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Abstract: In the development of the multi-dimensional force sensor, dimension coupling is the
ubiquitous factor restricting the improvement of the measurement accuracy. To effectively reduce
the influence of dimension coupling on the parallel multi-dimensional force sensor, a novel parallel
three-dimensional force sensor is proposed using a mechanical decoupling principle, and the influence
of the friction on dimension coupling is effectively reduced by making the friction rolling instead
of sliding friction. In this paper, the mathematical model is established by combining with the
structure model of the parallel three-dimensional force sensor, and the modeling and analysis of
mechanical decoupling are carried out. The coupling degree (¢) of the designed sensor is defined and
calculated, and the calculation results show that the mechanical decoupling parallel structure of the
sensor possesses good decoupling performance. A prototype of the parallel three-dimensional force
sensor was developed, and FEM analysis was carried out. The load calibration and data acquisition
experiment system are built, and then calibration experiments were done. According to the calibration
experiments, the measurement accuracy is less than 2.86% and the coupling accuracy is less than
3.02%. The experimental results show that the sensor system possesses high measuring accuracy,
which provides a basis for the applied research of the parallel multi-dimensional force sensor.

Keywords: three-dimensional force sensor; mechanical decoupling; parallel structure; calibration
experiment

1. Introduction

With the ability of measuring force components and torque components, the multi-dimensional
force sensor is one of the most important and challenging kinds of sensors, widely applied in many
research areas such as wind tunnel balances, thrust stand testing of rocket engines, and in robotics,
automobile industry, aeronautics, etc. [1]. Some scholars have focused on the development of the
multi-dimensional force sensor. Nguyen et al. [2] developed a Stewart platform-based sensor with
LVDT’s mounted along the legs for force/torque measurement in the presence of passive compliance.
Experiments conducted to evaluate the sensing capability of the force sensor were carried out and
the results showed that it was capable of measuring torque with good performence. Stoughton [3]
invented a modified Stewart platform manipulator, and the measurement accuracy and dexterity
were all improved. Kerr [4] suggested that the Stewart platform with instrumented elastic legs can
be used as a six-axis force sensor, and designed a Stewart-platform transducer. A simple illustrative

Sensors 2016, 16, 1506; d0i:10.3390/s16091506 www.mdpi.com/journal/sensors


http://www.mdpi.com/journal/sensors
http://www.mdpi.com
http://www.mdpi.com/journal/sensors

Sensors 2016, 16, 1506 2 of 23

example was given. Yao et al. [5] proposed a kind of six-dimensional force sensor based on the
Stewart platform, and the spatially isotropic configuration is carried out. Ranganath et al. [6] designed
a force/torque sensor based on a Stewart platform in a near-singular configuration from the angle of
the sensor sensitivity. Beccai et al. [7] developed a hybrid silicon three-dimensional force sensor for
biomechanical applications. Liu et al. [8] put forward a parallel six-dimensional heavy force/torque
sensor based on the Stewart structure, and the sensor has a large measurement range, and good
linearity. A kind of three-dimensional force sensor obtained by a novel alkaline etching technique
was proposed by Va’zsonyi et al. [9], and the sensor showed good agreement with the theoretical
predictions. GabSoon et al. [10] put forward a two-dimensional force sensor for measuring arm force of
an upper-limb rehabilitation robot, and the sensor possessed a small interference error and repeatability
error. Fontana et al. [11] developed a three-dimensional force sensor for dual finger haptic interfaces.
Optimal design and experiment research of a fully pre-stressed six-dimensional force/torque sensor
are done by Wang et al. [12], and the optimal design method and the superiority of the sensor structure
were proved. The measurement accuracy is improved. Tsai et al. [13] designed a isotropic 6-DOF
parallel manipulator using isotropy generators, and the sensor has a good measurement accuracy.
Gao and Jin et al. [14,15] introduced the sensor to the miniaturization field by making elastic ball
joints instead of spherical joints, and integral machining was realized. Yao et al. [16] proposed
a fault-tolerant fully pre-stressed parallel six-dimensional force sensor, and a measurement theory
and experimental study were carried out. The studies provided a basis for applied research on the
fault-tolerant sensor. Zhao et al. [17] put forward a over-constrained 12-SS six-dimensional force sensor
structure, and the simulation analysis is carried out. The above studies have mainly focused on the
aspects concerning the structure design of the multi-dimensional force sensor, and some valuable
results were obtained. However, dimension coupling is a ubiquitous factor restricting the improvement
of the measurement accuracy.

How to effectively reduce the influence of dimension coupling on a parallel multi-dimensional force
sensor is always been the key point, and some studies were carried out. Kang and Lee et al. [18] proposed
a numerical shape optimization design procedure with effective representation and minimization of
the cross coupling term. The multiple constraints on good isotropic measurement and safety were
considered, and the cross coupling error was effectively reduced. Song et al. [19] put forward a four
degree-of-freedom wrist force/torque sensor with an elastic body structure. The proposed sensor
had low cross sensitivity. Elom et al. [20] introduced the decoupling parallel model to the design
of the soft sensors, and developed a kind of soft sensor. The decoupling parallel model however
needs further optimization. Chao et al. [21] carried out a study on the shape optimal design and force
sensitivity evaluation of six-axis force sensors. The measurement accuracy was effectively improved.
Liu et al. [22] developed a eight beams spoke six-dimensional force sensor, and both decoupling
properties and a decoupling algorithm were developed, but the dimensional decoupling effect of
the multi-dimensional force sensor was yet to be improved. Hou et al. [23] carried out a study on
performance analysis and comprehensive index optimization of a new Stewart six-component force
sensor configuration. The research results were fine, and useful for further study. Yu et al. [24] carried
out a study on nonlinear static decoupling of a multi-dimensional force sensor based on BP and RBF
neural networks and put forward a new method which can reduce the coupling effect. Dynamic
experiments, modeling and compensation of a bar-shaped strain gauge balance for a wind tunnel were
carried out by Xu et al. [25]. Liu et al. [26] researched static decoupling for multi-dimensional wheel
force sensor, and the decoupling effect was not ideal. Xu et al. [27] proposed a solution to the analysis
with cross-coupling matrix of six-dimensional wrist force sensor for Robot. Zhao et al. [28,29] put
forward a new six-dimensional force sensor nonlinear static decoupling method combined with the
advantages of hybrid hierarchy genetic algorithm, and the wavelet neural network was proposed to
improve the measurement accuracy of large range six-dimensional force sensor. The analysis result
showed that the method worked. These studies about sensor decoupling mainly focused on the
structure optimization of the multi-dimensional force sensor and decoupling algorithm, and the certain
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decoupling effects were achieved, but dimension coupling still exists and restricts the improvement of
the measurement accuracy of the multi-dimensional force sensor.

In this paper, innovation of the original design of the sensor structure is put forward. A kind
of parallel three-dimensional force sensor is proposed using the mechanical decoupling principle.
By making the friction rolling instead of sliding friction, the dimension coupling is effectively reduced
and the measurement accuracy can be improved. In the same time, due to the parallel structure,
the proposed kind of parallel three-dimensional force sensor can be used in multi-dimensional force
measurements. A prototype of the proposed sensor is designed and fabricated. Then the load
calibration and data acquisition experiment system are built, and the FEM analysis and the calibration
experiments were done.

The organization of this paper is as follows: following the introduction, the structure of the sensor,
the mathematical model and decoupling principle of the sensor are shown in Section 2. Section 3
analyses the decoupling characteristics of the sensor. Section 4 introduces the sensor prototype,
the FEM analysis and the experimental study of static calibration of the prototype. The paper is
concluded in Section 5, summarizing the present work.

2. Mathematical Model and Decoupling Principle

2.1. Structure

In order to effectively reduce the influence of dimension coupling on a parallel multi-dimensional
force sensor, and improve the measurement accuracy of the sensor, a kind of parallel three-dimensional
force sensor is proposed. The proposed sensor can measure three axial forces as x-axis, y-axis and
z-axis, and the designed model is shown in Figure 1.

Figure 1. Design model of the parallel three-dimensional force sensor.

The sensor mainly consists of a lid, a frame, a force plate and four force branches. The four force
branches include three horizontal branches and a vertical branch. Each branch consists of
a single-dimensional force sensor, arc indenters and a steel ball. The three horizontal branches
uniformly distribute around the force plate and the vertical force branch is located just below the force
plate. Each branch is composed of a single-dimensional force sensor, arc indenters and a steel ball.
The force branches and the force plate are connected by the steel ball. The internal structure of the
sensor is shown in Figure 2.
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Figure 2. Internal structure of the parallel three-dimensional force sensor. (a) The internal structure of
the sensor; (b) The top view of the internal structure.

2.2. Measurement Model

Figure 3 illustrates the diagram of the mechanical decoupling parallel three-dimensional force
sensor, there exists mutual weak coupling between the force branches of the parallel three-dimensional
force sensor.

Frame
2
Force plate Q
| NI (1, |
Horizontal ,'_ —_— e ——— '\
force branch /& T . J15]
/- Q <3\ . . .
P - ~C ma > <is N D I megle-dlmensmnal
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O—> steelball

—» Arcindenter

Vertical force branch

Figure 3. Schematic diagram of the parallel three-dimensional force sensor.

The symbols in Figure 3 are defined as follows: a1, a, a3 and a4 are the contact points between
the steel ball and force plate, A1, Ay, Az and Ay are the contact points between the force branch and
the frame.

When there is an external force (F) acting on the force plate, the external force can be decomposed
into a horizontal force (Fy) and a vertical force (Fy) as shown in Figure 4. The Cartesian coordinate
system O-XYZ is set up with its origin located at the center of the force plate. F is the external force
acting on the force plate; f1, f2, f3 and f, are the measuring forces of the single-dimensional force sensor;
Fy; is the horizontal component of the external force; Fy is the vertical component of the external force,
D; (i=1,2,3,4) denotes the ith branch of the sensor.
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The equilibrium equation can be written according to the force diagram of the force plate with
neglect of the influence of the friction:

Fx — f1c0830" + f2c0s30" =0
Fy +flcos600 +f2cos60° —f3=0 1)
F,—fi=0

where Fy, Fy and F7 are the forces along coordinate axes, and Fy is equal to Fy.

Figure 4. Force decomposition diagram of the sensor.

According to the structure of the sensor as shown in Figure 4, we can have:

f1COS3OO — Fycosf — fzcos300 =0 o)
f18in30° + Fysind + fsin30" — f3 =0
where 6 is the angle between Fyy and the positive direction of X-axis, as shown in Figure 4.
The relationship between f1, f, and f3 can be obtained as:
f3 = f1(sin30" + cos30 tanf) + f»(sin30" — cos30 tand) 3)
Substituting Equation (3) into Equation (1), the equilibrium equation can be rewritten as:
Fx — f1c05300 + f2C0s3OO =0
Fy — flcOSBOotane + fzcos300tan9 =0 (4)
Equation (4) can be rewritten in the form of matrix equation as:
Fx c0s30° —c0s30° 0 fi
F=| F, | =Gf = cos30’tanf —cos30 tanf 0 f2 5)
Fz 0 0 1 f3

2.3. Force Model of Branch

The parallel three-dimensional force sensor was developed with the mechanical decoupling
structure. Branch mechanical decoupling is realized depending on the rolling steel ball when there is
an external force acting on the sensor, so the model and analysis of the force branch must be established
based on the rolling friction law [30].
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The acting force diagram of the vertical force branch is shown in Figure 5. The branch steel balls
of the parallel three-dimensional force sensor keep a balance under the arc indenter force, and the
model can be simplified through projecting to x-z plane.

Fi, F and F5 are the acting forces on the upper arc indenter along the direction of the
three horizontal branches; Fy is the force acting on the upper arc indenter; Fy is the normal binding
force; Fg is the summation of forces along the horizontal directions; O1-XYZ are the center coordinates.

Fi |
X
Fs lee—— FSQS:_:":-:\ _____
F, . F

Figure 5. Force model of vertical branch.

Because the steel ball and the arc indenter are not actually a rigid body, they will deform under
the acting force. The real force diagram of the ball is shown in Figure 6a. Through the reduction to
point A, the distributed contact forces on the contact surface can be decomposed into a bearing reaction
force and a force couple which is called couple of rolling resistance [30], and the simplified result is
shown in Figure 6b. The bearing reaction force can be decomposed into a friction force and a normal
binding force as shown in Figure 6c.

Figure 6. Force decomposition diagram of the steel ball. (a) The real force diagram of the ball;
(b) The simplified force diagram of the sensor; (c) The decomposition diagram of (b); (d) The equivalent

offset diagram of the steel ball.

The couple of rolling resistance increases with the increase of the acting force, and the ball is going
to be in a critical rolling state of equilibrium when the friction force increases with the external force to
a certain value. At this moment, the couple of rolling resistance reaches the maximum value which
is called maximum rolling friction couple [30]. The steel ball will roll if friction force increases again.
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Experiments show that the maximum rolling friction couple has nothing to do with the sphere radius,
but it is proportional to the size of the normal binding force as shown in Equation (6):

M = 5Fy (6)

where M is the couple of rolling resistance, ¢ is a proportionality constant which is called coefficient of
rolling friction.

When the steel ball is in a critical state of equilibrium, the normal binding force and the maximum
rolling friction couple can be synthesized into a off-center force based on the theorem of translation.
The off-center force is equal to the normal binding force, and the offset distance is d, as shown in
Figure 6d:

d=M/Fy1 = M/Fy (7)

where Fy is the off-center force, and d is the offset distance.
Combining Equation (6) with Equation (7), the relationship between the proportionality constant
and the offset distance can be obtained as shown in Equation (8):

S=d (8)

2.4. Force Analysis of the Rolling Steel Ball

According to Section 2.1, the steel ball and the arc indenter will deform under the acting force,
but under the action of the friction on the contact surface, sliding cannot happen. To replace the
deformation, the upper and lower arc indenter will produce a small tangential displacement, so the
steel ball will produce a slight rotation relative to the horizontal plane before the critical rolling state.

In non-critical rolling state, the micro displacement of the steel ball center relative to the ground is
Ax1, and the micro displacement relative to the upper arc indenter is Ax;, the micro displacement of
the upper arc indenter relative to the ground is Ax, as shown in Figure 7, the relationship between Ax;,
Axy, and Ax can be expressed as shown in Equation (9):

Ax = Ax, + Ax, = 2Ax, )

f’ Ax B

Figure 7. Force analysis diagram of the critical rolling steel ball.

Assuming that the relationship of the deformation in non-critical rolling state is linear,
we can have:
BDomax/Bo =06/d (10)

where Ayyqx is the maximum displacement of the ball center in critical rolling state, A, is the
displacement of the ball center in non-critical rolling state.
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For the equilibrium of the steel ball, the following equation can be obtained as:
M= f'R (11)

Substituting Equations (7) and (10) into Equation (11), the friction force of the steel ball in non
critical rolling state can be obtained as:

f"'= (6Fn/(RAxmax))Bx (12)

where f’ is the friction force of the steel ball, Axpax is the maximum displacement of the upper
arc indenter relative to the ground in critical rolling state, R is the steel ball radius, and Ay is the
displacement of the upper arc indenter relative to the ground in non-critical rolling state.

2.5. Rolling Friction Experiment

In order to prove that the rolling motion has a fine decoupling effect, a experiment has been
carried out. The experiment system model is shown in Figure 8.

Figure 8. The rolling friction experiment system model.

The experiment system is established as shown in Figure 9, which consists of a loading platform,
a loading unit, a hydraulic station and a data acquisition system. The loading unit is composed of
a loading rack, a loading cylinder, a tension sensor and a pull rod. Two single-dimensional force
sensors are installed on the loading rack, which are used for the force measurement.
Loading platform  Loading unit

Hydraulic Station Data acquisition system

~!ﬁ!

=

L
'|‘|i |

Figure 9. The rolling friction experiment system.

In the experiment, different weights were put on the platform, and different forces loaded by the
loading unit. The weights include 0 kg, 25 kg, 106.8 kg and 176.1 kg. The experimental data are shown
in Tables 1-4.

Table 1. Experiment 1 (the weight is 0 kg).

Loading Force/N 0 21.238 166.261 196.797 207.097 213.386

Output Force 1/N 0.123 9.844 81.831 96.967 102.166 105.273
Output Force 2/N 0 11.168 82.192 97.25 102.394 105.469
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Table 2. Experiment 2 (the weight is 25 kg).

Loading Force/N 1.458 21.147 65.173 123.419 184.855 200.442

Output Force 1/N —0.061 10.029 31.318 59.805 89.892 97.521
Output Force 2/N 0 11.921 33.692 62.365 93.109 100.889

Table 3. Experiment 3 (the weight is 106.8 kg).

Loading Force/N -0.137 16.088 53.096 99.811 148.805 199.85
Output Force 1/N 0 8.675 26.58 49.16 73.094 97.952
Output Force 2/N 0 6.713 25.16 48.249 72.906 98.442

Table 4. Experiment 4 (the weight is 176.1 kg).

Loading Force/N 0.003 18.777 58.793 103.457 151.312 198.164

Output Force 1/N —0.013 12.121 31.133 52.544 75.802 98.321
Output Force 2/N 0.015 4.517 24.469 46.68 70.835 94.426

According to the above data, the relationship between the loading force and the measurement
force can be obtained as shown in Figure 10.

250
—— () kg

z 20 —— 25kg
[}
Q
£ 150 —e—106.8kg
b=
g 100 ——176.1kg
I
2 50
[}
>

04

50 5 50 100 150 200 250

External force (N)

Figure 10. Force diagram with consideration of friction.

The experimental results shows that the vertical weights loaded on the platform have little
influence on the horizontal measurement accuracy, and the rolling motion has a fine decoupling
measurement effect. Therefore, the feasibility of the mechanical decoupling principle of the parallel
three-dimensional force sensor proposed in this paper is proved.

2.6. Mechanical Decoupling Principle

The influence of coupling between branches of the parallel three-dimensional force sensor can
be reduced by making the rolling friction instead of sliding friction. The force diagram is shown in
Figure 11, and the equilibrium equation of the force plate can be established as shown in Equation (13).

Fx — C1f]cos60” — Cafscos60” — f5 — f4 — f1cos30” + fc0s30° =0
Fy — C3f{c0s30" — Cy4f}c0s30” — f; — C5f1c0860” — Csfocos60” + Csf3 =0 (13)
Fz-fi-fi-fi-fs=0

where C; denotes the direction coefficient of the friction, whose value depends on the direction of the
force components in horizontal plane, and its value may be 1 or 0; f], f3, f and f; are the friction
forces of the steel balls.
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Figure 11. Force diagram with consideration of friction.

The friction force along different branches is influenced by the manufacturing and machining
accuracy, so assuming that the steel balls are all in the critical rolling state, and the friction force reaches
the maximum value. The following relationship can be derived according to the Equation (12):

fi = 06R/R; f = 8f2/ R fy = 6fs/R; fy = 6fu/ R (14)

Substituting Equation (14) into Equation (13), the equilibrium equation can be obtained as:

Fx G19c0s60 5c§560° + cos30° 7@5‘}25600 — c0s30° % %
. . o , f2
Fy | = | G080 | Cioos60" 40030 | Cieos60°  —Cs 4 f (15)
F, s 5 P
R R R R fa

The relationship between f1, f, and f3 can be derived and simplified as shown in Equation (16)
according to the force diagrams in Figure 11.

f3=Cifi+Cfa (16)
Substituting Equation (16) into Equation (13), the equilibrium equation can be simplified as:

Fx — 35 +cos30')fi — 3G — cos30')fo — §fu =0
Fy — (S99 1 (1 )Gl fy — [0 4 ()~ o) Ca)fa — 4fa =0 47
Fz— g +Clfit g +Clfa—fa=0

The the equilibrium equation can be rewritten in another form of matrix equation as:

Fy % . (illf + cos30° % . Cj{‘s — c0s30° % fi
F=|F | =Gf=| @0 L (1_c)c5 Sl 4 (1_c)cs & fo (18)
F 8 +Cy - ($+0) L[ fa

3. Decoupling Characteristic Analysis

Based on the above force analysis of the parallel three-dimensional force sensor, we assume that
the angle between the external force component in the horizontal plane and X-axis is sixty degrees,
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and the coefficient of rolling friction is 0.01, and the steel ball radius is 10 mm. The relationship between
the measuring force and the external force in the ideal case can be expressed as shown in Equation (19):

fi 1.7321 —1.0000 0.0000 Fx
£, | = | 05774 —1.0000 0.0000 Fy (19)
£ 0.0000 0.0000 1.0000 Fy

When the external forces are limited to 0~3000 N, the force diagrams between the measurement
forces and the external force in the ideal case are shown in Figure 12.

5.25 0.00
+f1+f2+ﬁ>+f4 +f1—¢—fz+f3+f4
~4.50 ~-0.45
Z Z
&4 &
~3.75 g "0-90
o 2
£3.00 2 -1.35
g E
£ 2.25 £ -1.80
g g
5 o)
2 1.50 § -2.25
= 0.75 =
-2.70
000 _300 1 1 1 1 1 1
0.00 0.45 090 135 1.80 225 270 3.00 0.00 045 090 135 1.80 225 2.70 3.00
External force (KN) External force (KN)
(a) (b)
3.00 7
AT s o fa
270
Z
4225
Y
51.80
=
o 1.35
g
&
5 0.90
wn)
3
S 0.45

0.0
0.00 045 090 135 1.80 225 270 3.00
External force (KN)

(©)

Figure 12. Force diagram of the sensor. (a) The relationships between the measurement forces f;
(i=1,2,3,4) and the external force component Fx; (b) The relationships between the measurement
forces f; (i = 1, 2, 3, 4) and the external force component Fy; (c) The relationships between the
measurement forces f; (i = 1, 2, 3, 4) and the external force component F.

In Figure 12, it is shown that the change rule between the measurement force and external force is

linear. Substituting the structure parameter (6 = 60°) into Equation (18), the equilibrium equation with
consideration of friction can be obtained as:

Fx 0.8675 —0.8675 0.0010 f
F=| F | =] 05009 —14991 0.0010 £ | =Gf (20)
Fy 0.0020  0.0000  1.0000 fu
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where G’ is a introducing matrix which shows the numerical relation between the measurement force
and the external force.

The Equation (20) can be rewritten in another form of equation as shown in Equation (21):

f P
fo| =G f=
fa

1.7321 —1.0018 —0.0007 Fx
05784 —1.0018 0.0004 Fy

—0.0035  0.0020

1.0000 F7

(21)

When the external forces are limited to 0~3000 N with consideration of friction, the force diagrams
between the measurement forces and the external force are shown in Figure 13.
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N Q1 N
1 (e») 1
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=)

(.00 045 090 135 180 2.25
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-0.75 1

T o fy

0O
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Figure 13. Force diagram of the sensor. (a) The relationships between the measurement forces
fi (i=1,2,3,4) and the external force component Fy; (b) The relationships between the measurement
forces f; (i =1, 2, 3, 4) and the external force component Fy (c) The relationships between the
measurement forces f; (i = 1, 2, 3, 4) and the external force component F.

In Figure 13, it is shown that the change rule with consideration of friction is also linear, and the
influence of friction is effectively reduced. The measurement force error in the ideal case and with
consideration of friction can be expressed as:

Af =fL—fm

(22)
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where Af is the measurement force error, f; is the measurement force in the ideal case, fj is the
measurement force with consideration of friction.

The force diagrams between the measurement force error (D-value) and the external force are
shown in Figure 14.

10.5 . " - - 6.00
—o— M =l A
9.00 5.25
~7.50 . 4.50
z z
® 6.00 v 375
2 2
[ s 3.00
T 4.50 7
A B 225
3.00
1.50
1.50 0.75
0.00 . . . . . . 0.00 A A A
0.00 045 090 1.35 1.80 2.25 2.70 3.00 0.00 045 090 135 1.80 2.25 2.70 3.00
External force (KN) External force (KN)
(a) (b)
3.75 - : . -
—D—_\I —— A AN
3.00
€ 225
[
=
[
% 1.50
A
0.75
0.00

0.00 045 090 1.35 1.80 225 2.70 3.00

External force (KN)

()

Figure 14. Relations of the force error and external force. (a) The relationships between the measurement
force error Af; (i =1, 2, 3, 4) and the external force component Fx; (b) The relationships between the
measurement force error Af; (i =1, 2, 3, 4) and the external force component Fy (c) The relationships
between the measurement force error Af; (i = 1, 2, 3, 4) and the external force component F.

In Figure 14, it is shown that the measurement force error is small, and the change rule is linear.
There is a certain coupling relationship between branches of the sensor, so the coupling degree (&)
can be defined as shown in Equation (23):

e JL—fm

7 @)

where ¢ is the defined coupling degree.

Assuming that the external force is 3000 N, the measurement forces and the coupling degrees are
shown in Table 5.
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Table 5. Coupling degree of the branches.

i 1 2 3 4

fi (KN) 2212 1.312 3.485 2.998
Fur (KN) 2.186 1.275 3.455 2.99
€ (%) 1.18% 2.85% 0.86% 0.1%

According to the definition of coupling degree and the related calculation results as shown
in Table 5, the integrated coupling degree of the sensor is less than 2.85%, so the designed
parallel three-dimensional force sensor with the mechanical decoupling structure possesses good
decoupling performance.

4. Calibration Experiment

4.1. Prototype

A mechanical decoupling parallel three-dimensional force sensor prototype is developed based
on the mathematic model and decoupling analysis, and it can measure three-dimensional space force.
The size of the prototype is 365 x 257 x 142 mm, and the sensor prototype is shown in Figure 15.

Wﬂﬁa_«,-;. -, =
P - n i,

Figure 15. Prototype of the parallel three-dimensional force sensor.

Due to the application of the mechanical decoupling structure, the pre-stressed force is needed
to ensure that all the branches are always in compression when subjected to the expected range of
external force, and the pre-stressed force can be adjusted by pre-stressing the nut properly.

4.2. FEM Analysis
Before the calibration experiment, a FEM analysis is carried out to simulate the loading experiment.

The simulation is carried out by 300 N interval. The mesh data of the sensor is shown in Table 6.

Table 6. Mesh data of the sensor.

Unit Type Unit Number Number of Nodes
Solid187 90,752 147,965

In the analysis, we assume that the force of the branch has a certain relationship with the axial
deformation, and the measured axial deformation can be used instead of the force of the branch, so we
set up coordinate system in the simulation software.

The probe point is the center of the sensor, and the coordinate origins of the single-dimensional
force sensor of each branch are shown in Figure 16. When loading 2700 N along the x-axis,
the deformation image is shown in Figure 17.
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Figure 16. Coordinate system of the sensor.

When loading force along x-axis ranges from 300 N to 3300 N, the axial deformations of the
four branches are shown in Table 7.

0.00079589 Max
0.00072354
0.00065118
0.00057883
0.00050648
0.00043412
0.00036177
0.00028941
0.00021706
0.00014471
7.2354e-5
0 Min

Figure 17. Deformation image of the sensor.

Table 7. Axial deformations of the four branches.

Loading Force/N D1/mm D2/mm D3/mm D4/mm
300 6.45E—4 3.14E—4 3.11E—4 1.18E—6
600 1.29E-3 6.28E—4 6.23E—4 2.37E—6
900 1.94E-3 9.42E—4 9.34E—4 3.56E—6
1200 2.58E—-3 1.26E—-3 1.25E-3 4.75E—6
1500 3.23E-3 1.57E-3 1.56E—3 5.93E—6
1800 3.87E-3 1.88E—-3 1.87E-3 712E—6
2100 4.52E-3 2.20E-3 2.18E-3 8.31E—6
2400 5.16E-3 2.51E-3 2.49E-3 9.50E—6
2700 5.81E-3 2.83E-3 2.80E—-3 1.07E—5
3000 6.45E—3 3.14E-3 3.11E-3 1.19E-5
3300 7.10E-3 3.45E-3 3.43E-3 1.31E-5

When loading along z-axis, the probe point is the center of the sensor, and the coordinate origins
of the single-dimensional force sensor of each branch are maintained. The axial deformations of the
four branches are shown in Table 8.

Table 8. Axial deformations of the four branches.

Loading Force/N D1/mm D2/mm D3/mm D4/mm
300 —1.96E-5 —1.98E-5 —1.94E-5 —4.06E—4
600 —3.90E-5 —3.95E-5 —3.87E-5 —8.12E—4
900 —5.85E—5 —5.93E-5 —5.80E-5 —1.22E-3
1200 —7.83E-5 —7.90E-5 —7.74E-5 —1.62E-3
1500 —9.73E-5 —9.87E-5 —9.67E-5 —2.03E-3
1800 —1.13E—4 —1.18E—4 —1.16E—4 —2.44E-3
2100 —1.36E—4 —1.38E—4 —1.35E—4 —2.84E-3
2400 —1.50E—4 —1.58E—4 —1.55E—4 —3.25E-3
2700 —1.70E—4 —1.78E—4 —1.74E—4 —3.66E—3
3000 —1.95E—4 —1.97E—4 —1.93E—4 —4.06E-3

3300 —2.13E—4 —2.17E—4 —2.13E—4 —4.47E-3
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When loading along x-axis and y-axis in the same time, the axial deformation of the four branches
is shown in Figure 18.

0.008
0.006f

—0— D1—— D2 —2—D3—0— D4

0.004¢
0.002f
0

| deformation(mm)

-0.002¢

AXia

0004505710 15 20 25 30 35

Loading force (KN)

Figure 18. Axial deformations of the four branches.

In the analysis, the axial deformation of the four branches was measured. The force of the branch
has a certain relationship with the axial deformation, and the measured axial deformation can be used
instead of the force of the branch. Based on the least square method, the calibration matrix and the
error matrix can be obtained by using the FEM analysis data:

1.0005  0.0018 —0.0121 —0.0109
G— —0.0012 1.0008  0.0035 —0.0101 (24)
~ | —0.0015 —0.0032 1.0009 —0.0156

—0.0035 —0.0022 —-0.0002 1.0022

0.0014 0.0025 0.0105 0.0132
0.0036 0.0098 0.0010 0.0196

Err = (25)
0.0042 0.0046 0.0096 0.0153

0.0021 0.0056 0.0032 0.0006

According to the physical meaning of the error matrix, the diagonal elements of the error matrix
denote the measurement accuracies of the four branches, and the other elements denote the accuracy
of coupling of the sensor, so the branch measurement accuracies of the parallel three-dimensional force
sensor are 0.14%, 0.98%, 0.96% and 0.06%, and the accuracy of coupling is less than 1.96%. Because
there is no machining error and assembly error, the accuracies are relatively high, and the results have
a certain reference value.

4.3. Static Calibration

In order to calibrate the prototype of the parallel three-dimensional force sensor and verify
each performance of the sensor, the static calibration experiment is established. The load calibration
equipment and data acquisition experiment system of sensor are built, which are consists of high
precision standard force sensor, the prototype of three-dimensional force sensor, intelligent instrument
and computer. The flow diagram of the calibration system is shown in Figure 19.
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Figure 19. Flow diagram of the calibration system.

The static calibration experiment in this paper is carried out when the horizontal pre-stressed
force is 500 N, and the measure range of the three-dimensional force sensor is 3000 N. Because the
structure of the sensor is non-orthogonal, the calibration experiment must be carried out along the
four branches. The load calibration experiment schematic diagrams of the vertical direction and the

horizontal direction are shown in Figures 20 and 21.

Calibration loading
rack

Horizontal loading
bolt

Prototype of sensor

Vertical loading
bolt

Figure 21. The calibration experiment of the vertical loading.
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The calibration results which is deduced out with the least square method can be expressed as
shown in Equation (26):
F =G'f.+E (26)

where F’ is the matrix of calibration loading with four rows and #n columns, and 7 is the number of
calibration force vectors, G” is the calibration matrix with four rows and n columns, f. is the calibration
measuring force with n rows and n columns, E is the error matrix with four rows and #n columns.

The ith dimension of the calibration force vector can be obtained from the transpose of the ith
rows of the calibration matrix, as shown in Equation (27):

sz{Fl F,L F5 - F }T 27)

The ith dimension of the calibration vector can be obtained from the transpose of the ith rows of
the calibration matrix, as shown in Equation (28):

T
¢/=|¢ ¢ & - a | 8)

The ith dimension of the error vector can be obtained from the transpose of the ith rows of the
error matrix, as shown in Equation (29):

T
EiZ[El E; E3 --- E } (29)
Then, Equation (26) can be rewritten in the form of equation as shown in Equation (30):
F. =f'G! +E (30)

where G/ is the calibration vector, F; is the vector of calibration loading, E; is the error matrix vector.
Based on the the least square method, the following relationship shown in Equations (31) and (32)

can be established: .

J;=Y Ej* =EE (31)
j=1
T T
o, a(R-fel) (F-fcr) L o)
oG] |gr_gr G a

Gl’.’ :?

1

where J; is a factor for evaluating the measuring error, Gifl is the augmented matrix.
The inverse matrix of the matrix foCT exists when the matrix foCT is full rank, and the ith dimension
of the calibration vector can be expressed as shown in Equation (33):

& = (1) i (33)

Because i = 4 in the calibration experiment, the calibration matrix can be deduced as shown in
Equation (34).

G”:[(T’l' Gl Gl GT{}:P’CT(foCT)il (34)

The calibration matrix can be obtained as shown in Equation (35) when the horizontal pre-stressed

force is 500 N.
1.0025 0.0088 —0.0148 —0.0339

—0.0023 1.0067  0.0105 —0.0402
—0.0025 —0.0044 1.0018 —0.0396
—0.0066 —0.0060 —0.0003 1.0312

G’ = (35)
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4.4. Calibrating Results

The static calibration experiments are respectively carried out along the direction of the branches
when the horizontal pre-stressed force is 500 N. Di (i = 1, 2, 3, 4) denotes the ith branch of the sensor
as shown in Figure 3, and SUM is the total force of all the loading directions. The input and output
force relations are respectively shown in Figures 22-25. As shown in the four figures, the change rule
of the total force is also linear, which confirms the coherence between the theoretical analyses and
experiment results.

-0~ D1 =~ D2 =& D3—0-Ds—e~-SUM

NN w
o U1 ©

Measuring force (KN)
S O R o=
o o W

!
I
6}

=
o

05 10 15 20 25 30
Loading force (KN)

e
o

Figure 22. Calibration on the first branch.
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0.0 0.5 1.0 1.5 2.0 25 3.0
Loading force (KN)

Figure 23. Calibration on the second branch.
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Figure 24. Calibration on the third branch.
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Figure 25. Calibration on the fourth branch.

Loading in one direction, the sensor readings in the other directions will change, and the change
is influenced by the pre-stressed force. Substituting the structure parameter and the the horizontal
pre-stressed force into the error matrix, and the error matrix of the sensor can be obtained as:

0.0052 0.0099 0.0225 0.0265
Err — 0.0053 0.0189 0.0009 0.0301 (36)
~ | 0.0059 0.0046 0.0286 0.0302

0.0073 0.0070 0.0060 0.0026

According to the error matrix, the branch measurement accuracies of the parallel
three-dimensional force sensor are 0.52%, 1.89%, 2.86% and 0.26%, and the accuracy of coupling
is less than 3.02%. The experimental results show that the parallel three-dimensional force sensor
possesses good decoupling performance and high measuring accuracy.

In the near future, further optimization of the sensor will be paid attention to, and the proposed
sensor can be mostly used in the large range spacial three dimensional force measurement. For example,
the proposed sensor can be applied in landing gear load test as shown in Figure 26, and the sensor can
measure the vertical force, the lateral force and the course force of the airplane landing gear.
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Figure 26. The landing gear load test experiment.

5. Conclusions

In this paper, to effectively reduce the influence of dimension coupling on a parallel
multi-dimensional force sensor, a parallel three-dimensional force sensor is proposed and developed
using the mechanical decoupling principle, and the mathematical model is established and analyzed.
Aimed at the performance characteristics of the sensor, the definition of coupling degree is put
forward and calculated, and the calculation results show that the designed sensor possesses good
decoupling performance. FEM analysis was carried out, then the load calibration and data acquisition
experiment system were built, and calibration experiments were done. The experiment results show
that the measurement accuracy is less than 2.86%, and the accuracy of coupling is less than 3.02%.
The experimental results agree with the theoretical calculation values, and the whole experiment
achieves the desired effect and verifies each performance feature of the sensor.
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