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Abstract: Classification of target microwave images is an important application in much areas
such as security, surveillance, etc. With respect to the task of microwave image classification,
a recognition algorithm based on aspect-aided dynamic non-negative least square (ADNNLS) sparse
representation is proposed. Firstly, an aspect sector is determined, the center of which is the estimated
aspect angle of the testing sample. The training samples in the aspect sector are divided into active
atoms and inactive atoms by smooth self-representative learning. Secondly, for each testing sample,
the corresponding active atoms are selected dynamically, thereby establishing dynamic dictionary.
Thirdly, the testing sample is represented with `1-regularized non-negative sparse representation
under the corresponding dynamic dictionary. Finally, the class label of the testing sample is identified
by use of the minimum reconstruction error. Verification of the proposed algorithm was conducted
using the Moving and Stationary Target Acquisition and Recognition (MSTAR) database which was
acquired by synthetic aperture radar. Experiment results validated that the proposed approach was
able to capture the local aspect characteristics of microwave images effectively, thereby improving
the classification performance.
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1. Introduction

Microwave imaging sensors have gained extensive applications in bio-tissue image sensing,
concealed weapon detection, and aerial remote sensing [1–3], in which the first and foremost objective
is target microwave image classification. The present study is focused on target classification in images
collected by a microwave imaging radar. Microwave imaging of targets is basically based on the
electromagnetic scattering mechanism, so the images are usually not as detailed as optical images.
Moreover, microwave imaging is very sensitive to the aspect angle and depression angle, so changes
of these angles can cause significant changes in images. Figure 1 describes the aspect angle and
depression angle in microwave imaging radar. In Figure 2, the images of a BMP2 target at varying
aspect angles are given with a constant depression angle of 17◦. As shown, image information differed
profoundly for different aspect angles. Thus, these factors increase the difficulty in microwave image
recognition [4,5].
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Figure 1. Description of aspect angle and depression angle in microwave imaging radar sensor. 
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Figure 2. Microwave images of BMP2 at different aspect angles (depression angle 17°). 

There are two primary types of target classification technology used for images of microwave 
imaging radar: the template-based method [6] and model-based method [7]. The principle underlying 
the template-based method involves extracting features and comparing them with the stored 
templates generated by the training images, thereby identifying the unknown test image as the class 
of the matched template. The problem is that background clutters in microwave images interfere 
profoundly with template matching. The sensitivity to aspect angle and depression angle also causes 
difficulties in template matching. For the model-based method, SAR images were described using a 
statistical model based on scattering mechanisms. Then the target’s type was determined based on 
the maximum posterior probability of model parameters. Because of the difficulty of parameter 
estimation, this process can easily produce in weak correlation between training and testing samples, 
causing the method to fail. In addition, these methods have much worse classification performance 
at extended operating conditions, because the working parameters of training samples and testing 
samples are significantly different. Other optional methods include discriminative tensor analysis, 
non-negative matrix factorization (NMF), etc. [8,9]. 

In recent years, the sparse representation theory has been widely adopted in image processing 
and pattern recognition. The principle is to represent observed signal using linear combinations of a 
series of known signals called atoms. In sparse constraint of representation coefficient (minimal ℓ  
norm), a unique solution was obtained. Then the target type was determined by minimizing the 
reconstruction error of every type of training sample. Sparse representation has been used extensively 
in various recognition tasks, such as facial recognition, speech recognition, and hyperspectral image 
classification [10–12]. Sparse representation based recognition has gained in-depth development in 
accordance to different requirements of image recognition. Fang et al. investigated multi-task sparse 
learning algorithm [13]. In a previous study by Zhang et al., the kernel technique and sparse 
representation in non-linear processing were used to create a kernel sparse representation model, 
which was then used in facial recognition and hyperspectral image classification [14]. Meanwhile, 
the ℓ -regularized non-negative least square (NNLS) sparse representation was employed in 
classification of gene data [15,16]. The NNLS sparse representation model possessed advantages of 
clear physical meaning, high classification accuracy and rapid calculation. 
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There are two primary types of target classification technology used for images of microwave
imaging radar: the template-based method [6] and model-based method [7]. The principle underlying
the template-based method involves extracting features and comparing them with the stored templates
generated by the training images, thereby identifying the unknown test image as the class of the
matched template. The problem is that background clutters in microwave images interfere profoundly
with template matching. The sensitivity to aspect angle and depression angle also causes difficulties
in template matching. For the model-based method, SAR images were described using a statistical
model based on scattering mechanisms. Then the target’s type was determined based on the maximum
posterior probability of model parameters. Because of the difficulty of parameter estimation, this
process can easily produce in weak correlation between training and testing samples, causing the
method to fail. In addition, these methods have much worse classification performance at extended
operating conditions, because the working parameters of training samples and testing samples are
significantly different. Other optional methods include discriminative tensor analysis, non-negative
matrix factorization (NMF), etc. [8,9].

In recent years, the sparse representation theory has been widely adopted in image processing
and pattern recognition. The principle is to represent observed signal using linear combinations of
a series of known signals called atoms. In sparse constraint of representation coefficient (minimal
`0 norm), a unique solution was obtained. Then the target type was determined by minimizing the
reconstruction error of every type of training sample. Sparse representation has been used extensively
in various recognition tasks, such as facial recognition, speech recognition, and hyperspectral image
classification [10–12]. Sparse representation based recognition has gained in-depth development
in accordance to different requirements of image recognition. Fang et al. investigated multi-task
sparse learning algorithm [13]. In a previous study by Zhang et al., the kernel technique and sparse
representation in non-linear processing were used to create a kernel sparse representation model,
which was then used in facial recognition and hyperspectral image classification [14]. Meanwhile, the
`1-regularized non-negative least square (NNLS) sparse representation was employed in classification
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of gene data [15,16]. The NNLS sparse representation model possessed advantages of clear physical
meaning, high classification accuracy and rapid calculation.

In microwave radar image recognition, several studies have focused on sparse representation-
based classification. For example, Zhang et al. proposed a joint sparse representation target
classification method by evaluating the correlation between multi-view microwave images [17].
On this basis, Chen et al. presented an improved joint sparse representation by using low-rank
matrix recovery [18]. Dong et al. studied monogenic signal joint sparse representation-based target
recognition of microwave image sensors, and further developed sparse representation of monogenic
signals on Grassmann manifolds [19,20]. Liu et al. investigated microwave image recognition via
multiple sparse Dempster-Shafer fusion [21]. Liu et al. introduced fusion of sparse representation
and support vector machine for microwave radar image target recognition [22]. Cao et al. proposed a
target classification method based on joint sparse representation with multi-view SAR images over
a locally adaptive dictionary [23]. Hou et al. investigated SAR image classification with hierarchical
sparse representation and multisize patch features [24]. Recently, there are also several techniques
based on sparse representation for polarimetric SAR image classification [25–28].

In current microwave image recognition methods involving sparse representation theory, training
samples of all aspect angle from 0◦ to 360◦ were considered as dictionary atoms. It is assumed that the
all aspect angle microwave images of one type of target exist in a linear subspace. In the presence of
large differences in aspect angle, the assumption is inappropriate due to the sensitivity of microwave
images to aspect angle. According to the scattering characteristics of a target, the microwave images
are, in essence, characterized by the electromagnetic scattering mechanism. According to this, only
microwave images with approximately the same aspect angles have strong correlation, and those
with different aspect angles have weak correlation. This is in fact the aspect-dependent structural
characteristics of microwave images. For example, images at 6◦ aspect angle have a close correlation
with images with 1◦–11◦ aspect angle, and the correlation with other aspect angle images is weak,
especially when the difference in aspect angle is large. In this way, the sparse representation of a testing
image should only involve training samples with high aspect correlation with the testing image, rather
than all SAR training images. Meanwhile, the dictionary matrix is not optimal if constituted by all of
0◦–360◦ training samples. The production of excessive numbers of dictionary entries might render
computation and storage unnecessarily taxing.

The main contribution of the current study lies in the presentation of a microwave image
recognition method based on aspect aided dynamic non-negative least square (ADNNLS) sparse
representation. Figure 3 shows a schematic view of the proposed algorithm. First, the aspect angle
of a testing sample was estimated. Taking the estimated aspect angle as the center, a sector was then
defined. Training samples of all targets in the sector were considered effective dictionary atoms, others
not in the sector were null atoms, and replaced with zero matrices. However, estimations of aspect
angle are subject to errors. To prevent actual dictionary atoms not falling into an effective sector, the
sector cannot be too small, so there are still some atoms in the sector that have weak correlations with
the testing sample. In order to further narrow down the range of effective atoms, they were divided
into two groups via smooth self-presentation clustering learning. The first group considered the testing
sample to be the clustering center, and the second considered the furthest training sample to the testing
sample to be the center. It is worth noting that the clustering samples included the testing sample,
rather than only training samples in the sector. In this way, the selection of effective atoms could
be enhanced. Then, only the effective atoms in the testing sample group were preserved. These are
here called active atoms. The remaining atoms were set to zero matrices. Hence, the corresponding
dictionary atoms of different testing samples need to be updated dynamically. That is why it is called
aspect-dependent dynamic sparse representation. In this way, the size of dictionary did not change,
with the active atoms keeping their original value and invalid atoms becoming zero matrices. Then
the `1-regularized non-negative least square sparse representation was used to perform regression
representation of the tested sample. Decision making of the testing sample was then performed based
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on the principle of minimum reconstruction error. The advantage of the proposed model is that the
quantity of effective data in training samples was reduced, and the interference of invalid atoms
with large differences in aspect angle was eliminated, thereby improving the recognition accuracy.
Additionally, the large number of zero matrices in the dynamic dictionary helps to reduce the required
computation time and data storage space in sparse solving. Based on the Moving and Stationary
Target Acquisition and Recognition (MSTAR) public database, several experiments were conducted to
evaluate the performance of the proposed algorithm. The target microwave images in the database
covered 0◦–360◦ aspect angles, which enabled algorithm verification of the proposed aspect-aided
dynamic non-negative least square sparse representation. The results were then compared to those of
state-of-art algorithms.
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This paper is organized as follows: Section 2 describes the algorithm for aspect-aided dynamic
selection of active atoms. In Section 3, the non-negative least square sparse representation algorithm
is reviewed. Then the microwave image recognition algorithm based on aspect-aided dynamic
non-negative least square sparse representation is presented. In Section 4, experiments carried out
according to the MSTAR database and comparisons between the proposed algorithm and the current
algorithm are described. Conclusions are given in Section 5.

2. Aspect-Aided Dynamic Active Atoms Selection

The characteristics of target microwave images obtained from microwave imaging radar are
closely related to their aspect angle. When the aspect angle changes severely, the pixel distribution in
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the target images also show abrupt changes. In this study, only the influence of the aspect angle was
analyzed because it had the most dramatic influence on microwave images characteristics, and the
depression angle did not change much in the experimental data.

2.1. Estimation of the Testing Sample Aspect Angle

As given above, the aspect angle of a testing sample needs to be estimated in the microwave
image recognition algorithm based on ADNNLS sparse representation. It was also needed in template
matching microwave image recognition [6]. Current estimation methods, which are only based on
the information of the testing sample images, mainly use a technique such as radon transformation to
estimate the target aspect angle [29]. The current methods did not consider using training samples
with known aspect angles. Actually, in microwave image recognition tasks, there are large numbers of
training samples with known aspect angle, which can be used to estimate the testing sample aspect
angle. Thus, we present a simple but effective testing sample aspect angle estimation method based
on the training sample aspect angle. This is an innovation of the current study. The precondition of
the method is that the training sample aspect angle is known and distributed evenly across 0◦–360◦.
The principle of the method is that the testing sample is closely correlated to training samples which
have similar aspect angle. Hence, the correlation coefficients between the testing samples and training
samples were calculated, and the aspect angle of training samples with the largest correlation coefficient
was taken as the estimation value of the testing sample. Assuming that the testing sample are A, and
certain training sample is B, the correlation coefficient r could be calculated as below:

r =
∑
m

∑
n
(Amn − A)(Bmn − B)√(

∑
m

∑
n
(Amn − A)

2
)(

∑
m

∑
n
(Bmn − B)2

) (1)

Herein, A represents the mean of A, B is the mean of B, and Amn, Bmn represent the value of pixels
at row m and column n in A and B, respectively.

The microwave images of target BMP2-9563 were used for verification. Correlation analyses were
performed between one testing image of target BMP2-9563 at 15◦ depression angle and 48.49◦ aspect
angle and training images of targets BMP2-9563, BTR70-C71, and T72-132 at 17◦ depression angle and
all aspect angles. Figure 4 shows the variation curve of the correlation coefficients. As shown, the
training samples with largest correlation coefficient were the 34th training samples of BMP2-9563. The
corresponding aspect angle was 46.49◦, which was then taken as the estimation value of testing sample
aspect angle. As shown, there was an error of 2◦ relative to the true aspect angle of the testing sample.
Figure 5 shows the errors of all testing samples in BMP2-9563. As shown, the error was around 5◦ for
most cases and slightly above 10◦ for some. Data analysis showed that the estimated aspect angle
mean error for BMP2-9563 testing samples was 0.19◦, and the standard deviation is 2.76◦. A similar
trend was found for other testing samples in experiments.

This method of estimation has the following advantages: (1) it fully utilizes the aspect angle
information of the training samples; (2) the calculations were simple; and (3) the problem of
distinguishing target head and tail while only using testing samples information was avoided.

Once the aspect angle of the testing sample has been estimated, it was taken as the center to
determine a sector. For example, if the testing sample aspect angle estimated is 40◦, we can determine
a sector which aspect angle range is from 25◦ to 55◦. All types of training sample subsets in the sector
were considered effective atoms. The other training samples not in the sector were set to zero matrices.
A preliminary dictionary was composed of the effective atoms and zero matrices atoms.
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2.2. Enhanced Atoms Selection in Aspect Sector Based on Smooth Self-Representation

The corresponding aspect sector was determined based on aspect angle estimation of testing
sample, and the effective atoms were chosen. However, as shown above, the maximum estimation
error might be as high as 15◦. In order to prevent omission of any effective atoms, the sector size
should be at least ±15◦, namely covering an area of 30◦. Hence, the effective atoms subsets contained
redundancy. The smooth self-representation learning clustering method was adopted in this study to
further refine these subsets. The clustering reported by Shafiee et al. was only for the training samples
themselves [30]. Here, clustering was performed for both the testing sample and training samples.
The aim of clustering was to divide effective atoms into two groups, one group containing the atoms
closely correlated to the testing sample, and the other group had low correlations to the testing sample.
Therefore, clustering was conducted with two centers, the current testing sample and the atom furthest
from the current testing sample.

The smooth self-representation clustering algorithm presented by Han et al. was used in this
study [31]. In clustering, the grouping effect is very important. The enforced grouping effect conditions
are introduced in the smooth self-representation algorithm. This is what allows the algorithm to
achieve such a strong clustering effect.

Assuming the dataset of the testing sample and effective training atoms is
X = [x1, x2, · · · xn] ∈ Rm×n where xi, i = 1, . . . ,n is a vector with every sample arranged in columns. x1
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is the testing sample, xn is the atom farthest from the testing sample. The clustering process is as
below [31]:

First, the number of subspaces from clustering was obtained as d = 2, with two clustering centers x1

and xn. Then a K-NN plot W was made, and the corresponding Laplacian matrix L̃ was calculated [31].
It is necessary to calculate the self-representation matrix U, i.e., the following

optimization problem:
min

U
f (U) = α‖ X − XU ‖2

F + tr(UL̃UT) (2)

Here, α > 0 is a control parameter, ‖ · ‖F represents the matrix norm, and tr (·) is the trace of
the matrix. Equation (2) is a smooth convex programming problem. According to [31], the optimal
solution U* could be found by solving the Sylvester matrix in Equation (3):

αXTXU∗ + U∗ L̃ = αXTX (3)

Thereafter, the affinity matrix J was calculated using Equation (4):

J =
(
|U∗|+

∣∣∣U∗T∣∣∣) /2 (4)

Then, the final clustering result was obtained via the spectral clustering algorithm [31,32].
According to the clustering results, the atoms in the testing sample-centered type were refined

effective atoms, here called active atoms. The other type of atom was replaced with zero vectors. Thus,
the active atoms and zero vectors atoms constituted the final dictionary.

3. Non-Negative Least Square Sparse Representation Classifier

3.1. Basic Sparse Representation Classifier

Lately, sparse representation has gained widespread applications in image restoration, pattern
recognition and hyperspectral image classification [33]. The success of the sparse signal model mainly
lies in sparse representation of observed signal with a group of known observation samples (dictionary).
The optimal sparse representation could be solved via the convex optimization method [34,35].

Given sufficient k types of training samples (k = 1, . . . ,K), and Xk =
[
xk,1, xk,2, . . . , xk,nk

]
∈ Rm×nk ,

the samples were sorted in a column vector in space Rm. An unknown observation sample y ∈ Rm×nk

was represented as the linear combination of the k-th type training samples with the representation
coefficient αk =

[
αk,1, αk,2, . . . , αk,nk

]T ∈ Rnk .

y = xk,1αk,1 + xk,2αk,2 + . . . + xk,nk
αk,nk

(5)

It was assumed that a certain type of sample formed an approximate linear subspace. Because
the class label of observation sample y was unknown, it was represented with all k types of training
samples of the training set. X = [X1, X2, . . . , XK] ∈ Rm×n, here n = ∑K

k=1 nk is the total number of
training samples. Then the linear representation of y was written as follows:

y = X1α1 + X2α2 + . . . + XKαK = Xα (6)

Herein, α = [α1, α2, . . . , αK]
T ∈ Rn where Rn is the representation coefficient vector. Theoretically,

the optimal representation α is a coefficient vector, in which the elements corresponding to observation
samples y were non-zero, and the other elements were all zero.

When m < n, the solution of Equation (6) is not unique. A common method was to add sparse
constraint term to the representation coefficient vector, thereby searching for the sparsest representation
as below [36]:

min
α
‖ α ‖0 s.t.‖ y − Xα‖2 ≤ ε (7)
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Herein, ‖ · ‖0: represents the `0-norm of α, and ε is the allowable error. Since the optimization
problem of minimal `0-norm is NP-hard, Equation (7) could only be approximately solved with certain
algorithms, such as matching pursuit and orthogonal matching pursuit [37,38]. According to the
compressed sensing theory [39], Equation (7) could be relaxed to `1-norm minimization as below.

min
α
‖ α ‖1 s.t.‖ y − Xα ‖2 ≤ ε (8)

Herein, ‖ · ‖1 is the `1-norm of α. Since Equation (8) is a convex optimization problem, it could be
solved with a traditional optimization algorithm [40].

In sparse representation classifier, after the optimal sparse representation was obtained, the class
label of y could be determined based on the law of minimum reconstruction error:

identity(y) = min
k=1,...,K

‖ y − Xkα ‖2 (9)

The above is the common-used basic sparse representation classifier (SRC) [41].

3.2. Non-Negative Least Square Sparse Representation Classifier

In SRC, the sparse representation coefficient might be either positive or negative, although a
negative value has no physical meaning in actual application. Because of the presence of negative
coefficients, different atoms might be eliminated as a result of offset, which does not conform to
the visual perception mechanism. Previous studies have suggested that non-negative property
was more accordant with human visual perception mechanism, therefore providing more effective
representation [15,16]. Meanwhile, to a certain extent, non-negativity caused further sparsity. In
terms of microwave image recognition, the non-negative constraint can eliminate atoms in sparse
solution that are negatively correlated to input images, which is more reasonable for microwave image
recognition. In the present study, the `1−egularized non-negative least square sparse representation
classifier was adopted [16]:

min
β

1
2
‖ y − Xβ ‖2

2 + λ‖ β ‖1 s.t. β ≥ 0 (10)

Herein, y is the testing sample, X is the dictionary of training samples, and λ is the control
parameter. Equation (10) could be transformed into the following non-negative quadratic programming
(NNQP) problem (11):

min
β

1
2

βTHβ + wTβ s.t. β ≥ 0 (11)

Herein, H = XTX and w = λ− XTy. The optimization problem (11) could be solved with the
Active-Set algorithm [16].

After obtaining the non-negative sparse coefficient vector β, the law of minimal reconstruction
error was used to identify the label of the testing sample:

identity(y) = min
k=1,...,K

‖ y − Xkβ ‖2 (12)

3.3. Microwave Image Classification with ADNNLS Sparse Representation

In summary, the steps of microwave image recognition based on ADNNLS sparse representation
are listed in Algorithm 1 as follows:
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Algorithm 1: ADNNLS sparse representation for microwave image recognition

Input:
Xm×n : All types of training samples
Ym×p: All test samples
Output: the identity of Ym×p

Steps:

1) A test sample yi was selected from Ym×p, and its correlation coefficients vector ryi
with all

training samples were calculated. The aspect angle of the testing sample θyi
was estimated

based on the aspect angle of training samples that showed the largest correlation coefficient.
2) An aspect sector was determined based on the estimated aspect angle, and all types of

training samples in the sector were included in a set of effective atoms. Based on smooth
self-representation learning clustering, the set of active atoms X′yi

was obtained.
3) A dynamic dictionary X′′yi

was created according to X′yi
.

4) Using non-negative least square sparse representation algorithm, the testing sample yi
was represented with the dynamic dictionary X′′yi

, thereby deriving the representation
coefficient βyi

.
5) Class label of testing sample yi was obtained based on the law of minimal reconstruction error.
6) If all testing samples were classified, go to step 7). Otherwise, go back to step 1);
7) End

4. Experiments and Discussion

4.1. Description of the Dataset

The MSTAR database of microwave images obtained using synthetic aperture radar was used in
the experiments. The microwave imaging radar sensor worked in the X band, and the image resolution
was 0.3 × 0.3 m. The images of three types of targets, i.e., BMP2, BTR70 and T72 were adopted.
Optical images of the three targets are shown in Figure 6, and several microwave images of them
with near aspect angle are shown in Figure 7. Specifically, the target BMP2 has three configuration
types BMP2-9563, BMP2-9566, and BMP2-C21, BTR70 has one type BTR70-C71, and T72 has three
configuration types T72-132, T72-812, and T72-S7. Table 1 lists the number of all training samples and
testing samples. The microwave images at 17◦ depression angle of three targets were taken as training
samples, and the images at 15◦ depression angle were testing samples. For each type of target, the
images covered 0◦–360◦ aspect angle. The sample type, depression angle, target type, and sample
numbers are shown in Table 1. First, pre-processing was carried out for all training samples and testing
samples by logarithm transformation to compress the dynamic range and to change multiplicative
noise spots into additive noise. Because the original images contained background clutter, in order to
reduce interference, a 60 × 60 m sub-image centered at the original image center was extracted, and all
targets were located in the sub-image.
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Figure 7. Microwave images of three targets at near aspect angles.

Table 1. Name and number of the training and testing samples.

Number of Targets 1 2 3 4 5 6 7

Training sample type BMP2 BMP2 BMP2 BTR70 T72 T72 T72
(17◦) sn-9563 sn-9566 sn-c21 sn-c71 sn-132 sn-812 sn-s7

Number 233 232 233 233 232 231 228
Testing sample type BMP2 BMP2 BMP2 BTR70 T72 T72 T72

(15◦) sn-9563 sn-9566 sn-c21 sn-c71 sn-132 sn-812 sn-s7
Number 195 196 196 196 196 195 191

4.2. Classification Results

The classification performance of the proposed ADNNLS algorithm was analyzed first. To address
the advantages of ADNNLS in microwave images classification, one BMP2-9563 testing sample,
one testing sample of BTR70-C71, and one testing sample of T72-132 were selected as the testing
samples to assess the sparse coefficient distribution diagram and reconstruction error graph, which was
then compared to that of SRC and NNLS. The dictionaries in SRC and NNLS comprised global aspect
training samples of all target types, including 233 training samples of BMP2-9563, 232 training samples
of BMP2-9566, 233 training samples of BMP2-C21, 233 training samples of BTR70-C71, 232 training
samples of T72-132, 231 training samples of T72-812, and 228 training samples of T72-S7. In ADNNLS,
the training samples were selected within the aspect sector after smooth self-representation clustering,
so, even though the dictionary was the same size as SRC and NNLS, the number of effective non-zero
atoms was much smaller than in the SRC and NNLS. Sparse coding was carried out for three
testing samples with corresponding dictionary, thereby producing three sparse coefficient vectors
and corresponding reconstruction error graphs, as shown in Figures 8–10. As shown in Figure 8b,
the maximum sparse coefficient corresponded to BMP2-9563. Comparison of Figure 8c–e suggested
that minimal reconstruction error for SRC and NNLS corresponded to incorrect classification, while
the minimal reconstruction error for ADNNLS was able to identify the correct type. As shown in
Figure 9c–e, although three algorithms were able to correctly identify the type, the reconstruction
error of BTR70-C71 sample in ADNNLS was far less than other types. Similarly, Figure 10 shows the
classification of a testing sample of T72-132. Using SRC, it was incorrectly identified as BMP2-9563.
When using NNLS, it was then identified as BMP2-9566.

In traditional SRC and NNLS without the assistance of aspect angle, sparse decomposition was
performed across global aspect range of 0◦–360◦, namely using training samples at all aspect angles.
For the ADNNLS algorithm, the sparse decomposition and reconstruction were both performed
within the local aspect sector, which was described in Algorithm 1 in detail. Therefore, because of the
sensitivity of microwave images to aspect angle, ADNNLS was able to capture more aspect-related
information compared with SRC and NNLS, not being interfered by training samples with large
difference in aspect angle. These results indicated that the ADNNLS algorithm could prevent
interference from training samples with large differences in aspect angle, thereby improving the
classification performance.

In order to analyze the influence of sector size on ADNNLS performance, recognition experiments
were carried out at different aspect sectors (30◦, 60◦, 90◦, 180◦, and 360◦). Apparently, with 360◦ aspect
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sector, the algorithm was the full-aspect NNLS algorithm. Figure 11 shows the results of recognition.
It can be seen that the recognition rate peaked at 99.63% for 30◦ aspect sector. As the sector increased,
the rate gradually decreased, which was due to the increase of confusion atoms. Despite this, the
recognition rate was still as high as 97.39% when the sector was 360◦.
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Figure 8. (a) Test sample BMP2-9563; (b) Sparse vector obtained based on ADNNLS algorithm;
(c) Reconstruction error of ADNNLS algorithm; (d) Reconstruction error of SRC algorithm;
(e) Reconstruction error of NNLS algorithm.
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Figure 9. (a) Test sample BTR70-C71; (b) Sparse vector obtained based on ADNNLS algorithm;
(c) Reconstruction error of ADNNLS algorithm; (d) Reconstruction error of SRC algorithm;
(e) Reconstruction error of NNLS algorithm.
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Figure 10. (a) Test sample T72-132; (b) Sparse vector obtained based on ADNNLS algorithm; (c) 
Reconstruction error of ADNNLS algorithm; (d) Reconstruction error of SRC algorithm; (e) 
Reconstruction error of NNLS algorithm.  

In order to analyze the influence of sector size on ADNNLS performance, recognition 
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Figure 10. (a) Test sample T72-132; (b) Sparse vector obtained based on ADNNLS algorithm;
(c) Reconstruction error of ADNNLS algorithm; (d) Reconstruction error of SRC algorithm;
(e) Reconstruction error of NNLS algorithm.
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Figure 11. Variation in the performance of ADNNLS algorithm with the size of aspect sector.

To assess the performance of the proposed algorithm, the recognition results of the current
ADNNLS algorithm were compared to full-aspect SRC, aspect-aided dynamic SRC (ADSRC),
full-aspect non-negative sparse representation (NNLS). A full-aspect algorithm means that the training
samples across all aspects were included in the dictionary. An aspect-aided algorithm means the
proposed aspect-aided smooth self-representation clustering was performed during dictionary design.
The recognition experiments were conducted at different dimensions of PCA features. The results are
as shown in Figure 12.

The performance of each algorithm increased with increasing dimension. At 800 dimensions,
ADNNLS showed the largest recognition rate, which was 99.49%. The maximal recognition rates
for SRC, NNLS, and ADSRC were 92.23%, 96.8%, and 96.97%, respectively. Moreover, ADNNLS
demonstrated good recognition performance at low dimensions. The results validated the effectiveness
of the proposed algorithm in microwave images recognition. In addition, the results of the presented
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algorithm were compared to the results of recently published IJSRC algorithm [18]. The reason of
choosing this article was that it used the same dataset as in the current study. The ADNNLS algorithm
showed a recognition rate of 99.83% at 30◦ aspect sector, only two out of 1365 testing samples were
incorrectly identified. For IJSRC, the recognition rate was 98.53%, less than our algorithm. IJSRC used
multi-view joint sparse representation, which was different from ADNNLS.
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Figure 12. Recognition performance of the four algorithms with varying feature dimensions.

It is worth noting that the convergence condition used in four algorithms is error tolerance rather
than sparsity in the manuscript. For comparing four algorithms performance with the same level of
sparsity, we conducted the following experiment. We fixed sparsity value at 12, which means that
non-zero elements number of solved sparse coefficient vector is 12. One query sample of BMP2-SN9563
with aspect angle 171.49◦ is selected to compare the representation coefficient vectors from the four
algorithms. According to correspondence between training samples aspect angle and their index
number, we know that samples near index number 114 should be selected and correspond to larger
coefficient values. Figure 13 shows four representation vectors corresponding four algorithms.

SRC and NNLS picked dispersed atoms without aspect angle information aided, which can be
seen from Figure 8a,b. The atoms selected by ADSRC are more assembled than SRC and NNLS.
However, from Figure 8d, it can be observed that ADNNLS can select most representative atoms
near index number 114 corresponding larger coefficient values. Figure 8e shows that ADNNLS has
minimum reconstruction error for this testing sample among four algorithms. The advantage of the
ADNNLS is that it can reduce the interference of invalid atoms with large differences in aspect angle,
thereby improving the recognition accuracy.

We conducted another experiment to study whether OMP could pick similar dictionary atoms
as ADNNLS by enforcing the same number of non-zero coefficients from ADNNLS. We select
one BMP2-SN9563 testing sample with 213.49◦ aspect angle for this experiment. Ideally, those
training samples near 213.49◦ in the dictionary will be picked under optimal representation algorithm.
According to correspondence between training samples aspect angle and their index number, we know
that samples near index number 135 should be selected and correspond to larger coefficient values.
We first solve the representative coefficient vector under ADNNLS, which is shown in Figure 14a.
The number of non-zero coefficients from ADNNLS is 29. The OMP representative vector is solved by
enforcing 29 non-zero coefficients, which is shown in Figure 14b. From Figure 14a, it can be seen that
there were four atoms near index number 135 picked and one atom corresponded to the largest value
in the whole ADNNLS representative vector. However, there was only one atom near index number
135 selected with a small value under the OMP algorithm. From the OMP representing vector, we can
see that atoms selected are more dispersed than those picked with ADNNLS. Although OMP is able to
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acquire a sparse solution, it cannot select those best represented atoms for a query sample which results
in a larger representation error. Experiment results indicated that OMP had larger reconstruction error
than ADNNLS, which can be seen from Figure 14c.
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Figure 13. (a) Sparse coefficient vector obtained based on SRC algorithm; (b) Sparse coefficient
vector obtained based on NNLS algorithm; (c) Sparse coefficient vector obtained based on ADSRC
algorithm; (d) Sparse coefficient vector obtained based on ADNNLS algorithm; (e) Reconstruction error
of four algorithms.
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Figure 14. (a) Sparse coefficient vector obtained based on ADNNLS algorithm; (b) Sparse coefficient
vector obtained based on OMP algorithm; (c) Reconstruction error of two algorithms.

4.3. Robustess to Noise

Additionally, the anti-noise performance of the proposed algorithm was investigated. Different
level Gaussian noises with varying Signal-to-Noise Ratio values (SNRs) were added into the testing
samples thereby evaluating the robustness of the algorithm. Figure 15 shows the SAR images at
different SNRs. Figure 16 shows the recognition performance curves of four algorithms at different
SNRs. From Figure 16, one can see that the recognition rate of all algorithms increase with higher
SNR, however, the ADNNLS algorithm could reach a recognition rate of over 90% within a broad
range of 5–50 dB, while, the other three algorithms all have recognition rates lower than 70% at 5 dB.
The results show that ADNNLS is more robust to noise corruption than the other three algorithms.
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Figure 15. SAR images with different SNRs: (a) original image; (b) 0 dB; (c) 10 dB; (d) 20 dB; (e) 30 dB;
(f) 40 dB; (g) 50 dB.
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Figure 16. Performance of the algorithm with varying SNRs.

4.4. Experiments Conducted with Depression Angle Variations

In addition to aspect angle changes, depression angle variations of test samples can also
significantly affect recognition performance. In the experiments, four algorithms are also evaluated
with a large depression angle variation. Four targets, BRDM2, 2S1, SLICY and ZSU23/4 are employed,
as illustrated in Figure 17, several SAR image samples of these targets are illustrated in Figure 18.
The dataset used in the depression variation experiments is shown in Table 2. In this experiment,
images collected at 17◦ depression angle are used for training, while images taken at 30◦ and 45◦ are
utilized for testing. Experimental results to be studied are shown in Table 3.
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Figure 17. The optical images of four target. (a) BRDM2; (b) 2S1; (c) ZSU234; (d) SLICY.
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Figure 18. Example SAR images of four targets. (a) BRDM2; (b) 2S1; (c) ZSU234; (d) SLICY.

Table 2. Dataset used in the experiment.

BRDM2 2S1 ZSU234 SLICY

Training Set (17◦) 298 299 299 298
Testing Set (30◦) 298 288 288 288
Testing Set (45◦) 298 303 303 303
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Table 3. Recognition rates under different depression angles with four classifiers.

Depression
Classifier

SRC NNLS ADSRC ADNNLS

30◦ 84.41% 84.71% 93.40% 96.44%
45◦ 59.82% 65.10% 77.81% 79.21%

As can be seen from Table 3, with test samples at 30◦ depression angle, the accuracy of ADNNLS
achieved a high level of 96.44%, 3.04%, 11.73% and 12.43% better in average than ADSRC, NNLS and
SRC, but when test samples at 45◦ depression angle are used, the performance of the four algorithms
all decline. The reason is that huge differences occur between the training and test samples when
there are large changes of depression angle from 17◦ to 45◦. In this condition, the over-fitting issue in
all algorithms is much more serious. However, ADNNLS still achieves an accuracy of 79.21%, 1.4%,
14.11% and 19.39% better on average than ADSRC, NNLS and SRC.

The experimental results verify that ADNNLS is the most robust to the depression variation
among the four algorithms. This is due to that aspect constraints and smooth self-representation that
reduces the confusion caused by large depression variation, which ensures accurate inference ability
of sparse representation.

5. Conclusions

In the present study, an aspect-aided dynamic non-negative least square sparse representation
model was proposed to classify target images collected by microwave imaging radar sensors,
which fully utilized the aspect-dependent characteristic of microwave images. In ADNNLS sparse
representation, the aspect sector of active atoms was determined based on the aspect angle of the
testing samples. Then the smooth self-representation strategy was used in the sector to choose
training samples that were most correlated to the testing sample, thereby constructing the dictionary.
The strategy benefits searching for effective support training samples for the corresponding testing
sample, and can effectively prevent interference from the training samples that have poor aspect
correlation with the testing sample. Experiments based on MSTAR database showed that ADNNLS
significantly outperformed SRC and NNLS and reached the recognition level of state-of-art algorithm.
Meanwhile, it showed promising anti-noise behavior.
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