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Abstract: This paper presents a direct and non-singular approach based on an unscented Kalman filter
(UKF) for the integration of strapdown inertial navigation systems (SINSs) with the aid of velocity.
The state vector includes velocity and Euler angles, and the system model contains Euler angle
kinematics equations. The measured velocity in the body frame is used as the filter measurement.
The quaternion nonlinear equality constraint is eliminated, and the cross-noise problem is overcome.
The filter model is simple and easy to apply without linearization. Data fusion is performed by
an UKF, which directly estimates and outputs the navigation information. There is no need to
process navigation computation and error correction separately because the navigation computation
is completed synchronously during the filter time updating. In addition, the singularities are avoided
with the help of the dual-Euler method. The performance of the proposed approach is verified
by road test data from a land vehicle equipped with an odometer aided SINS, and a singularity
turntable test is conducted using three-axis turntable test data. The results show that the proposed
approach can achieve higher navigation accuracy than the commonly-used indirect approach, and
the singularities can be efficiently removed as the result of dual-Euler method.

Keywords: strapdown inertial navigation system (SINS); unscented Kalman filters (UKF); integrated
navigation; Euler angle kinematics; singularity

1. Introduction

Integrated navigation systems, in which two or more navigation systems are combined to yield
greater precision than any single component system operating in isolation, are usually employed in
practice. It is common to use strapdown inertial navigation systems (SINSs) to provide data with good
short term accuracy, while other sensors are employed to provide good long term stability.

The variety of modern navigation aids now available is extensive, but external navigation aids are
limited for military and underwater applications where accurate navigation is required without the
help of external information, such as GPS, which may be disturbed or blocked. In such circumstances,
the aid of velocity is popular because it is more reliable and accessible. As a result, the integration
of SINSs with velocity aid has become a standard approach and received much attention. Velocity
observations may be provided by velocimeters [1,2], e.g., odometers are used for land vehicles [3,4],
and Doppler velocity logs (DVLs) are generally mounted on the shell for autonomous underwater
vehicles (AUVs) [5,6]. Given the popularity of the integration of SINS/odometer and SINS/DVL,
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this paper focuses on the SINSs aided by the external information about the vehicle velocity in the body
frame due to the full self-contained characteristic, although these are limited cases in the integrated
navigation system where only velocity aids are used.

Depending on whether the navigation error variables are utilized as the states, the approach for
information combination of integrated navigation systems is broadly categorized as a direct or indirect
type [4]. The well-known approaches are mostly indirect for the integration of SINS/odometer and
SINS/DVL, where SINS error models are employed. The filter states are navigation errors defined
as the differences between the calculated values and the true values. The filter measurements are
the differences between external aid measurements projected into the navigation frame and the
corresponding quantities derived from SINSs. Suitable filters are used to estimate the errors in order
to correct the navigation information calculated by the SINSs.

The typically indirect approaches from extensive publications [3–7] employ linear Kalman filters
(KFs), where the SINS error models are linearized with the assumption of small navigation errors.
These KF-based techniques suffer from divergence due to the linearization approximations and system
mismodeling. Liu et al. [6] studied the cross-noise problem and introduced a cross-noise term into
the predicted error covariance, the cross-covariance and the innovation covariance in their proposed
Kalman filter whose algorithm is a little complex.

Another kind of indirect approaches employ nonlinear filters, where only the measurement
models are nonlinear [8], only the SINS error models are nonlinear [9–11], or both are nonlinear [12].
The nonlinearity limits the application of the linear Kalman filters. The unscented Kalman filter
(UKF) [13] is used to do the integration of GPS/INS/Odometer/Inclinometer [8]. A nonlinear
SINS error model with large heading errors is used [10,11]. A modified UKF using simplex sigma
point sets [14] and an adaptive UKF are employed for the integration of low-cost SINS/GPS [10,11].
An adaptive UKF and a nonlinear SINS error model with three large Euler angle errors are used for
the integration of SINS/DVL [9,12].

In contrast, direct approaches for data fusion of integrated navigation systems use navigation
information instead of the errors as the filter states. Some are based on linear Kalman filters [15–17],
while others are based on nonlinear filters [18–26]. Since the quaternion kinematics equation is
linear, most of direct approaches employ the attitude quaternion as the state [16–23]. Quaternion
representation has four components with one redundant parameter, and a normalization constraint
has to be addressed in filtering algorithms. However, the KFs and UKFs are not designed to preserve
the unit-norm property of the quaternion, and consequently the filter algorithm should be revised.
The problem of Kalman filtering with nonlinear equality constraints is discussed in detail [23].

A direct Kalman filtering approach is presented in [15], where a direct GPS/INS model is
initially introduced with the states including position and velocity, but not the attitude. A novel
quaternion KF with four attitude quaternion components as the states is presented for spacecraft
attitude estimation [16], and it is further applied to the initial orientation of SINS/odometer [17].
A linear quaternion pseudo-measurement equation is derived, and a linear system model and a linear
measurement model are constructed to eliminate the linearization as in nonlinear error models. The
expressions for the covariance matrices of the state-dependent system noises are very complex.

A quaternion UKF is applied to the integration of low-cost IMU/GPS/digital compass [18],
and the quaternion constraint is not considered in the filtering algorithm. The quaternion constraint
is handled in the transportation of the sigma points and the updates of the mean by quaternion
multiplication in quaternion UKFs [19–21]. Another quaternion sigma-point KF maintains numerical
stability and the unity norm of the quaternion by adding a small Lagrange multiplier term [22].
A multiplicative quaternion-error approach, in which an unconstrained three-component attitude-error
vector is employed among the states, is presented to guarantee that quaternion normalization is
maintained in the filter [24]. The states of the UKF are partly navigation errors, thus it can be thought
of as a semi-direct approach.
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Euler angles are used among the states [1,2,25,26]. Bristeau et al. focus on low cost setups,
incorporating a MEMS IMU, a velocimeter and an altimeter. The filter models are linear, and a collection
of filters are designed during different trajectories according observability analysis [1,2]. Georgy et al.
propose a mixture particle filter to perform the integration of reduced SINS/odometer/map data/GPS.
The inertial sensors consist of one vertical MEMS-based single-axis gyro and two horizontal
accelerometers, thus the system is not a typical aided SINS. Moreover, the method targets better
modeling of the low-cost gyro and the processing of the outages of GPS [25]. An asynchronous
direct Kalman filter (ADKF) approach is presented for underwater integrated navigation system to
improve the performance of the popular indirect Kalman filter structure [26]. The system and the
measurement equations are nonlinear, and an extended Kalman filter (EKF) is used to do the data fusion.
During the filtering process, the system and measurement equations are linearized analytically by
evaluating the Jacobian matrices, which is very complex and difficult to derive the analytic expressions.
As we all know, an EKF uses the first-order Taylor series to approximate the nonlinear processes.
The predict-update cycle remains identical to the KF. The EKF tends to underestimate the variance of
the states, which can lead to large inaccuracies in strong nonlinearity.

This paper aims to develop a novel general direct data fusion approach using an UKF for the SINS,
which navigates the vehicle in the local geographic frame with the aid of a velocity sensor mounted
on the body. This approach is developed to overcome the aforementioned limitations in indirect
approaches and in quaternion UKFs. The proposed approach is based on Euler angle kinematics
equations and uses the Euler angles among the states. Since Euler angles are independent of each
other, the constraint in the above mentioned quaternion UKFs no longer exists. The predicted mean
and covariance can be directly computed using the standard UKF equations. The velocity in the
body frame is used as the filter measurements without the velocity projection from the body frame
to the local-level frame as in indirect approaches, so the cross-noise problem is avoided. The system
equations employ navigation equations, Euler angle kinematics equations and the inertial sensor
measurement bias differential equations. The UKF is used to estimate the states and outputs the
navigation information directly. The UKF choses a number of points so that their mean and covariance
can approximate statistical linearization to replace the analytical linearization of the EKF, as a result,
the complex Jacobian matrices are not necessary. The proposed approach combines the navigation
computation with the state estimation, and there is no need to process navigation computation and
error revision separately. The performance is verified by road test data obtained from a land vehicle
equipped with an odometer aided SINS. Meanwhile, the singularity problem which exists in the Euler
angles in the direct approach is solved by means of the dual-Euler method. The positive and passive
Euler angle direct approaches run alternately in terms of the switch flag to remove the singularities,
so the proposed approach is non-singular. A singularity turntable test is conducted using three-axis
turntable test data.

The rest of this paper is organized as follows: the system equations and the measurement
equations are established in Section 2; the UKF algorithm is presented in detail in Section 3; the
experimental results are presented in Section 4 to endorse the performance of this novel data fusion
approach; a turntable test is shown in Section 5 to examine the capability of dual-Euler method to
avoid the singularity; concluding remarks are provided in Section 6.

2. System Model and Measurement Model

The local geographic navigation frame mechanization is used. The main coordinate frames used
in this paper different from other references are defined as follows: the body frame (b-frame) coordinate
system of the vehicle is the orthogonal reference frame aligned with the inertial measurement
unit (IMU) axes, which is defined with x axis along the transversal direction right, y axis along
the longitudinal direction forward, and z axis along the vertical direction upward, completing
a right-handed system (right-forward-upward, RFU). The local geographic frame is used as the
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navigation frame (n-frame), which is the orthogonal reference frame aligned with east-north-up (ENU)
geodetic axes.

Velocity measurements in the b-frame are used to aid the on-board navigation system. Suitable
measurements may be provided by odometers or DVLs. In order to provide estimates of the attitude,
the velocity and the position in the on-board inertial navigation system, a ten state UKF is designed.

A block diagram representation of the direct data fusion approach for a b-frame velocity aided
SINS is shown in Figure 1.
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Where f̃ b
ibx,y,z and ω̃b

ibx,y,z are the accelerometer and gyro measurements along x, y, z-axis of body,
θ, γ, ψ are the pitch, roll and heading, respectively, veast and vnorth are the east and north vehicle
velocities with respect to the earth, respectively, L is the geographic latitude, λ is the longitude, ṽbx,y,z
are the velocity aid measurements along x, y, z-axis of body. In Figure 1, the vehicle motion changes the
outputs of the inertial sensors and the aid, which are inputs of the system equations and measurement
equations of the UKF, respectively. The UKF compares the b-frame velocity derived from aid outputs
with the corresponding quantity estimated from the SINS, and estimates the inertial sensor biases,
the attitude and the velocity in the n-frame. The n-frame velocity is then integrated into the position.
The associated nonlinear system equations and measurement equations are described in the sections
that follow.

2.1. System Model

The system process comprises the SINS mechanization and the inertial sensor error modeling.
For a terrestrial navigation system operating in the local geographic reference frame, the navigation
equation may be expressed as:

.
vn

en = f n − (2ωn
ie + ωn

en)× vn
en + gn (1)

where vn
en represents the velocity with respect to the earth expressed in the n-frame defined by the

directions of east, north , and the local vertical in component form:

vn
en =

[
veast, vnorth, vup

]T (2)

where vup is the vertical component of vehicle velocity with respect to the Earth, [•]T is the transpose
of [•].

The specific force vector expressed in the n-frame f n is given by:

f n = Cn
b f b

ib (3)

Cn
b = (Cb

n)
T

(4)
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where Cn
b is the direction cosine matrix (DCM) representing the rotational transform of vectors from

the b-frame to the n-frame. Rotating by the sequence of heading, pitch and roll leads to Cn
b , and

the three successive rotations may be expressed mathematically as three separate direction cosine
matrices defined as Cψ, Cθ , and Cγ, respectively. ψ ∈ [−π,+π], and it is defined with a positive
direction anticlockwise from the north. Therefore, Cb

n is expressed as the product of these three
separate transformations as follows:

Cb
n = CγCθCψ =

 cosγ 0 −sinγ

0 1 0
sinγ 0 cosγ


 1 0 0

0 cosθ sinθ

0 −sinθ cosθ


 cosψ sinψ 0
−sinψ cosψ 0

0 0 1


=

 cosγcosψ− sinθsinγsinψ cosγsinψ + sinθsinγcosψ −cosθsinγ

−cosθsinψ cosθcosψ sinθ

sinγcosψ + sinθcosγsinψ sinγsinψ− sinθcosγcosψ cosθcosγ


(5)

The true specific force vector f b
ib is given by:

f b
ib =

[
f̃ b
ibx − δ f b

ibx, f̃ b
iby − δ f b

iby, f̃ b
ibz − δ f b

ibz

]T
(6)

where δ f b
ibx,y,z are the accelerometer measurement errors along x, y, z-axis of body.

The other terms in Equation (1) are given by:

ωn
ie = [0, ωiecosL, ωiesinL]T (7)

ωn
en = [−vnorth

rM
,

veast

rN
,

veast

rN
tanL]

T
(8)

rM = rq(1− 2ρ + 3ρsin2L) (9)

rN = rq(ρsin2L + 1) (10)

gn = [ 0, 0, −g ]
T

(11)

where ωn
ie is the Earth rotation rate with respect to the inertial frame expressed in the n-frame, and ωn

en
represents the turn rate of the n-frame with respect to the Earth-fixed frame expressed in the n-frame,
i.e., the transport rate, ωie is the Earth rotation rate, rM and rN are the meridian and transverse radius
of curvature of the Earth’s reference ellipsoid, respectively, rq is the length of the semi-major axis, ρ is
the flattening of the ellipsoid, and g is the local Earth’s gravitational acceleration.

A large number of parameterizations exist in the literature for attitude matrix. Reference [27]
contains a complete survey of attitude representations. DCM, Euler angles, the quaternion,
Rodrigues parameters (RP), and modified Rodrigues parameters (MRP) are the most popular ones.
A generalization of the Rodrigues parameters (GRP) is presented in [28]. The GRP can be used to
construct a set of three symmetric stereographic parameters, or to construct a set of three asymmetric
stereographic parameters. The RP and MRP can be considered a special case of the general symmetric
stereographic parameters. The RP, MRP and GRP are all derived from the quaternion by means of
a stereographic projection of the four-dimensional unit sphere onto a three-dimensional hyperplane.
A redundant parameter of the quaternion is removed, and the amount of calculation is reduced.
Every parameterization has its own advantages and disadvantages. The main properties of some
parameterizations of attitude rotational matrix are listed in [29].

The DCM is of little use except for analytical studies and transformation of vectors largely because
of its nine dimensions with six redundant parameters. The quaternion representation is the subject of
many literatures and frequently uses in practices, but the quaternion constraint makes undesirable
implementation of the quaternion UKF as mentioned before. The Euler angles, RP, MRP and GRP have
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three uncorrelated parameters sufficient to describe a general rotation. They all have the minimum
dimensions for attitude representation, and the Euler angle representation is the most famous and the
most commonly used. The RP, MRP and GRP are often used in attitude determination and control for
spinning bodies like satellites, where the vehicles rotate mainly about a certain axis, i.e., the vehicles
have regular angular motion parameters. The Euler angles are easiest to visualize geometric recipe to
describe the motion of any vehicle with respect to a reference frame by three successive rotation angles.
There are twelve Euler angle sequences associated with twelve representations of the DCM.

As we all know, any set of three parameters has singularities. Different three-parameter sets
distinguish themselves by having their singularities at different orientations. The RP, MRP, GRP have
their singular point determined by different stereographic projections. The singularity for the classical
RP and MRP is ±π and ±2π respectively with respect to rotation angles. The singularity for the
symmetric GRP can be anywhere between a principal rotation of 0 and 2π, and the singularity for the
asymmetric GRP is determined by both a principal angle and an axis of rotation. Different rotation
sequences have different singularities for Euler angle sets. The 3-2-1 Euler angle set has a singularity
at θ = ±π/2. The problem of how to avoid singularity associated with a three-element attitude
parameterization has been well studied in the literatures. The approaches are mainly based on the
method of sequential rotations (MSR), which removes the singularity by switching from singular sets
to non-singular sets at the singularity for RP, MRP and Euler angles. Two applications are presented
in detail to show how to avoid the singularity when using RP and MRP in [30]. And this problem is
discussed for GRP in [28] and for Euler angles in [29,31,32].

The Euler angle representation is perhaps one of the simplest techniques in terms of physical
appreciation. Most of all, the three Euler angles are uncorrelated. Therefore, when the Euler angles are
used as the filter states, there is no extra change in the filtering.

Although the Euler angle representation suffers from the so-called singularity, the tests covered
in this paper, conducted in a land vehicle with little horizontal attitude change, will not suffer from
it. The Euler angle representation is suitable for this case because the calculated attitude angles have
high accuracy when θ is close to 0 or ±π. The Euler angle sequence 3-2-1 is adopted, as indicated
by Equation (5). If operation θ→±π/2 is desired singularity could occur, and in this circumstance
an alternative set of Euler angles, e.g., the 3-1-2 Euler angle set in which the rotation sequence is
heading-roll-pitch, can be employed to remove the singularity [27,29,31,32]. The best conversion
angles are ±π/4 and ±3π/4, which are discussed and examined in [32,33]. Moreover, the Euler angles
are very intuitive to work with, making the final filtering simpler. The Euler angle representation, like
the above mentioned three-parameter representation, is employed in this paper.

The propagation of the Euler angles with time is governed by the following differential equations:
.
θ
.
γ
.
ψ

 =
1

cosθ

 cosθcosγ 0 sinγcosθ

sinθsinγ cosθ −cosγsinθ

−sinγ 0 cosγ

ωb
nb (12)

where ωb
nb is angular velocity of the b-frame relative to the n-frame expressed in the b-frame. The

solutions of the
.
γ and

.
ψ equations become indeterminate at the singularities where θ = ±π/2. ωb

nb is
given by:

ωb
nb = ωb

ib − Cb
n(ω

n
ie + ωn

en) (13)

The true angular rate vector ωb
ib is given by:

ωb
ib =

[
ω̃b

ibx − δωb
ibx, ω̃b

iby − δωb
iby, ω̃b

ibz − δωb
ibz

]T
(14)

where δωb
ibx,y,z are the gyro output errors along x, y, z-axis of body. Equation (12) is known as the

Euler angle kinematics equation. The way to obtain the Euler angle rates from the angular velocity is
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similar to the derivation of Equation (294) in [27], but Equation (12) is not identical to it because of the
definition of the b-frame, n-frame and the Euler angles.

The gyro measurement errors δωb
ibx,y,z in Equation (14) and the accelerometer measurement errors

δ f b
ibx,y,z in Equation (6) are modeled as the sum of a Gaussian white noise and a bias expressed in the

b-frame. Therefore, the IMU measurement errors are given by:

δωb
ibx = εgx + wgx, δωb

iby = εgy + wgy, δωb
ibz = εgz + wgz (15)

δ f b
ibx = ∇ax + wax, δ f b

iby = ∇ay + way, δ f b
ibz = ∇az + waz (16)

where εgx,y,z and wgx,y,z are the gyro bias and noise components along x, y, z-axis of body respectively,
∇ax,y,z and wax,y,z are the accelerometer bias and noise components along x, y, z-axis of body respectively.
With the assumption that the gyro and accelerometer biases can be represented as random constants,
inertial sensor bias dynamics may be given by the trivial differential equations as follows:

.
∇ax = 0,

.
∇ay = 0,

.
∇az = 0,

.
εgx = 0,

.
εgy = 0,

.
εgz = 0 (17)

East and north velocities, all three Euler angles, and the inertial sensor biases are chosen as the
states. The state vector can be expressed in component form as:

x = [veast, vnorth, θ, γ, ψ,∇ax,∇ay, εgx, εgy, εgz]
T (18)

where x is the ten-dimensional state vector.
The system noise vector that represents the inertial sensor noise can be written as:

w = [wax, way, wgx, wgy, wgz, 0, 0, 0, 0, 0]T (19)

where w is the ten-dimensional system noise vector, which is modeled as Gaussian white noise. w has
zero mean and is normally distributed (Gaussian) with a power spectral density of Q. Q is a 10 × 10
diagonal matrix, the elements of which are selected in accordance with the anticipated level of inertial
sensor measurement noise.

According to the selected state vector in Equation (18) and the system noise vector in Equation (19),
Equations (1), (12) and (17) can be combined and expressed in state space form as:

.
x = Fc(x) + G(x)w (20)

where Fc(x) is the nonlinear state transfer function, and G(x) is the system noise input function. Fc(x)
is a 10 × 1 function matrix, and G(x) is a 10 × 10 function matrix. They can be expressed in concrete
formulas as:

Fc(x) =

f̃ b
ibz (cosψ sinγ + cosγsinψ sinθ) − (cosψ cosγ − sinψ sinθ sinγ)

(
∇ax − f̃ b

ibx

)
+ vnorth(2ωiesinL + veasttanL

rN
) + cosθsinψ(∇ay − f̃ b

iby)

f̃ b
ibz (sinψ sinγ − cosψcosγ sinθ) − ( cosγ sinψ + cosψ sinθ sinγ)

(
∇ax − f̃ b

ibx

)
− veast(2ωiesinL + veasttanL

rN
)− cosψcosθ(∇ay − f̃ b

iby)

ω̃b
ibxcosγ + ω̃b

ibzsinγ − εgxcosγ − εgzsinγ + vnorthcosψ
rM

− ωiecosLsinψ − veast
rN

sinψ

ω̃b
iby − εgy − ω̃b

ibzcosγtanθ + ω̃b
ibxsinγtanθ + εgzcosγtanθ − εgxsinγtanθ − vnorthsinψ

rMcosθ − ωiecosL cosψ
cosθ −

veastcosψ
rNcosθ

ω̃b
ibzcosγ
cosθ − veast

rN
tanL − ωiesinL − ω̃b

ibxsinγ
cosθ − εgzcosγ

cosθ +
εgxsinγ

cosθ + vnorth
rM

sinψtanθ + ωiecosLcosψtanθ + veast
rN

cosψtanθ

05×1


(21)

G(x) =


G1(x) 02×3

03×2 G2(x)
05×5

· · · · · · · · · · · · · · · · · · · · · · · ·
05×10

 (22)
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G1(x) =

[
cosψcosγ − sinψsinθsinγ −cosθsinψ

cosγsinψ + cosψsinθsinγ cosψcosθ

]
(23)

G2(x) =

 cosγ 0 sinγ

tanθsinγ 1 − cosγtanθ

− sinγ
cosθ 0 cosγ

cosθ

 (24)

where 0i × j denotes a i × j zero matrix.
Equation (20) is the continuous nonlinear system equation. A fourth-order Runge-Kutta scheme

with two steps between successive inertial sensor sampling instances is employed for numerical
integration

.
x = Fc(x). Then Equation (20) is assumed to be converted to a difference equation shown

as follows:
xk = F(xk−1) + wk−1 (25)

where xk and xk − 1 represent the state x at time tk and tk − 1 respectively, F (xk − 1) represents the
discrete nonlinear state transfer function, which can be supposed to be the integration form of Fc(x) at
the state xk − 1 within the integration period denoted as the time interval T1, wk − 1 represents the
discrete system noise at time tk − 1, E[wk] = 0, E[wkwT

j ] = Qkδkj, Qk = G(xk)QG(xk)
TT1, where wk

and wj represent the discrete system noise at time tk and tj, respectively, and wk will be characterized
by the covariance matrice Qk, δkj is the Dirichlet function which means that δkj is equal to 1 when k is
equal to j, and otherwise δkj is equal to 0, and G(xk) is the value of G(x) at time tk.

2.2. Measurement Model

We directly choose the b-frame velocity from sensor outputs as the filter measurement, which can
be expressed as:

z = [ṽbx, ṽby, ṽbz]
T (26)

where z is the three-dimensional filter measurement vector.
The b-frame velocity measurements are compared with the corresponding quantities from the

SINS. Estimates of the b-frame velocity may be obtained from the SINS estimates of the n-frame velocity
(veast, vnorth, vup) and the Cb

n, therefore, the filter measurement equation can be expressed as:

z = Cb
n[veast, vnorth, vup]

T + η (27)

η = [ηvbx, ηvby, ηvbz]
T (28)

where η is the three-dimensional filter measurement noise vector that accounts for the error in the aid
sensor measurement, ηvbx, ηvby and ηvbz denote the measurement noise components along x, y, z-axis
of body. η is assumed to be a zero mean and additive white Gaussian noise with a power spectral
density of R. R is a 3 × 3 diagonal matrix, the elements of which are selected in accordance with the
anticipated level of velocity measurement noise.

According to the filter measurement in Equation (26), the filter measurement noise vector in
Equation (28) and the state vector in Equation (18), Equation (27) is written in state space form as:

z = H(x) + η (29)

where H(x) is the nonlinear measurement function, which is derived from Equation (27). H(x) is
a 3 × 1 function matrix as follows:

H(x) =

 veast (cosψcosγ − sinψsinθsinγ) + vnorth (cosγsinψ + cosψsinθsinγ)

vnorthcosψcosθ − veastcosθsinψ

veast (cosψsinγ + cosγsinψsinθ) + vnorth (sinψsinγ − cosψcosγsinθ)

 (30)
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The measurement equation at time tk expressed in terms of the state can be shown as follows:

zk = H(xk) + ηk (31)

where zk is the filter measurement at time tk, H(xk) is the value of H(x) at time tk, ηk is the discrete
filter measurement noise vector at time tk, and ηk is a zero mean white noise sequence that can be
characterized by the covariance matrice Rk as follows:

E[ηk] = 0, E[ηkηT
j ] = Rkδkj, Rk = R/T2 (32)

where T2 is the aid sensor data updating period, and ηj is the discrete filter measurement noise vector
at time tj. The terms wk and ηk are assumed to be independent, i.e.,:

E[wkηT
j ] = 0 (33)

2.3. Filter State Model Analysis

The system model in Equation (25) and the measurement model in Equation (31) construct the
filter state model. For the purpose of illustration, the state vector of conventional integrated navigation
model in many references usually consists of three attitude errors, three velocity errors, three position
errors, and the inertial sensor errors. Well-known SINS error models are derived from the perturbation
theory. After the errors are estimated, the navigation information calculated by the SINS navigation
algorithm is corrected by these errors.

In this paper, navigation parameters instead of their associated errors are chosen as the states.
The system model in Equation (25), which contains the differential equations of velocity, Euler
angle, and inertial sensor bias, is nonlinear and simple without any restrictions and approximations.
The system model is also the SINS mechanization. Note that the system equations are considered a
direct formation, as opposed to the alternative indirect (error) formulation. The navigation information
is obtained from the states directly after the filtering, so the error correction is no longer needed.
The navigation computation is performed simultaneously in the filter time updating.

For the b-frame velocity aided SINS like SINS/DVL and SINS/Odometer in the indirect
approaches aforementioned, the velocity measured in the b-frame is usually first transformed into the
velocity expressed in the n-frame using the DCM calculated by the SINS. Then the difference of the
transformed velocity and the corresponding quantity from the SINS is used as the filter measurement.
The measurement models are indirect and linear. The cross-noise will arise from the formation of the
filter measurement [6].

In this research, the aid outputs are chosen as shown in Equation (26), instead of the associated
difference, as the filter measurements. The measurement equations contain the aid measurement
noise, while the system equations contain the inertial sensor noise; therefore, the inertial sensor noise
is separated from the aid measurement noise. The cross-noise problem is solved. The measurement
model is direct and nonlinear. The velocity transformation is realized in the measurement equations.
Hence the measurement model in Equation (31) is more accurate and easier to be comprehended,
compared with those in the indirect approaches.

In Section 2, the system equations and the measurement equations are developed. An UKF will
be employed to estimate the state vector because of their high nonlinearity. In the succeeding section
(Section 3), the UKF is presented in detail.

3. UKF

The UKF uses the unscented transformation (UT) which is developed as a method to propagate
mean and covariance information through nonlinear transformations. The UT is founded on the
intuition that it is easier to approximate a probability distribution than to approximate an arbitrary
nonlinear function or transformation. The UT chooses a set of sigma points to approximate a Gaussian
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distribution. The sigma points match the mean and covariance. The nonlinear function is applied to
each point, and in turn yields a cloud of transformed points. The statistics of the transformed points
can then be calculated to form an estimate of the nonlinearly transformed mean and covariance. A
description of the UKF can be found in [9,13,14].

We summarize the steps involved in the time update and the measurement update of an UKF as
shown in Algorithm 1.

Algorithm 1. UKF

1. Initialize
x̂0 = E (x0) , P0 = E((x̂0 − x0)(x̂0 − x0)

T) (34)

where x0 and P0 are the initial state and the initial covariance matrix, respectively.
2. Time update
Factorize

Pk−1|k−1 = Sk−1|k−1ST
k−1|k−1 (35)

Evaluate the sigma points (j = 1, 2 . . . Ns):

χj,k−1|k−1 = Sk−1|k−1ξ j + x̂k−1|k−1 (36)

Evaluate the propagated sigma points ( j = 1, 2 . . . Ns):

χ∗j,k|k−1 = F(χj,k−1|k−1) (37)

Estimate the predicted state:

x̂k|k−1 =
Ns

∑
j=1

χ∗j,k|k−1aj (38)

Estimate the predicted state error covariance:

Pk|k−1 =
Ns

∑
j=1

ajχ
∗
j,k|k−1χ∗Tj,k|k−1 − x̂k|k−1 x̂T

k|k−1 + Qk−1 (39)

where ξj and aj are the j-th sigma point and the associated weight, respectively, Ns denotes the number of the sigma points, and Qk-1 is the
discrete system noise covariance matrix at time tk − 1.

3. Measurement update
Factorize:

Pk|k−1 = Sk|k−1ST
k|k−1 (40)

Evaluate the sigma points ( j = 1, 2 . . . Ns):

χj,k|k−1 = Sk|k−1ξ j + x̂k|k−1 (41)

Evaluate the propagated sigma points (j = 1, 2 . . . Ns):

Zj,k|k−1 = H(χj,k|k−1) (42)

Estimate the predicted measurement:

ẑk|k−1 =
Ns

∑
j=1

Zj,k|k−1aj (43)

Estimate the innovation covariance matrix:

Pzz,k|k−1 =
Ns

∑
j=1

aj Zj,k|k−1ZT
j,k|k−1 − ẑk|k−1 ẑT

k|k−1 + Rk (44)

Estimate the cross-covariance matrix:

Pxz,k|k−1 =
Ns

∑
j=1

ajχj,k|k−1ZT
j,k|k−1 − x̂k|k−1 ẑT

k|k−1 (45)

Estimate the Kalman gain:
Kk = Pxz,k|k−1P−1

zz,k|k−1 (46)

Estimate the updated state:
x̂k|k = x̂k|k−1 + Kk(zk − ẑk|k−1) (47)

Estimate the corresponding error covariance:
Pk|k = Pk|k−1 − KkPzz,k|k−1KT

k (48)
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There are a series of techniques to determine the sigma points [14]. The symmetric sigma point
sets are selected, which is the most commonly used UT [13]. The sigma points are given by:

ξ j =

{
[0, 0, · · · 0]T , j = 1

(
√

d + κ)[1]j, j = 2, 3, · · ·Ns
(49)

[1]j ∈




1
0
...
0

 ,


0
1
...
0

 , · · · ,


0
0
...
1

 ,


−1
0
...
0

 ,


0
−1

...
0

 , · · · ,


0
0
...
−1


 (50)

aj =

{
κ

d+κ , j = 1
1

2(d+κ)
, j = 2, 3, · · ·Ns

(51)

Ns = 2d + 1 (52)

where d is the dimension of the states and d is equal to 10 here as shown in Equation (18), κ = −7 is
chosen in accordance with the heuristic d + κ = 3, [1]j is the j-th column vector, the right-hand side of
(50) has 2d column vectors, each of which has d components.

Note that the period of the time updating differs from that of the measurement updating. Since
the system equations include the inertial sensor outputs, the time updating is processed once new
data of the inertial sensors arrive, and thus the time updating period is T1. The time updating is
implemented at a fast inertial sensor sample rate, e.g., 200 Hz here. At the end of the time updating, if
the aid measurements do not arrive, the predicted state x̂k|k−1 and the predicted error covariance Pk|k−1
are transferred to the updated state x̂k|k and the updated error covariance Pk|k, respectively, the first
step of time updating is then repeated, and the new time updating loop begins. Upon the arrival of a
new navigation aid measurement, the measurement updating is processed, and thus the measurement
period is T2. The measurement updating is implemented at a slow navigation aid sample rate, e.g.,
10 Hz here.

4. Experimental Results

The purpose of the experiment is to show the advantages of the new direct algorithm over the
typical indirect Kalman filter.

The performance of the proposed direct UKF approach for the aided SINS is examined with road
test data from a land vehicle. The test vehicle is shown in Figure 2. The SINS/odometer integrated
navigation system is used. The navigation aid is a precision odometer from which the forward speed is
obtained. The odometer is installed at the right rear wheel. The inertial sensors used in the experiments
are from a navigation grade IMU. A GPS is installed on the top of the vehicle. Note that the GPS is
not integrated in the navigation system, but it is only used as the position reference. The GPS receiver
provides position with precision of about 10 m, and update rates up to 1 Hz.
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The IMU contains three fiber optic gyros and three quartz accelerometers. The inertial sensor data
are sampled at 200 Hz (T1 = 5 ms). The fixed biases for the gyros and accelerometers used here are
0.03◦/h (1 σ) and 0.2 mg (1 σ), respectively.

The odometer only provides the forward speed with precision of about 0.1 m/s at the sample rate
10 Hz (T2 = 0.1 s). Note that the nonholonomic constraints on the land vehicle arise from the fact that
the vehicle cannot move in the transversal or the vertical directions in the b-frame. In addition, the
IMU-odometer misalignment angle and odometer scale factor are calibrated prior to the field test. It
can be assumed that the odometer measurement error is an additional white Gauss noise. Hence, the
measurement of the UKF is given by:

z = [ 0, ṽby, 0 ]
T

where ṽby is the forward speed derived from the odometer.
The initial state vector of the filter is set as:

x0 = [ −ṽby0sin (ψ0) cos (θ0) , ṽby0cos (ψ0) cos (θ0) , θ0, γ0, ψ0, 0, 0, 0, 0, 0 ]
T

where ṽby0 is the initial forward speed from the odometer, and θ0, γ0, ψ0 are the initial Euler angles that
are transferred to the filter at the end of the alignment. Apparently, unlike the conventional approaches
that use the errors as the states, x0 is not zero here because it stands for the initial navigation information
which is set according to the results of the initial alignment. Given the relationship between the vehicle
velocities in the b-frame and in the n-frame, the first two components of x0 are calculated by the DCM
derived from the alignment results.

The other initial parameters of the filter are set as:

P0 = diag{(0.1 m/s)2, (0.1 m/s)2, (0.1◦)2, (0.1◦)2, (0.3◦)2, (0.2 mg)2, (0.2 mg)2, (0.03◦/h)2, (0.03◦/h)2,
(0.03◦/h)2}
Q = diag{(0.2 mg)2, (0.2 mg)2, (0.03◦/h)2, (0.03◦/h)2, 0.03◦/h)2,0,0,0,0,0}
R = diag{(0. 1 m/s)2, (0.1 m/s)2, (0.1 m/s)2}

where diag{·} denotes the diagonal matrix. P0 is set according to the accuracy of the alignment and
the inertial sensor biases, Q is set according to the inertial sensor noises, and R is set according to the
odometer noises. They can be slightly tuned to make the filter converge rapidly.

After the vehicle engine was started, the vehicle was stationary at the initial position to process
the initial alignment during the first five minutes. Then the vehicle ran along the trajectory until
it reached the end. Three road test trajectories were carried out. The three trajectory information
(time and distance) are shown in Table 1, where the time includes the five minutes for the alignment.

Table 1. Trajectory information.

Parameter Trajectory 1 Trajectory 2 Trajectory 3

Time (min) 25 30 30
Distance (km) 11.4 10.6 14.3

The experiment results of the proposed direct UKF solution for SINS/odometer integration
(denoted as Direct) is compared with the standard indirect approach utilizing the KF and SINS error
models introduced in Section 1 (denoted as Indirect). The position errors of the direct and indirect
solutions are calculated with respect to the longitude and latitude provided by GPS.

Figures 3–7 show the velocity and attitude of the SINS/odometer integrated navigation system
in the integrated navigation phase of about 20 min during Trajectory 1. The velocity and attitude are
directly estimated by the UKF in the direct approach, while in indirect approach, the velocity and
attitude are calculated by the SINS algorithm first and then corrected, employing the errors estimated
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by the KF. veast and vnorth are shown in Figures 3 and 4, respectively, and Figures 5–7 show the pitch,
roll and heading, respectively.Sensors 2016, 16, 1415 13 of 23 
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Figure 7. Heading.

From Figures 3–7, we can see that the proposed direct approach can achieve the velocity and
attitude similar to the indirect approach, and thus it can also capture the vehicle motion.

As the states of the direct approach differ from those of the indirect approach, we use the standard
deviations of the attitude and the attitude errors to illustrate the convergence trend in the direct
and indirect approaches, respectively. Comparing the standard deviations of the attitude with the
attitude error is meaningless, as they are different quantities. Moreover, the indirect approach has been
well-studied. Here we only show the standard deviations of the attitude in the direct approach during
Trajectory 1 as in Figure 8.
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Figure 8. Attitude standard deviation of the direct approach: (a) Standard deviation of pitch;
(b) Standard deviation of roll; (c) Standard deviation of heading.

From Figure 8, it can be seen that the attitude standard deviations all decrease when time passes.
Figure 8a,b shows that the pitch and roll converge very rapidly as the system effectively aligns itself
to the local gravity vector, and they converge at about 20 s, and their standard deviations settle to
less than 0.1′, and their accuracy is limited by any residual bias in the accelerometer measurements.
Figure 8c shows that the heading converges slowly due to its lower observability as the heading
error only propagates as a velocity error and therefore becomes more observable when the vehicle
maneuvers, and its standard deviation settles to about 6.5′ at the end, and the accuracy is mainly
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limited by any residual bias in the gyro measurements. The attitude convergence characteristics show
that not only attitude estimates can be achieved using the b-frame velocity as the filter measurement,
but they also conform to the observability analysis.

Figure 9 shows the position information of the GPS as the reference, the position information of the
indirect approach and the position information of the proposed direct approach for the SINS/Odometer
integrated navigation system during three different trajectories. In Figure 9, the longitude and the
latitude are converted into the east location and the north location in meters (not degrees) for clarity.
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From Figure 9, it can be seen obviously that the position errors increase with the time during
different trajectories in both approaches. Although the velocity errors are bounded with the velocity
aid, the remainder velocity errors that accumulate in the integration process result in the increase of
position errors. Compared with the indirect approach, it is also clear that the direct approach makes it
possible to obtain position curves that are closer to those of the GPS. The position errors defined by the
Euclidian distance between the estimated position and the GPS position at the end of the trajectories
are shown in Table 2 for both approaches.

Table 2. Position errors.

Error Trajectory 1 Trajectory 2 Trajectory 3

Direct 1.4% 1.58% 2.36%
Indirect 2.5% 3.12% 3.9%

In Table 2, the improvement on navigation performance of the direct approach is shown clearly,
and its position errors are much smaller than those of the indirect approach. Position errors are related
to the accuracy of the velocity and attitude estimates. The models developed in Section 2 in the direct
approach almost involve no approximation, and the linearization and the cross-noise problems are
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avoided. They are more accurate and can capture the SINS nonlinearity better than the SINS error
models. Moreover, the nonlinear models enable the UKF to estimate the navigation parameters directly,
and the UKF shows better performance than the KF in such nonlinear cases.

5. Singularity Problem

Equation (12) is singular when θ = ±π/2. In this section, the dual-Euler method is adopted to
remove the singularities at θ = ±π/2. The 3-2-1 and 3-1-2 Euler angle sets are used. If θ is close to
±π/2, the 3-2-1 Euler angle set is singular while the Euler angle set 3-1-2 is non-singular [29]. We can
switch between these two sets when θ is close to ±π/4.

The heading, pitch and roll of the 3-1-2 Euler angle set are denoted as ψr, θr, γr respectively with
the subscript r to show the difference from the 3-2-1 Euler angle set. The three separate direction
cosine matrices are defined as Cψr , Cγr and Cθr , respectively. Thus, a transformation from reference to
body axes, denoted as Cb

rn, may be expressed as the product of these three separate transformations
as follows:

Cb
rn = Cθr Cγr Cψr =

 1 0 0
0 cosθr sinθr

0 −sinθr cosθr


 cosγr 0 −sinγr

0 1 0
sinγr 0 cosγr


 cosψr sinψr 0
−sinψr cosψr 0

0 0 1


=

 cosγrcosψr cosγrsinψr −sinγr

cosψrsinγrsinθr − cosθrsinψr cosψrcosθr + sinψrsinγrsinθr cosγrsinθr

sinψrsinθr + cosψrcosθrsinγr cosθrsinψrsinγr − cosψrsinθr cosγrcosθr


(53)

Similarly, Equations (12) should be changed for the 3-1-2 Euler angle set as follows:
.
θr
.
γr.
ψr

 =
1

cosγr

 cosγr sinγrsinθr sinγrcosθ

0 cosθrcosγr −sinθrcosγr

0 sinθr cosθr

ωb
nb (54)

where ωb
nb is given by:

ωb
nb = ωb

ib − Cb
rn(ω

n
ie + ωn

en) (55)

The solutions of the
.
θr and

.
ψr equations become indeterminate when γr = ±π/2. γr = ±π/2 are

the singularities of the 3-1-2 Euler angle set.
The 3-2-1 and 3-1-2 Euler angle sets show difference in the rotation sequence. However, both Cb

rn
and Cb

n represent the transformation from reference to body axes, if:

Cb
n = Cb

rn =

 c11 c12 c13

c21 c22 c23

c31 c32 c33


Combining Equation (12) with Equation (53), the equation given above can be written as: c11 c12 c13

c21 c22 c23

c31 c32 c33


=

 cosγcosψ− sinθsinγsinψ cosγsinψ + sinθsinγcosψ −cosθsinγ

−cosθsinψ cosθcosψ sinθ

sinγcosψ + sinθcosγsinψ sinγsinψ− sinθcosγcosψ cosθcosγ


=

 cosγrcosψr cosγrsinψr −sinγr

cosψrsinγrsinθr − cosθrsinψr cosψrcosθr + sinψrsinγrsinθr cosγrsinθr

sinψrsinθr + cosψrcosθrsinγr cosθrsinψrsinγr − cosψrsinθr cosγrcosθr


(56)
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Hence, the relationship between the Euler angles of the 3-2-1 and 3-1-2 Euler angle sets can be
expressed by: θr

γr

ψr

 =

 arctg( c23
c33

)

−arcsinc13

arctg
(

c12
c11

)

 =

 arctg( sinθ
cosθcosγ )

−arcsin(−cosθsinγ)

arctg
(

cosγsinψ+sinθsinγcosψ
cosγcosψ−sinθsinγsinψ )

 (γr 6= ±π/2) (57)

and:  θ

γ

ψ

 =

 arcsinc23

arctg(− c13
c33

)

arctg
(
− c21

c22
)

 =


arcsin (cosγrsinθr)

arctg( sinγr
cosγrcosθr

)

arctg
(
− cosψrsinγrsinθr− cosθrsinψr

cosψrcosθr + sinψrsinγrsinθr
)

 (θ 6= ±π/2) (58)

Substituting with θ = ±π/2 in Equation (56) yields c13 = −sinγr = −cosθsinγ = 0, and then
γr = 0 or π and θr = ±π/2 are obtained. Substituting with γr = ±π/2 in Equation (56) yields
c23 = cosγrsinθr = sinθ = 0, and then θ = 0 or π and γ = ±π/2 are obtained. Therefore, the
singularities of the 3-2-1 and 3-1-2 Euler angle sets are complementary.

The differences between the system model and measurement model of the direct approach using
the 3-1-2 and 3-2-1 Euler angle sets are the DCM and the Euler angles. Substituting ψr, θr, γr for θ, γ, ψ

in Equation (18), respectively, yields the state:

xr = [veast, vnorth, θr, γr, ψr,∇ax,∇ay, εgx, εgy, εgz]
T (59)

The navigation equation as shown in Equation (1) is changed by substituting Cb
rn for Cb

n in
Equation (3). Then it is combined with Equation (54) and Equation (17), and the system model of
the direct approach using the 3-1-2 Euler angle set is yielded. The corresponding filter measurement
equation is yielded by substituting Cb

rn for Cb
n in Equation (27).

The flow chart of the direct fusing approach with the dual-Euler method, taking the SINS initial
alignment for example, is illustrated in Figure 10. For the purpose of simplicity, the direct approach
using the 3-2-1 Euler angle set is denoted as the positive Euler angle direct approach, and the direct
approach using the 3-1-2 Euler angle set is denoted as the passive Euler angle direct approach, and
correspondingly, the Euler angles are denoted as the positive Euler angles and the passive Euler angles,
respectively. When flag = 0, the positive Euler angle direct approach works; when flag = 1, the passive
Euler angle direct approach works.

As shown in Figure 10, the two branches are almost the same except for two steps: for passive
Euler angle direct approach, positive Euler angles are converted to passive Euler angles at the beginning
of the filtering, and passive Euler angles are converted to positive Euler angles at the end of the filtering,
since the outputs are expressed in terms of positive Euler angles. When the switching from the positive
Euler angle direct branch to the passive Euler angle direct branch occurs, the positive Euler angles
in the filter state is converted to the passive Euler angles according to Equation (57), and then they
are transferred to the filter state of the passive Euler angle direct branch. Notably, it is unnecessary to
change the other parameters of the filter. Equation (58) is used for the conversion in the inverse switch.

A turntable test is conducted to verify the dual-Euler direct approach. The three-axis turntable is
shown in Figure 11. The turntable attitude is expressed in terms of positive Euler angles. For simplicity,
the roll and heading keep constant, and they are zero. The pitch changes between −π/2 and +π/2
linearly and periodically, and sometimes it is kept constant at ±π/2 for a few seconds. The turntable
attitude is simultaneously recorded, and it is considered to be the true value and is used as the attitude
reference (denoted as True). It should be noted that for the choice of angular motions, the positive
Euler angle direct approach cannot be used to estimate the attitude at each time.
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The inertial sensor data are sampled at 100 Hz (T1 = 10 ms). The measurement of the UKF is given
by z = [0,0,0]T, and the initial state vector of the filter is set as x0 = [0,0,θ0, γ0, ψ0,0,0,0,0,0]T. Other
parameter settings are as same as those specified in Section 4. The test total time is about 41 min, of
which the first 5 min is used for the coarse alignment. The last 36 min is used for the fine alignment.

The following figures give the singularity test results in a period of fine alignment using the
dual-Euler direct approach (denoted as DualEu). Figure 12 shows the estimated east and north
velocities. Figures 13–15 show the true and estimated attitudes. Figure 16 shows the estimated Pitch
angle errors, i.e., the differences between the estimated pitch and the true one. Figure 17 shows the
switch flag, denoting the positive or passive Euler angle direct approach is selected.
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Figure 17. Switch flag.

From Figures 13 and 17, it is clear that there is nearly no difference between the estimated pitch
and the true one even at θ = ±π/2 and the positive and passive Euler angle direct approaches are used
alternately according to the switch flag. The positive Euler angle direct approach is implemented if
|θ| ≤ π/4, otherwise, the passive Euler angle direct approach is implemented. Initially, 0 ≤ θ ≤ π/4,
the flag is set to 0, and the positive Euler angle direct approach is used. With the increasing of θ from 0
to π/2, once θ > π/4, the flag is set to 1, and the switching occurs, and the passive Euler angle direct
approach is used. Then with the decreasing of θ from π/2 to 0, the passive Euler angle direct approach
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runs until θ ≤ π/4. Once θ ≤ π/4, the flag is set to 0 again, and the inverse switching occurs, and
the positive Euler angle direct approach is used. The switching will be carried out in the same way
subsequently. The passive Euler angle direct approach works well when the positive Euler angle direct
approach is singular at θ = ±π/2.

The test results shown in Figure 12 illustrate the convergence of the velocity at about 20 s. From
Figures 13–16, it can be seen that the attitude converges with time. The convergence of the pitch and
roll is greatly faster than that of the heading. Figures 13 and 16 show the plots of the pitch and the
associated error with time, respectively. The pitch converges at about 20 s, and the mean absolute value
of the pitch errors is 0.86′ after 30 s. Figure 14 shows the plots of the roll with time. The roll converges
at about 20 s, and the mean absolute value of the roll errors is 0.13′ after 100 s. Figure 15 shows the
plots of the heading with time. The heading converges at about 300 s, and the mean absolute value of
the heading errors is 15.92′ after 300 s.

According to the above singularity test results, the singularity at θ = ±π/2 of the positive
Euler angle direct approach can be efficiently removed by means of the dual-Euler method, and the
convergence speed and alignment precision can satisfy the requirement of initial alignment.

6. Conclusions

In this paper a direct UKF approach is proposed for aided SINSs with the following highlights:
(1) the direct integration navigation solution is completely nonlinear, and it can achieve better
performance than typical indirect and linear approaches. The UKF outputs the navigation information
directly. The approach combines the navigation computation with the state estimation, and there is no
need to process navigation computation and error correction separately. As an alternative, it can be
considered as a supplement to the conventional integration navigation algorithm; (2) the system model
and measurement model are conceptually simple and easy to understand, as no linear restrictions
or approximations are needed, while SINS error models are derived in a complex way with many
assumptions; (3) the direct approach separates the inertial sensor noise from the aid measurement noise
in the measurement models, and it overcomes the cross-noise problem which exists in the SINS indirect
error models; (4) the Euler angle kinematics equation is employed instead of the quaternion kinematics
equation, and there is no nonlinear constraint during the filtering process. Therefore, the proposed
method is easy to apply and the algorithm is simple; (5) the singularity problem, which exists in the
Euler angles, can be efficiently solved by means of the dual-Euler method. The proposed approach
is non-singular because the positive and passive Euler angle direct approaches operate alternately
according to the switch flag to remove the singularities; (6) this direct approach can be applied to
cases where it is difficult to develop linear models and use the KFs, for example, the tightly coupled
DVL/SINSs [34], which do not require bottom lock or allow individual validation and characterization
of the DVL beam measurements, i.e., each beam velocity is treated as a separate measurement; and the
tightly coupled USBL/SINSs [35], which directly exploits the acoustic array spatial information. The
direct approach can also be applied to RP, MRP and GRP, since their three parameters are uncorrelated.
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