4) can be solved, except for Tz, f, k and (u0,v0).

Two more equations can be found in Figure 3:

X
f
=

x
z
=

r2yw + r3zw + Ty

r8yw + r9zw + Tz
, (16)

Y
f
=

y
z
=

r5yw + r6zw + Ty

r8yw + r9zw + Tz
, (17)

Let Hx = r2yw + r3zw + Tx, Hy = r5yw + r6zw + Ty and W = r8yw + r9zw, so Equations (16) and (17)
can be converted into:

f
Hx + Tx

W + Tz
= X =

Xd
1 + kr2 , (18)

f
Hy + Ty

W + Tz
= Y =

Yd
1 + kr2 , (19)

Subtracting Equation (18) from Equation (19) and changing the form gives:

[
Hx − Hy + Tx − Ty r2(Hx − Hy + Tx − Ty) Y − X

]
•

 f
f k
Tz

 = W(X − Y), (20)

From Equation (20), f, fk and Tz can be obtained by solving an over-determined linear equations
set. Therefore, the parameters Tz, f and k are obtained. (u0,v0) is the coordinate of the principal point.
It is stated in [35] that the position of the principal point will cause a small calibration error when
the distance between the principal point and the centre of the computer image is within the 20 pixel
range. In this study, the centre of the computer image is first taken as the position of the principal
point. A local search for (u0,v0) is then conducted by trial and error so that (u0,v0) is obtained.
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4.3. Calibration Residuals Identification

As we have mentioned before, although the camera model calibrated by Tsai’s RAC two-stage
method is simple and can achieve high accuracy, some factors are not included in the model and this
leads to the fact that there still exist calibration residuals that affect the measurement accuracy. These
calibration residuals can be viewed as “unmodeled” part. In this paper, the calibration residuals are
identified by an artificial neural network (ANN). The calibration residuals are then represented by the
ANN model and compensated by the ANN so that the calibration accuracy is improved. The structure
of the proposed calibration method is given in Figure 7. ŷ and ẑ are calculated by the camera model,
where the relevant parameters are determined by the RAC two-stage method. It should be pointed out
that Figure 7 should be highlighted and it is the main contribution of this study. General speaking,
most of the calibration methods have either normal camera models or a neural network only. The
proposed method shown in Figure 7 is a hybrid model of normal camera model and a neural network.
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to only a linear estimate of the actual trend if there are too few neurons in the hidden layer. In contrast, 
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MLPNN and RBFNN (radial basis function neural network) are two typical types of ANN for
static modelling. Here, we choose the MLPNN to approximate the calibration residuals. A typical
MLPNN mainly consists of three layers, namely, the input layer, the hidden layer and the output layer.
The three layers are interconnected by weights. The designed architecture of an MLPNN is depicted
in Figure 8. The input layer accepts elements of two-dimensional input data (u,v), which represent
the coordinates of the image data. The second layer is composed of nonlinear functions to achieve a
non-linear mapping. The output layer has two neurons that denote the ey and ez. ey is the residual
between the obtained y coordinate and the RAC two-stage model output ŷ, and ez is the residual
between obtained the z coordinate and the RAC two-stage model output ẑ.
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The design of the MLPNN mainly consists of two aspects. One is determining a suitable number
of hidden neurons, and the other is calculating the connection weights between the input/hidden and
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hidden/output layers. An MLPNN is incapable of differentiating between complex patterns, leading
to only a linear estimate of the actual trend if there are too few neurons in the hidden layer. In contrast,
if there are too many neurons in the hidden layer, the network will over fit the training data, leading
to a poor generalization for the untrained data, and the training becomes time-consuming. The most
popular method for finding the optimal number of hidden layer neurons is by trial and error, and this
method is employed in this study. For the training algorithms of an MLPNN, there are also many
approaches to train an MLPNN. The most widely used one is the so-called BP training algorithm.
However, the BP cannot be guaranteed to find the global minimum of the error function because the
gradient descent (GD) algorithm often falls into the local minimum area. Furthermore, the convergent
rate becomes very slow in regard to later iterations. Therefore, many improved training algorithms
are proposed to avoid the disadvantages of the gradient decent based back propagation algorithm.
It should be noted that the training algorithm is not the main point discussed in this study. What
we focus on is the application of the MLPNN in this novel calibration approach. In this study, the
Levenberg-Marquardt (LM), scaled conjugate gradient (SCG), resilient (RP), one step secant (OSS),
Conjugate gradient back-propagation with Fletcher-Reeves updates (CGF) and GD algorithms are
adopted to train the designed MLPNN as these training algorithms are classical in MLPNN training,
and comparisons are also made. It should be also noted that this paper focuses on the application
of MLPNN instead of improvement of the training algorithm in MLPNN. Finally, the best training
algorithm is selected.

5. Calibration Point Generation Procedure

The six degree-of-freedom Motoman-HP6 robot is utilized to help generate calibration points
because of its agility. It should be noted that the robot has been calibrated so that its positioning
accuracy is improved and can be used in this situation. The structured light vision sensor mounted on
the robot can be adjusted to any position in the robot workspace with any posture. With the above
advantages, the relationship between the target coordinate frame OtXtYtZt, 3D camera coordinate
frame OcXcYcZc, and sensor measurement coordinate frame OsXsYsZs, can be made to have only the
translation part. The coordinate frame defined in calibration is shown in Figure 9.
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The calibration point extraction procedure is as follows:

Step 1: Make the robot end-effector move along its z axis when the robot is in its initial position. After the
end-effector descends to a proper height, turn the laser on. Place the target on the fixed platform.
The position of the target is chosen when the laser stripe covers the two auxiliary lines in the
target, as depicted in Figure 10a.

Step 2: Make the robot end-effector move along its z axis continuously. If the laser stripe does not cover
the two auxiliary lines, as shown in Figure 10b, the robot must be rotated along its y axis. The
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laser stripe will be emitted to the target, as illustrated in Figure 10c. Control the robot to move
along its x axis to make the laser stripe cover the auxiliary lines again, as shown in Figure 10d.

Step 3: Repeat Step 2 until the laser stripe does not move away from the two auxiliary lines any more.
Step 4: Shut down the laser and make the robot move along its z axis. The robot translation distance

along the z axis, obtained through the robot controller, can be taken as the z coordinate in the
calibration measurement coordinates. Its y coordinate can be obtained by the exact distance
between the calibration points. The corresponding points in the image coordinates (u,v) are
obtained via the described procedure given in Section 4, as shown in Figure 11. From the above
procedure, the calibration points will be generated in the measuring range.
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6. Expermental Results

As we mentioned in the section above, the RAC two-stage method is first employed and an
MLPNN is used to approximate the modelling residuals. The world coordinate (yw, zw) is selected as
the output of the network, k, and its corresponding image coordinate (u,v) is used as the network input.
The robot was made to move along its z axis 1 mm every step. Sixty calibration points were generated
in terms of the proposed calibration point extraction procedure. Fifty-four points were selected to
estimate all of the parameters in the camera model and were then used to train the designed MLPNN.
The obtained parameters via the RAC method for the camera model are listed in Table 1. The six points
left were used to test both the RAC two-stage method and the proposed novel approach. All of the
obtained calibration points are depicted in Figure 12.
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Table 1. Calibration result of the normal camera model.

Coordinate of
Principal Point

(u0,v0)
Scale Factor sx

Focal Length f
(mm)

Radial Distortion
Coefficient k

(pixel−2)
Rotation Matrix R Transformation

Matrix T

387, 305 0.96 11.6401 −0.0012

 −0.7782 0.0647 −0.6247
−0.0655 0.9976 0.02173
0.6246 0.0240 0.7806

  23.81
−0.93
107.81
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The training algorithms are an important part of MLPNN model development, and they were
discussed in Section 4. Determining which training algorithm will be the fastest or most accurate
for a given problem is a difficult task. An appropriate topology may still fail to give a better model
unless it is trained by a suitable training algorithm. The trained neural network is used to represent the
calibration residuals of the structured light vision sensor, which is mounted at the end of the Motoman
robot in the proposed 3D measurement system. The different convergence performances of the five
training algorithms are illustrated in Figure 13. It can be seen from the result that the CGF training
algorithm has the best training performance over all of the other training algorithms because of its
low training error and fast convergence rate in the training process, and it was selected to train the
designed MLPNN.
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The number of hidden layer neurons in the MLPNN was obtained by trial and error. In this
study, the number of hidden layer neurons was changed from 10 to 30. The testing procedure was
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repeated 10 times (Note: this value was chosen empirically according to the number of neurons), and
the average value is given in Figure 14. The results showed that the MLPNN calibration technique can
perform well when the number of hidden layer neurons is 25.

The MLPNN with 25 neurons in the hidden layer was chosen and was trained for 4000 epochs,
and as shown in Figure 14, after 4000 iterations, the training error remains the same for the CGF
algorithm. The training process is within 1 minute offline. One of the best MLPNN structures was
recorded. Then it was express as a mathematical function and implemented in the camera model.
The calculation speeds of two methods are almost the same.
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There are many methods to evaluate the camera calibration accuracy. In [28], the camera
accuracy evaluation methods are classified into two categories. The first one is based on analysing the
discrepancy between the real position of the 3D object point with respect to the 3D position estimated
from its 2D projection. The other one, however, is based on calculating the discrepancy between the
real position, in pixels, of a 2D image point with the calculated projection of the 3D object point on the
image plane. The first evaluation method is chosen in this study. Because the laser plane equation is
Xg = 0, it follows that the x coordinates of the calculated 3D object points are all 0. Generally speaking,
the number of calibration points can be estimated by perspective projection equations. However, when
the ANN is involved in the calibration model, it is difficult to estimate how many calibration points
are good enough. In this study, the number of calibration points is changed and the calibration errors
are recorded. The relationship between number of calibration points and calibration errors are shown
in Figure 15. It follows that using 54 calibration points has best calibration performance. Then, the
54 calibration points are employed to evaluate the calibration accuracy and the calibration error is

denoted as e =
√

e2
y + e2

z . The calibration error distribution is also illustrated in Figure 16. Using the
traditional RAC calibration method, the maximum, mean and standard deviation of the radius of the
calibration error are 0.2114 mm, 0.0426 mm and 0.0371 mm, respectively. After the novel approach
is employed, the maximum, mean and standard deviation of the radius of the calibration error are
0.1541 mm, 0.0222 mm and 0.0291 mm, respectively. The calibration performance is improved after the
application of the neural network.

The six remaining calibration points are then used to test the accuracy of the two calibration
methods. The experimental results are listed in Table 2. From the obtained results, the average error
is reduced from 0.0549 mm to 0.0403 mm. However, for each of the calibration points, all of the test
accuracies are improved except the 2nd calibration point. It means that ANN doesn’t perform 100%
good for the test data. However, the improvement rate is 5/6 = 83.3% in this case. If we look into
the data in Table 2 further, it shows that two method perform closely with each other for the 2nd
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calibration point as the error is 0.0535 mm for RAC method while 0.0683 mm for proposed method. In
other hand, the improvements for the rest 5 calibration points are much better. Table 2 also shows the
performance of proposed method is much better than RAC method in a whole.Sensors 2016, 16, 1388 14 of 18 
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In addition to the camera calibration error, determining the laser plane equation as discussed
before can also lead to a measurement error. After the RAC two-stage method parameters and MLPNN
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structure and parameters are determined, both of the calibrated structured light vision sensor models
were implemented in the structured light vision sensor software system.

The measurement accuracy can be tested by measuring a standard ball with a known radius.
The standard ball and its projected laser stripe are illustrated in Figure 17. The sensor is applied to
measure the standard ball ten times, and each of the obtained radii is recorded for the RAC two-stage
method and the presented method. All of the obtained values are listed in Table 3. The standard ball
radius is (14.3005 ± 0.0028) mm, while r = 14.3005 mm is the nominal value and 0.0028 mm is the
uncertainty. The measuring error is then denoted by ∆r = ri − r. Both of the measuring errors for the
two calibration methods are shown in Figure 18. From Table 3 and Figure 18, it can be seen that the
average measuring accuracy is improved from 0.0368 mm to 0.0206 mm after the proposed calibration
approach. It should be pointed out that there are all positive biases of RAC method, this is because that
the camera model obtained via RAC method is not a completely model that takes as many factors as
possible into consideration. However, there exists positive and negative bias in the proposed method
as the model expressed by it is more accurate than RAC method as the powerful modelling of MLPNN.
For the ten time measurements, the maximum measuring error is reduced from within 0.06 mm to
within 0.05 mm.
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Table 3. Experimental result (for the standard ball measurement).

No. Radius Measured by Vision Sensor
after RAC Calibration/mm

Radius Measured by Vision Sensor after
the Proposed Calibration Method/mm

1 14.3446 14.2864
2 14.3586 14.3008
3 14.3517 14.3199
4 14.3539 14.3123
5 14.3502 14.3476
6 14.3173 14.3127
7 14.3180 14.3219
8 14.3182 14.3250
9 14.3292 14.3331

10 14.3263 14.3461

Average 14.3368 14.3206

7. Conclusions

A robot-based 3D measurement system has been established for 3D surface measurements, and
it is hoped that the system will be applied for closed-loop manufacturing quality control in the near
future. The measurement accuracy is one of the key components of this system. It is clear that the
structured light vision sensor plays an important role in the presented system. To calibrate the vision
sensor with much higher accuracy, a novel calibration point generation procedure, followed by a
combination technique of the RAC method and the MLPNN approach, are presented. The novel
calibration point generation procedure is of high accuracy, as the real circle projected centres are
obtained via a set of concentric circles. The presented calibration approach is also of high accuracy
because the MLPNN can compensate for the calibration residuals by the RAC method. The idea is
inspired from adaptive control in control theory. This strategy can be employed in other measurement
field applications. The experimental calibration results demonstrate the effectiveness of the presented
method compared with the traditional RAC method. The calibration target employed in this study is
simple and easy to manufacture. The experimental results show that a higher measuring accuracy can
be obtained via the proposed novel calibration technique. The limitation of the proposed method is
that a MLPNN should be designed and training data should be collected. In addition, the relationship
between number of training data and precision of the calibration results and more comparisons should
be further investigated in the future.
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