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Abstract: Human activity recognition algorithms based on information obtained from wearable
sensors are successfully applied in detecting many basic activities. Identified activities with
time-stationary features are characterised inside a predefined temporal window by using different
machine learning algorithms on extracted features from the measured data. Better accuracy, precision
and recall levels could be achieved by combining the information from different sensors. However,
detecting short and sporadic human movements, gestures and actions is still a challenging task.
In this paper, a novel algorithm to detect human basic movements from wearable measured
data is proposed and evaluated. The proposed algorithm is designed to minimise computational
requirements while achieving acceptable accuracy levels based on characterising some particular
points in the temporal series obtained from a single sensor. The underlying idea is that this algorithm
would be implemented in the sensor device in order to pre-process the sensed data stream before
sending the information to a central point combining the information from different sensors to
improve accuracy levels. Intra- and inter-person validation is used for two particular cases: single step
detection and fall detection and classification using a single tri-axial accelerometer. Relevant results
for the above cases and pertinent conclusions are also presented.
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1. Introduction

Human Activity Recognition (HAR) systems are already integrated into many of our daily
routine activities [1]. Applications, such as Google Fit [2] or Apple Health [3], are able to detect some
activities, such as walking and running, that are linked to health and fitness parameters. Many other
HAR-related applications are also available either using the sensors embedded in smart phones or
using wearable devices. Applications such as Lumo [4] are developed to provide a gentle vibration
when a person slouches to remind them to sit or stand straight and correct their posture [5]. In fact,
HAR algorithms based on applying machine learning techniques to data gathered from wearable
devices [6] have established themselves as a convenient alternative for vision-based activity detection
algorithms [7,8]. Using wearable sensors provides a non-intrusive, always available companion
compared to vision-based systems [6].

Health monitoring systems based on recognising human activities from wearable devices are
applied to remote health monitoring for long-term recording, management and clinical access
to patient’s activity information [9,10]. Knowing the activities that a patient with long-term
conditions, such as Cardio Vascular Disease (CVD), Chronic Obstructive Pulmonary Disease (COPD),
Parkinson’s Disease (PD) or diabetes, is performing could help in providing assistance [9]. In fact,
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the activity performed is part of the environment of a particular user, which provides valuable
information for the implementation of personal recommender systems [11]. Home monitoring, assisted
living and sports and leisure are other applications that are benefiting from wearable sensors to detect
human activities [12].

Although detecting activities provides relevant contextual information for many applications,
sometimes, it is desirable to go further in order to detect specific movements and gestures (either those
made inside activities [13] or those that occur in sporadic moments [14]). Spotting sporadically-occurring
movements from continuous data streams is a challenging task, especially when pre-detection
techniques are to be deployed on the sensor systems themselves. Wearable sensor devices are relatively
limited with their computational performance. In addition, battery consumption, as well as memory
usage are other limitations [6]. Having to recharge the batteries of wearable sensors too often is a
major drawback for their adoption by many users. Communications over wireless interfaces should
therefore be minimised as much as possible. This will require performing pre-detection computations
on wearable sensor devices. However, extensive computations on limited devices are also linked
with energy consumption, and therefore, simple, but reliable algorithms should be conceived of for
pre-detecting segments in the data stream from each sensor in order to limit communications to those
particular segments [14]. The overall performance of an HAR system in terms of accuracy, precision
and recall could later be improved by combining the information from several sensors [11].

This paper proposes a novel approach to in-sensor pre-detection of movements using an algorithm
that concentrates on the stochastic properties of local maxima and minima from the sensed data stream
in order to detect specific movements. The hypothesis behind the design of the algorithm is that some
atomic movements can be detected with sufficient accuracy. This can be achieved by considering the
stochastic properties of the values and time variations of local maximum and minimum points from
the sensed data (points that are easy to detect from raw sensed data by using simple mathematical
operations and only requiring a limited amount of memory, adapted to low energy consumption and
computational requirements when implemented on sensor devices). The algorithm could be trained
for a particular individual or partially independent of users by considering data from different users
when training the algorithm. The performance of the pre-detection of movements could be improved if
several movements are performed together within a gesture. Combining movements in order to detect
gestures is also a challenging task in general due to the variability of execution (and their related time
series) both for intra- and inter-person data. Some approaches are based on requiring non-overlapping
movements with pauses between consecutive movements [15]. Moreover, using data from wearable
sensors introduces additional challenges, such as noise and overlapping movements from the sensor
itself if not tight to the body.

This paper will also present the results for two particular scenarios in which the proposed
algorithm is implemented in order to (a) detect single steps and (b) identify and classify different types
of falls using a single tri-axial accelerometer. The single step detection algorithm is trained to detect
the behaviour when each foot initially comes in contact with the ground. By combining consecutive
movements of “foot-ground contact”, a walking gesture can be detected. Moreover, sporadic failures
in the detection of a particular step when walking could be used to fine tune the detection parameters
of the algorithm by incorporating the missing steps into a new training phase of the parameters for a
particular person. The fall detection and classification algorithms are able to detect and categorise the
type of fall out of 30 falls in a public database.

The rest of the paper is organised as follows. Section 2 presents an overview of the previous
work and justifies the research in this paper. Section 3 details the proposed algorithm. Section 4
particularises the algorithm for the particular case of step detection. Section 5 presents the adaptation
of the algorithm for detecting and classifying falls. Section 6 presents the details of the experiment
carried out to validate the algorithm. Section 7 captures the conclusions and the future work.
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2. Related Work

The first papers on HAR were published in the late 1990s [16]. There are two main approaches to
implement HAR systems, using external and wearable sensors [6]. In the former, the devices are fixed
at predefined locations of observation in order to monitor the user (using cameras or microphones,
for example). In the latter, the devices are attached (worn) by the user. Each approach has its advantages
and disadvantages. However, some privacy, as well as availability issues are promoting a shift in
research towards wearable sensors.

The availability of sensors, such as Microsoft Kinect [17], PrimeSense Carmine and Leap Motion [18],
have helped with the advances in capturing human motion. The non-intrusive nature of sensors,
their low cost and wide availability for developers have inspired numerous healthcare-related research
projects in areas, such as medical disorder diagnosis [19], assisted living [20] and rehabilitation [21].
However, most of these tools were originally developed for computer games.

In this paper, the concentration will be on wearable sensors to solve human movement detection
problems. To detect activities with wearable sensors, two major approaches are adopted by researchers.
The reviewed literature is presented below.

2.1. Sliding Window-Based Approaches

The data stream is divided into time overlapping windows to detect a particular activity among a
set of pre-trained activities. The size of the window is defined so that enough information about the
activity is present and only one activity is performed in that window (stationary). The window
length is related to the achieved performance [22]. In fact, most of the detection errors occur
in windows that contain transitions from one activity into a different activity. The data stream
is pre-processed into some pre-selected features. Two major sets of features could be extracted
from the time series data; statistical and structural [23]. In order to minimise the impact of the set
of selected features, sparse representations could be used using the training samples directly as
the basis to construct an over-complete dictionary [24]. The application of different classification
algorithms to the detected features, such as decision trees, Bayesian methods, Hidden Markov
Models (HMM), nearest neighbours, Support Vector Machines (SVM) or ensembles of classifiers,
could determine the activity being performed with accuracies greater than 95% if simple activities are
being classified [6,25,26]. Taking into account the uncertainty and flexibility in human activities,
fuzzy rule-based systems [27] or other forms of fuzzy classifiers [28] are used and show their
effectiveness in classifying activities.

The performance of existing HAR approaches based on inertial sensors for detecting activities and
transitions between different activities and postures is affected by sensor placement and relative to body
movements. To overcome these limitations, one possibility is to use additional information or sensor
drift compensation techniques. The authors in [27] propose to use the additional information from a
barometric pressure sensor to improve the performance of a tri-axial accelerometer. The presented
research in [29] proposes the use of a combination of sensors to compensate for the weaknesses of
either sensor in recognising various activities. In fact, to be able to classify more complex activities,
such as taking a medicine or cooking, it could be essential to combine the information gathered from
several sensors [30]. In [31], the authors propose a mechanism to compensate the accelerometer bias by
computing the average of each acceleration component over the sliding window. A similar approach
of using a low-band averaging filter to detect sensor relative movements with the body is used in
this paper. The windowed average of each acceleration component is used to estimate the orientation
of the sensor so that using rotation operations, vertical and longitudinal acceleration components
could be extracted.
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2.2. Decomposition of Activities into Basic Primitives

To decompose the activities into a sequence of elementary building blocks, two major approaches
are adopted. A top-bottom approach first tries to identify the activity that a user is performing and
then divides the activity into smaller segments containing specific movements inside the activity.
A bottom-up approach focuses on detecting movements and tries to compose them into gestures
and activities. The authors in [32] propose a motion primitive-based model that captures the
invariance aspects of the local features and provides insights for better understanding of human motion.
The continuous activity signal is transformed into a string of symbols where each symbol represents
a primitive. String-matching-based approaches can then be used to detect activities out of detected
primitives or other methods, such as “a bag of features” could be used to improve the detection
performance [32]. The authors in [13] also approach the problem of activity recognition by modelling
it as a combination of movements. They use a two-step approach in which they first use a sliding
window to detect activities and later try to classify movements inside activities. The authors in [14]
focus on directly detecting sporadic movements by directly processing the time series of the data
sensed. They use a modified version of the Piecewise Linear Representation (PLR) algorithm in order
to detect segments in the data stream that may contain movements of interest. They use different
sensors that are combined in order to improve the detection accuracy. The approach is promising, but
the algorithm deployed on sensor devices could be better optimised in order to reduce the complexity
of the PLR algorithm, as well as to take into account the stochastic characteristics of the detected
points of interest (linear pieces). The authors in [33] also decompose activities into atomic pieces and
propose the use of shapelets as the basis to classify atomic activities. Therefore, human movements are
recognised by calculating the distance between the sensed time series and a dictionary of pre-recorded
segments, which try to capture the particularities of each movement. They propose the use of the
Euclidean distance, although recognise that other alternatives would also be applicable. Once atomic
activities are recognised, they use atomic activities to assess sequential, concurrent and complex
activities. Although the shapelet approach tries to simplify the information in the time series recorded
from wearable sensors into significant fragments, the variations in intra- and inter-person execution
could be big, and a measure based on the distance with pre-recorded segments will not take into
account the variety of cases unless a complex and high volume training process is performed.

Taking into account the low energy constrains for on-sensor implementation, the approach
presented in this paper is to generate a simple movement detection algorithm. This is based on
a stochastic model characterising the local maxima and minima relationships from the time series
measured from a single tri-axial accelerometer. The stochastic model will capture the information
from the execution of a particular movement by different people and different execution speeds.
Movement elasticity based on previous proposals, such as Dynamic Time Warping (DTW) [34], do not
properly consider non-linearities and do not provide the required flexibility for capturing rich human
movements. The time elasticity model proposed in this paper will be based on the characterisation
of the stochastic features of inter-time and amplitude variations among local maxima and minima
when performing the same movement by different people at different speeds. The average gravity
estimation and compensation method presented in [31] will be used to minimize the impact of sensor
placement and relative to the body over the time sensor movements. Estimating the gravity vector
allows us to apply rotation operations to isolate vertical and longitudinal movement components.

3. Atomic Movement Detection Algorithm

Atomic movements are short gestures or primitives executed when performing more complex
activities or in sporadic ways. Walking a step or moving a spoon to one’s mouth are two simple
examples. Each atomic movement can be performed at different speeds and following different
trajectories by different people or even by the same person at different moments. The traces of
the execution of each atomic movement can be captured by wearable sensors, such as tri-axial
accelerometers. These sensors capture data as time series of scalar values. The vertical acceleration for
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a single step is shown in Figure 1. Executing the same movement at different speeds does not provide
a time-scaled version of the sensed data, but a non-linear variation over time. Figure 2 captures the
vertical acceleration for a single step at two speeds for the same person: 60 steps per minute and
100 steps per minute. In order to detect the execution of a particular movement, an algorithm based on
the stochastic characterisation of the movement performed at different speeds by different users is
proposed. Using a tri-axial accelerometer, the temporal elasticity of the movement is described by the
changes both in amplitudes and time shifts among the different axes.

Figure 1. Vertical acceleration in a single step.

Figure 2. Vertical acceleration in a single step at different speeds.

Let us call µi the speed of executing a particular instance i of a particular movement. Let us
call δi the duration of the execution of that movement and call δmax = ∀max

i δi. For each segment of
the sensed data of δmax duration, from which it is desired to estimate the speed of execution, the
posterior distribution for the speed of execution of the atomic movement over the sensed data is given
by Equation (1).

p(µi|D) =
p(D|µi)p(µi)

p(D)
(1)

In the above equation, D represents the data extracted features in a particular segment.
The probability of the data based on a particular speed of execution p(D|µi) could be estimated
by extracting the stochastic properties from sample data by different users. In order to
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use Equation (1), data could be described using different features as described in Section 2.
Our approach is to characterise the time series using features that can be detected with low energy
pre-processing algorithms. In particular, it is proposed to characterise the sensed time series by the
times and amplitudes of the local maximum and minimum in a δmax time window. When using
tri-axial accelerometers, different sub-features can be computed in order to capture the particularities
of each movement, such as the time difference between the maximum value of the vertical acceleration
and the horizontal acceleration or the relative variation in amplitude between vertical and horizontal
accelerations. For each feature, a Gaussian mixture model will be used in order to simplify the
stochastic representation and the required training phase. The probability mass of a particular feature
extracted from the data samples Dk executed at speed µi could be approximated by Equation (2):

p(Dk|µi) ≈ N(λki, σki) (2)

where N is the normal distribution with λ mean and σ variance. In order to simplify the model,
a combined multivariate Gaussian probability for all features could be approximated by assuming
independence as captured in Equation (3).

p(D|µ) ≈∏
k

p(Dk|µi) (3)

The prior distribution over µi could capture the prior knowledge of the particularities when
performing the particular movement by a particular individual. In the case of step detection
for example, the normal walking speed for a particular user could be used to generate a user-fitted
prior distribution.

4. Atomic Movement Detection Algorithm for Step Detection

In order to validate the proposed approach, following the design criteria presented in Section 3,
a new algorithm is proposed here. This algorithm is used for the particular case of step detection.

The generic problem of detecting specific movements (or patterns) from sensor-generated time
series can be approximated in two phases: feature extraction and movement classification based on
the extracted features [23]. Both phases could be implemented in the sensor device and/or on external
computing systems. However, the final architecture should provide energy efficiency awareness
in order to maximise the battery lifetime for sensors and therefore maximise their user acceptance.
Deploying on-sensor algorithms will minimise communication energy costs at the expense of energy
expended on embedded computations. On the other side, sending raw data to external systems will
increase the communication energy requirements when trying to minimise sensor energy consumption
on computations.

Our aim is to optimise energy requirements by performing on sensor pre-detection based on low
energy features in order to minimise both computing and communication requirements from the energy
perspective. Complex features based on time-frequency or wavelet transforms [6] or full time-series
computations based on approximated shapes [14,23] and distance-based similarities will penalise the
energy required for on-sensor device computations. Approaches based on sparse dictionaries [24]
will require sending the complete sensed data to external servers, increasing the communication
energy costs. In order to simplify the feature extraction from the acceleration time series, the proposed
algorithm only uses the amplitudes and times of consecutive maxima and minima data points.
A stochastic model for estimating the likelihood of a particular data segment to be a step based
on the times and amplitudes of consecutive maxima and minima is developed and trained so that
the operations required for detection are energy efficient. In particular, the algorithm proposed in
this section has selected two simple features, which have shown good correlations with minimal
complexity for step detection. The selected features are:
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f1 = A[Max(Gz)−Min(Gz)] (4)

f2 = T[Max(Gy)−Min(Gy)] (5)

where A refers to the amplitude of the sensed time series, Gz is the vertical acceleration, Gy is the
acceleration in the movement direction, T is the time difference and Max and Min represent the local
maximum and minimum in the time window.

Assuming that features are independent of each other, at first, the speed of the execution of the
movement is estimated by using the following equation:

p(µi| f1, f2) =
p( f1|µi)p( f2|µi)p(µi)

∑i p( f1|µi)p( f2|µi)p(µi)
(6)

In order to apply Equation (6) to a dataset that includes segments of data containing steps and
control segments in which no steps are executed (null class), the stochastic information for the null class
has also to be taken into account. In our case, the null class is modelled as two single side distributions
with an exponential shape as represented in Equation (7):

p( f j|µ0) =
1
2

λ01e−λ01( f j−µ01) + λ02e−λ02(µ02− f j) (7)

where µ0 represents the null class and λ01, µ01, λ02 and µ02 are the parameters of the distribution.
After estimating the values for p(µi| f1, f2) based on the training data, these values are used to

assign a probability for a segment of validation data to contain a step using Equation (8).

p(step| f1, f2) = ∑
i

p(step| f2, f1, µi)p(µi| f1, f2) = ∑
i>0

p(µi| f1, f2) (8)

The output of Equation (8) will provide a measure of likelihood that a step movement is performed.
In order to simplify the proposed model, the µi variable is sampled at particular points of interest that
capture the range of walking speeds that will be detected. In our case, the stochastic distributions of f1

and f2 are characterised based on vales for µi in the range of 60 to 100 steps per minute (corresponding
to walking speeds between 3 and 5 km/s approximately). Equation (6) is approximated by a Gaussian
mixture model based on normal distributions for the selected values for µi. In this model, computing
Equation (8) will be based on simple evaluations of the normal distribution based on the values of f1,
f2 and the result of Equation (6).

In order to compensate the misplacement of the sensor device (a common issue with wearable
sensors for daily activity monitoring) a low-band filter based on the averaging over a 2-s window is
implemented (as proposed in [31]). This moving average is able to detect both the original placement
rotations of the sensor, as well as slow drifts in the sensor location relative to the human body.
The average vector detects the gravity component. The projection of each accelerometer sample with
the average vector is used to estimate the vertical acceleration component in our algorithm.

5. Atomic Movement Detection Algorithm for Detecting and Classifying Falls

In order to validate the proposed approach, following the design criteria presented in Section 3,
a second algorithm is proposed in this section. This algorithm is used for the particular case of fall
detection and classification.

The proposed algorithm is divided into two consecutive phases: fall detection and fall
classification. In order to detect falls, the algorithm proposed in this section has selected two simple
features, which have shown good correlations with minimal complexity for fall detection:
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f1 = A[Max(G)−Min(G)] (9)

f2 = T[Min(G)−Max(G)−Min(G)] (10)

where A refers to the amplitude of the sensed time series, G is the amplitude of the acceleration
vector, T is the time difference and Max and Min represent the local maximum and minimum in the
time window.

In order to detect falls, the probability of having a fall conditioned to having measured f1 and f2

should exceed a certain threshold, τ as captured in Equation (11).

p( f all| f1, f2) > τ1 (11)

Assuming that f1 and f2 are independent variables, a fall is detected when the condition in
Equation (12) is met.

p( f1| f all)p( f2| f all) > τ2 (12)

Based on the results in this study, a value of 0.1 for τ2 has proven to be valid to distinguish 100%
of falls in the database [35].

Once a fall is detected, the proposed algorithm will estimate the class of fall that occurred.
Based on the available experimental data, the attention is focused on detecting frontal falls. Falls have
occurred when the user is walking or sitting on a chair. The database in [35] contains 30 falls; six of
them are frontal falls with no rolling over once the user contacts the ground. Out of these six falls,
three are falls starting from a walking state and three falls start from a sitting position. The following
three basic features are used:

f1 = A[Gx@Max(G)] (13)

f2 = A[Gy@Max(G)] (14)

f3 = A[Gz@Max(G)] (15)

where A refers to the amplitude of the sensed time series, G is the amplitude of the acceleration vector
and Gx, Gy and Gz are the individual acceleration components.

All available 30 falls in the database are classified into three classes:

c1 = frontal fall when walking (16)

c2 = frontal fall when sitting (17)

c3 = Other fall (18)

The detection of each class implies having the probability for the class conditioned to the measured
feature above a certain threshold. The computation can be performed based on Equation (19).

p( f1|ci)p( f2|ci)p( f3|ci) > τi (19)

6. Results Validation

This section presents the validation of the results for detecting steps and falls based on the
algorithms proposed in the previous sections. We use the information in two public datasets in order
to validate the results. The dataset in [36] is used for step detection, and the dataset in [35] is used to
detect and classify falls.
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6.1. Step Detection

In order to assess the inter-person validity, a different set of users and hardware devices is used
for training and validation. An Android Nexus 6 device is fixed to the body close to the abdomen for
training. For validation, the chest-located accelerometer data available from dataset [36] are used. Figure 3
illustrates the locations of the sensor devices for training and validation. In both cases, torso-attached
sensors are used to get similar time series. Based on the bio-mechanics of walking, the acceleration
of the upper and the lower torso may be slightly different in amplitude. A compensation method is
implemented to correct these differences. Using the Android Nexus 6 device placed at both upper
and lower torso locations, several measurements, while walking at the same speeds, are taken and
analysed. Table 1 captures the differences in the amplitude signals for different axes at both locations.
Different hardware from different manufacturers at different sample rates and slightly different sensor
locations, as well as a different set of users for training and validation are used in order to assess the
generalisation of the results independently of the user, the sensor device and the exact placement of
the sensor. To be able to apply the training of the algorithm with our collected data to the data in the
dataset in [36], only walking on a hard surface is considered.

Figure 3. Location of sensors for training and validation.

Table 1. Differences in sensed data at 60 steps per minute in lower and upper torso locations.

Location σGy σGz

Lower torso 0.0794 0.0830
Upper Torso 0.0848 0.0862

The dataset in [36] contains the information for 13 activities performed by 19 participants
(each wearing four accelerometer devices in four different parts of the body). In our experiment,
the chest accelerometer is used since the data are similar (although not exactly the same) to the training
scenario in which the accelerometer is used in a mobile device when maintaining the device close
to the participant’s abdomen. The performed 13 activities in the dataset are: sitting, lying, standing,
washing dishes, vacuuming, sweeping, walking, ascending stairs, descending stairs, treadmill running,
cycling on ergo-meter (50 W), cycling on ergo-meter (100 W) and rope jumping. Our objective is to
assess both the sensitivity (the percentage of steps counted when walking) and specificity (the number
of false steps detected when not walking).
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For the training set, the recordings for the tri-axial accelerometer embedded in an Android Nexus
6 worn close to the participant’s abdomen of three men and three women are used. Each participant
walked 20 steps at three different speeds (60, 80 and 100 steps per minute). A metronome was used to
guide the participants in keeping the step cadence. The vertical acceleration for a single step for two of
the participants walking at 100 steps per second is shown in Figure 4.

Figure 4. Vertical acceleration in a single step for one male and one female participants at 100 steps
per minute.

Using the data from each participant at each speed, the measured probability mass functions of
each feature were approximated using Equation (2). Figure 5 captures the example for Feature 2 for
a participant walking at 100 steps per minute. The training results for the conditional distribution
p( f1|µi) and p( f2|µi) parameters are presented in Tables 2 and 3, respectively.

Table 2. Training of the algorithm, f1 parameters.

µ λ f1 σ f1

60 steps/min 0.4846 0.2023
80 steps/min 0.6760 0.2922

100 steps/min 0.8141 0.3581

Table 3. Training of the algorithm, f2 parameters.

µ λ f2 σ f2

60 steps/min 0.1440 0.0826
80 steps/min 0.1188 0.0715

100 steps/min 0.0688 0.0370

For the validation phase, the dataset in [36] is used. Figure 6 captures the vertical acceleration
for one of the participant over time (in seconds) and the activity being performed. Each activity is
represented with an associated number according to the following list (from 1 to 13, walking tagged as
Number 7):

1. Sitting,
2. Lying,
3. Standing,
4. Washing dishes,
5. Vacuuming,



Sensors 2016, 16, 1464 11 of 16

6. Sweeping,
7. Walking,
8. Ascending stairs,
9. Descending stairs,

10. Treadmill running,
11. Cycling on ergometer (50 W),
12. Cycling on ergometer (100 W),
13. Rope jumping.

Figure 5. Normal approximation for f2 for a participant walking at 100 steps per minute.

Figure 6. Vertical acceleration over time per activity for Participant 2.

Apart from the steps performed while walking, there are steps executed inside some of the rest of
the activities. Figure 7 illustrates the vertical acceleration for one of the participants when descending
stairs. There are three periods in which the participant walks inside the staircase, probably in flat
segments connecting segments of stairs.

The results of the algorithm applied to the data while walking are able to detect 91.14% of
the steps. Figure 8 shows the moments in time when steps are detected for a segment of the walking
data for Participant 1. Figure 9 shows the associated vertical acceleration for the same period of
time. The benefits of the proposed approach when applied for the detection of periodic activities (the
movement under detection is performed on a periodic base) is that the misclassified movements could
be easily post-detected after the detection of two movement events with an inter-time of occurrence
around twice the previously detected one. Using this approach to “correct” single misclassified steps
in the validation dataset, 99.45% of the steps are estimated. The best classifier in [36] for detecting
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walking-related segments (KNN) reaches an overall mean classification rate of 97.7%, but without
being able to sub-classify walking from ascending steps and running; windows were taken to contain
single activities; and four different sensors at four different locations were used at the same time (wrist,
hip, ankle and torso).

Figure 7. Vertical acceleration over time descending steps for Participant 2.

Figure 8. Steps detected in a walking segment.

Figure 9. Vertical acceleration for the same segment as in Figure 6.
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The proposed algorithm can also be used for detecting the execution of steps on flat surfaces that
are performed inside other activities. The algorithm applied to the accelerometer data from the rest of
the activities is presented in Table 4. The algorithm is able to detect some of the steps walking on flat
segments in activities, such as ascending and descending stairs. In order to validate the performance of
the algorithm for the detection of steps in similar activities, the features f1 and f2 are also calculated for
the steps executed when ascending and descending stairs. Both ascending and descending segments
of acceleration data contained steps walking on flat surfaces connecting stair fragments. The steps
walking on flat surfaces were extracted and labelled as flat surface steps. The confusion matrix is
presented in Table 5. All of the steps ascending and descending stairs were classified correctly, and
only a small fragment of steps walking on flat segments of the staircase were incorrectly classified as
ascending steps.

Table 4. Average number of steps counted per participant for non-walking activities.

Activity Average Duration (min) Average Steps Counted

Sitting 1 0
Lying 1 0

Standing 1 0
Washing dishes 2 0

Vacuuming 1 2
Sweeping 1 11

Ascending stairs <1 18
Descending stairs <1 7
Treadmill running 2 0

Cycling on ergometer (50 W) 2 0
Cycling on ergometer (100 W) 2 0

Rope jumping <1 0

Table 5. Confusion matrix for detecting steps walking on flat surfaces, ascending stairs and
descending stairs.

Classified as Flat Surface Steps Ascending Steps Descending Steps

Flat surface steps 95.9% 4.1% 0%
Ascending steps 0% 100% 0%
Descending steps 0% 0% 100%

6.2. Fall Detection and Classification

In order to validate the algorithm for detecting and classifying falls, the database in [35] is used.
This database contains 30 falls; six of them are frontal falls with no rolling over once on the ground.
Out of these six falls, three are falls from a walking state and three falls from a sitting position. Table 6
captures the probability distribution parameters for both f1 and f2 conditioned to a fall based on the
information in the database in [35]. The first feature, f1, is designed to capture the sharp accelerations
occurring during the impact with the ground, while the second feature, f2, is able to validate a fall by
considering the time taken for a ground impact in order to distinguish it from other high acceleration
movements. Figure 10 captures the result of applying the proposed algorithm for detecting falls to a
particular sample in the database. Once a fall is detected, we apply our algorithm for classifying them.
Table 7 captures the results of the conditional distributions of each feature for each class of fall as
previously defined. The algorithm was able to detect all falls and to accurately classify them in the
appropriate class. The major limitation of the database is that all falls are simulated. The authors are
currently working to create a database with real falls by monitoring frail people in care homes.
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Figure 10. Probability of a fall for Data Sample 9 in the database.

Table 6. Fall detection algorithm parameters.

Class λ f σ f

f1 7.8549 2.5692
f2 136.27 81.36

Table 7. Fall classification algorithm parameters.

Class λ f1 σ f1 λ f2 σ f2 λ f3 σ f3

c1 5.2423 2.0798 1.9998 1.0555 −1.8940 0.2080
c2 5.1299 2.0878 −0.8582 3.8089 −3.9783 0.1520
c3 7.1742 1.4663 1.4240 4.1176 0.0463 3.8780

7. Conclusions

In this paper, a novel algorithm is presented to detect atomic human movements based on
the stochastic properties of local maxima and minima of the sensed time series from a tri-axial
accelerometer. The algorithm is designed to work on simple operations, such as storing the maximum
and minimum values and times for the three acceleration axes and performing simple estimations
for the probability of steps based on the normal distribution. The proposed algorithm is applied to
two particular scenarios: detecting single steps while walking and detecting and classifying falls.
The training set and the validation set for the step detection have used different individuals, hardware
and software for the sensors (with location compensation). The fall classification is tested on a public
available falls database.

The results validate that it is possible to detect atomic movements based on the stochastic
characterisation of the elasticity of the sensed time series when performing the movement by different
individuals at different speeds. The time elasticity is mapped into the deformations in the relative
location and values for adjacent maxima and minima.

For future work, our model will be applied for the detection of other atomic movements and
the detection of more complex activities by the recognition of a combination of atomic movements.
We will also perform an on-sensor deployment to assess real-time detection.
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