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Abstract: Bacteria concentration and detection is time-consuming in regular microbiology procedures
aimed to facilitate the detection and analysis of these cells at very low concentrations. Traditional
methods are effective but often require several days to complete. This scenario results in low
bioanalytical and diagnostic methodologies with associated increased costs and complexity. In recent
years, the exploitation of the intrinsic electrical properties of cells has emerged as an appealing
alternative approach for concentrating and detecting bacteria. The combination of dielectrophoresis
(DEP) and impedance analysis (IA) in microfluidic on-chip platforms could be key to develop rapid,
accurate, portable, simple-to-use and cost-effective microfluidic devices with a promising impact in
medicine, public health, agricultural, food control and environmental areas. The present document
reviews recent DEP and IA combined approaches and the latest relevant improvements focusing on
bacteria concentration and detection, including selectivity, sensitivity, detection time, and conductivity
variation enhancements. Furthermore, this review analyses future trends and challenges which need
to be addressed in order to successfully commercialize these platforms resulting in an adequate social
return of public-funded investments.
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1. Introduction

Bacteria-related diseases caused by ingestion of contaminated food or water result in considerable
morbidity and mortality representing a significant public health threat in developed and developing
countries [1,2]. In the United States 3000 fatalities caused by food-borne infections were reported in
2012, and in 2013, 11,000 infections were recorded for the same cause [3]. Each year, there are more
than 2.5 million deaths due to water-associated diseases worldwide [2,4]. In this context, diagnostic
devices are extremely important for implementing an effective response to the prevention of bacteria
related diseases [5,6], water treatment [7], and public health [8], preventing millions of deaths caused
by the lack of these facilities [9].

Numerous methods exist to mitigate these issues based on the separation and concentration
of bacteria (see Appendix A) [10]. Traditionally, this is performed in the laboratory and using
commercial equipment [11]. Conventional pathogen detection methods include metabolic tests based
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on media, the use of enzyme-linked immunosorbents or pathogen-specific antibodies coated into
magnetic beads, and oligonucleotide arrays for amplifying hybridized DNA fragments of bacteria.
Some of the approaches to concentrate bacteria take advantage of the different properties of the
cells. For example, physical properties are being exploited by techniques such as centrifugation or
filtration [6]. Mass spectrometry (MS) and capillary electrophoresis (CE) take advantage of chemical or
electrodynamic properties [12,13]. Other methods for separate and concentrate bacteria are based on
immunological approaches such as immune separation [6] and the enzyme-linked immunosorbent
assay (ELISA) [14]. Microscopy advances such as fluorescence or Raman microprobe spectroscopy
(RMS) [15,16] are also used. Others are nucleic acid probe-based such as the ligase chain reaction
(LCR) [17], microarrays and Polymerase Chain Reaction (PCR) [18,19].

These diagnostic tools are elaborate and expensive because of the equipment and time (typically
demanding several days) [20]. In particular, current methods require more than 5-7 days for identification
of pathogenic bacteria [14]. In addition, the majority of them are not portable, prevention of
contamination is difficult due to the small volumes, becoming a challenge to concentrate the bacteria
in a microlitre or even nanolitre sample, and, in most cases, alternative methods require operation with
areagent, so the posterior bacteria detection process is rather complicated [21]. As an aggravating factor,
the heterogeneity of individual cells makes these methods unsuitable for all kinds of bacteria [11,20].

The criteria recommended by the World Health Organization says that infectious disease
diagnostic platforms must be specific, sensitive, simple-to-use, accurate, rapid, low-cost and
robust [22,23]. There have been important attempts to accomplish these requirements, especially
for laboratories interested in creating novel microfabricated structures for other specific uses [24].
However, even though there have been many published studies during these last two decades [5],
few outcomes of microfabrication technologies have been successfully introduced onto the market
(such as lab-on-a-chip (LOC) devices) [22,25,26]. Examples include the Immunocard STAT (Meridian
Diagnostics, Cincinnati, OH, USA), which is a portable system and fast test for detecting Escherichia coli
(E. coli) O157+H?7 in faeces [18,27]. This kit has a high sensitivity (87%) and specificity (97%), however
it cannot detect non-O157 STEC serogroups [28].

Some other examples include the Mycobacterium Tuberculosis Direct Test (MTD) from Gen-Probe
(San Diego, CA, USA), the Probe Tec ET (BD, Franklin Lakes, NJ, USA) and the COBAS AMPLICOR
(Roche, Pleasanton, CA, USA) devices for mycobacterial detection [18].

Despite the portability and highly-sensitivity advantages of these artefacts, not all of them meet
time and cost needs. This generates an urgent necessity for fast, accurate, cost effective and more
accessible technologies [25]. Due to this scenario, new methods of fast monitoring and characterization
have been explored based on electrical properties of cells or particles [29,30]. In this context,
electric field-based separation approaches are attracting interest because of their fastness, potential
for automation, simplicity, portability, miniaturization, massive parallelization and labour-saving
characteristics [10,11,31]. Based on their distinct electrical properties, dielectrophoresis (DEP) is
a versatile technique used for the rapid detection and separation of particles. Even this technique was
initially discovered by Pohl and colleagues in the 1950s [32], it has developed an exponential booming
in the last fifteen years [33,34].

An effective strategy to enhance sensitivity in a reduced detection period is by combining DEP
with impedance analysis (IA) [35]. DEP and IA coupling has emerged in recent years. This can be
evidenced in the growing number of published articles and citations reflected in Web of Science (WOS).
This emergent trend is also evident for bacteria detection and concentration (Figure 1) since several
research groups reported the simultaneous measure of the concentrated bacteria in a single piece of
equipment [14,30,35-38].
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Figure 1. Publishing trends with “dielectrophoresis” and “impedance” keywords in Web of Science
from 1990 to 2015. Blue line indicates the same keywords plus “bacteria”.

The advantages of the combined method have prompted researchers to improve some technical
aspects to overcome some of the challenges that are inherent from bacteria. In this context, numerous
aspects related to manipulate, select and quantify bacteria have been improved over the years. Some of
these aspects include both device and protocol optimization (Figure 2). We found that in publications
where DEP and IA are combined for bacteria analysis, improvements related to selectivity, sensitivity,
and detection times are the most studied challenges. Due to this scenario, and taking into account
future challenges to take into consideration, authors find it important to analyse approaches from
recent studies that share the same needs and goals when DEP and IA are being combined.
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Figure 2. Addressed technical challenges that combined DEP and IA for bacteria analysis found in
WOS publications from 1990 to 2015.

This document reviews the state-of-the-art approaches that take advantage of these two technologies
focusing on bacteria concentration and detection, independently of their original growth medium.
The aim is to analyse the challenges overcome and the principal opportunities that are facing LOC
devices in a technology convergent scenario focusing on the emerging trend of microfabrication for
envisaged LOC devices. It is necessary to review this combined approach, which can have a great
impact in numerous fields such as medicine, biology, agriculture and environment [18,39,40].
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The following Section 2 introduces the concept and applications of these two methods and reviews
recent approaches using DEP and IA for bacteria concentration and detection. Next, in Section 3,
some of the relevant operational improvements of recent studies are analysed. Section 4 describes
future considerations and challenges to be taken into account for the commercialization of emerging
DEP and IA micro-devices. Section 5 analyses the innovation and technology transfer aspects that
these devices require for reducing the gap between research and society. Finally, in Section 6 we present
the conclusions of this review.

2. Theoretical Background

2.1. Dielectrophoresis (DEP)

DEP is one of the currently used strategies in microfluidics for a versatile and label-free detection
and separation of particles based on their distinct electrical properties [41]. It is described as the
physical phenomenon whereby neutral particles move when a non-uniform electric field is applied
according to the particles and medium physical properties [39,42,43]. The permittivity, conductivity,
and dielectric properties determine the translational motion of the particle [44]. DEP uses a nontoxic
electrical stimulation to induce a frequency-dependent dipole in cells [45]. The dielectrophoretic force
is defined by Equation (1) [36,46,47]:

F = 27te,, R3 Re [C7M (w) VE? (x, w)} 1)

where F concerns to the dipole approximation to the DEP force, ¢, refers to the permittivity of the
medium surrounding the sphere, w is the radian frequency of the applied field, R corresponds to the
radius of the particle, r is the spatial coordinate, and E refers to the complex applied electric field.
CM is the Clausius-Mossotti (CM) factor that is given by:
& &

CM = ,
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where g; and ¢, are the complex permittivities of the medium and the particle, respectively, and are
each given by € = € + 0/ (jw), where ¢ is the conductivity of the medium or particle, ¢ is the permittivity
of the medium or particle, , and j is v/ —1. The sign (+/—) of the CM factor determines a positive DEP
(pDEP) if the DEP force propels particles toward the electric-field maxima, or a negative DEP (nDEP)
if the force propels particles toward the electric-field minima.

The wide range of capabilities enabled through the DEP technique include concentrating [21],
sorting [48], rotating [49] and moving particles or biological material [50,51]. Studies have demonstrated that
DEP is a promising technique for bacterial concentration with potential biosensor applications [40,52,53]
since it allows the advanced multifunctional and rapid detection of micro-organisms at lower flow rates
and bacteria losses [54,55]. These capabilities are not only exclusive for bacteria but also for DNA [56],
proteins higher than 105 Da [42], cancer cells [57], foetal nucleated red blood cells, thrombloplasts [58],
red/white blood cells [59], yeasts [60-62], viruses [63-65] and particles such as carbon nanotubes [66]
and submicron particles [67].

Although DEP offers several advantages over other methods it has some limitations. Bacteria,
as well as other single cell organisms, respond to their surroundings and media. Particle effects can
be sensitive to the parameters of the medium such as pH, conductivity, temperature and electrolyte
valency. Additionally, the particle surface can absorb reagents present in the medium [68]. Therefore,
these external factors must be controlled and consistent harvest concentrations and methods should
be used from cultured cells in order to have consistent DEP results [69]. Moreover, it is important
to previously modify the surface charge before changes in DEP behaviour. Another difficulty is the
integration of DEP into miniaturized systems. This challenge is primarily due to complex electronic
control architectures, and the incompatibility with heterogeneous sample matrices [70].
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2.2. Impedance (IA)

IA is an electrochemical technique that provides information on bio-affinity-event induced
changes in resistance and capacitance at the surface of a substrate or electrode [71]. Impedance
analysis (IA) is related to electrical properties of particles. The impedance from each partial circuit and
the total impedance were defined by [72] in the following equations:

1 1 1
= 3
7~ 1z T 1) ©®

1Z1| = | R? +¥ 4)

' I (n f Car)?
1
|Zy| = 27 fCp ®)

where f represents the excitation frequency, R, the solution resistance, Cy; the double layer capacitance,
Z; the impedance of the Ry, and Cy , C4, the solution dielectric capacitance and Z; is the impedance
of Cy,. Z is the total impedance of the parallel Z; and Z, as shown in Equations (4) and (5) [72].

Impedance frequency dependence, has been demonstrated to be efficient for characterizing cells
and their comportment both in nano-, micro- and macro-fluidic systems [73,74], therefore, this label-free
technique is applied in many biological fields for biochemical concentration measurements [71,75,76].
Even though impedance detection is simple to design, and has high sensitivity and detection limits [77]
the accurate measurement of biophysical properties of cells in microfluidic devices is limited by the
high impedance of probe electrodes, the electric double layer and stray capacitance [78].

Impedance measurements are largely used in LOC devices to detect antibodies, virus, receptors,
enzymes, DNA or many cell types (macrophages, endothelial cells, blood cells, fibroblasts,
etc.) [35,74,78-85]. Single cell IA also resulted in an effective method for cell counting, discrimination,
behaviour analysis and growth of bacteria [35,86,87]. Impedance microbiology measures the variations
in electrical impedance of a culture medium or a reactive solution that results from the bacterial
growth [55,88]. Previous studies have reported the use of this technique to detect and quantify
different species of bacteria [14,89,90] such as Salmonella [91-93], E. coli [94,95], Listeria innocua and
Listeria monocytogenes [96], Staphylococcus aureus [97], Enterococcus faeccalis [98], coliforms, Listeria spp.,
and L. monocytogenes [55]. Detection times ranging from 24 hours [99] to seconds [100] have
been reported.

2.3. The Combined Approach for Bacteria Concentration and Detection

Currently, some biosensors are capable of combining DEP and IA on a microfluidic chip.
These chips are devices usually comprised of a LOC and a customized electronic unit (Figure 3a).
The DEP force pre-concentrates the sample in this electronic unit (Figure 3b) and IA monitors this
concentrated sample (Figure 3c). DEP modifies the low-frequency capacitance (<100 kHz) due to
particle concentration on the electrodes, as the cells are trapped by the DEP force at the interdigitated
array microelectrodes (IDAM), its permittivity substitute an equivalent volume of the medium.
In consequence, the impedance among the electrodes will change with the variations in the complex
permittivity of the medium that divides them and this can be plotted in a graph [44]. At high frequency
ranges, the electrical signal applied to measure the impedance flows through the inner cell, reporting
information about the inner cell properties, and it is better used for single-cell cytometry.

The combination of DEP and IA has demonstrated to be effective for the detection of
DNA [101,102], RNA [100], yeasts [59,103], virus [104], cell trapping, detection and lysis [105,106],
cancerous cells [107-110], and for bacteria [35,36,38,76,90,111-118]. Some of the devices used in bacteria
concentration and detection are summarized in Table 1.
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Table 1. Combined dielectrophoresis and dmpedance systems for bacteria concentration and detection.

6 0f 23

Principle Buffer Conductivity Bio-Affinity Applied Flow.I%ate Bacteria Sample Rate Concentration Slgnfal Reference
Element Frequency Conditions Variation
Manitol polyclonal > . E. coli Vi
DEP +1A solution 0.2mS/m antibodies 1 MHz 9 x10° pL/min strain K12 NA 107 cells/mL NA [38]
EPA-DEP +IA DI water 0.2mS/m no element 100 kHz 5 x 10? puL/min Stri‘i;"llélz NA 10* to 10> CFU/mL NA [116]
. fluorescent . B. subtilis . 6
iDEP + IA DI water 1-2 uS/em beads (2 ym) 100 Hz 40 pL/min spores 10 uL/min 10° spores /Ml NA [46]
Manitol 1 kHz (nDEP) E. coli
nDEPpDEP + IA f " N 0.1mS/m no element and 100 kHz 0.27 m/s strain K-12 NA NA NA [35]
solution (pDEP) (NBRC3301)
pDEP + IA ffjg‘;l:f;’;‘r low gﬁiﬁ‘;?:sl 100 Hz—1 MHz 2-4 uL/min O%;?Il_’w 3 x 10° CFU/mL 3 x 102 CFU/mL NA [14]
. 05 x 1073 to ) E. coli ; .
DEP +IA Milli-Q water 25 % 103 S/m no element 500 Hz to 5 kHz 10 pL/min 5K strains NA 2 x 107 cells/mL 3.1% [36]
Phosphate . - 5
. 10 kHz-63 MHz . S. epidermidis 3.5 x 10° CFU/mL and
DEP + IA + (AC-EO) buffered saline 1.8 mS/m no element (AC-EO) 5 uL/min ATCC 35984 NA 3.8 x 106 CFU/mL NA [37]
(PBS at pH 7.4)
Drinking 0.0086 S/m . E. coli o o
nDEP + [A water (aprox) no element 1kHz-10 MHz 25 puL/min ATTC 8739 (150-1500 CFU/mL) 300 CFU/mL 1.13% £ 0.37% [30]

DEP: dielectrophoresis; iDEP: insolator-based dielectrophoresis; pDEP: positive dielectrophoresis; nDEP: negative dielectrophoresis; IA: impedance analysis; EPA: electropermeabilization;
AC-EO: AC electroosmosis; NA: No data available.
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Figure 3. Scheme of the overall process. (a) The electronic module; (b) Bacteria concentration by
dielectrophoresis; (c) Concentration measure by impedance analysis (adapted from [36]).

2.4. Recent Approaches

One of the first approaches combining DEP and IA, was developed by [119]. This group of
researchers studied the quantitative estimation of E. coli in an aqueous medium by applying positive
DEP (pDEP), which occurs when the cell is attracted to the electrical field maximum. The time required
for detection was 10 min. In the same year, viable and non-viable E. coli were selectively detected
by [38] by studying the effects of viability and sterilization on DEP and impedance measurements.
Bacteria trapping was tested by using different frequencies (100 kHz and 1 MHz). By applying 1 MHz
of electrical field, they selectively collected viable and heat-sterilized non-viable bacteria by pDEP and
sensed them by DEP and IA. They argued that heat treatment is the responsible of the change of the
dielectric properties of cells, showing a decrease in the cytoplasmic conductivity.

Two years later, higher sensitivity for bacteria detection was achieved by incorporating
electropermeabilization (EP). EP is the implementation of a strong electric field in order to increase
membrane permeability. If the membrane is permeable, intracellular ions are liberated and
disseminated into the external medium acting as ionic current carriers. This increases the conductance
and avoids electrolytic contamination produced by metal ions. They finally obtained a concentration
of bacteria of 10*—10%2 CFU/mL after 3 h of experimentation [116].

Another study focused on the enrichment of bacteria was developed by [46]. This was the first
study reporting the implementation of insulator-based dielectroforesis (iDEP) and IA for B. subtilis
concentration and detection. iDEP is a technique adapted from DEP which provides an insulating
layer on the top of the electrodes to protect them, and where the substrate material is the only material
which is in contact with the sample [37,120,121]. The possibility of linking iDEP with impedance
detection resulted in trustworthy enrichment of particles. With this approach they also demonstrated
that impedance detection is dependent on the signal frequency and particle concentration (Figure 4a).
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Figure 4. Schematic of bacteria concentration and detection approaches using DEP and Al
(a) This device selectively concentrates pathogens on the base of their size by DEP and high DC
voltage. The concentrated sample is released for the measure of AC impedance by a pressure-driven
flow [46]; (b) Design of a DEP and IA device with two IDAMs in a SU-8 microchannel [14]; (c) A device
containing a IDAM (for capacitive sensing) and a macroelectrode (for electrokinetics). A cross.section
of the AA’ plane [37]; (d) Design of the sensor consisting of a pDEP region and a sensing region that
employs dielectrophoretic impedance measurements [30].

Alternatively, [35] doubled the sensitivity of E. coli detection by implementing negative DEP
(nDEP) before applying pDEP and impedance for detection. In nDEP, particles are attracted to an electrical
field minimum. They used a device composed of two microelectrodes. The first microelectrode was used
for bacteria concentration using nDEP energized with 1 kHz frequency. The second was used for bacteria
detection by pDEP energized with 100 kHz. The different voltage values were determined through
a theoretical prediction in order to know at what frequencies nDEP or pDEP occurs. Their approach is
useful to reduce the longer detection periods often required for low bacterial concentration samples
where it is necessary to trap a large number of cells.

In 2013, Dastider and collaborators developed an impedance biosensor for detecting of E. coli O157:H7
that also improved measurement sensitivity by using pDEP and two sets of gold IDAM (Figure 4b).
Initially, positive electrophoresis was used to focus and concentrate the bacteria in a microchannel in
the first set of IDAMs and the second set was used for impedance measurements. Their lowest limit of
detection (LoD) was 3 x 10> CFU/mL within a preparation time of more than 1 h [14].

More recently, another approach aimed at increasing the sensitivity of the device is reported by [37].
They developed a device that combines a circular shaped IDAM, with a surrounding macroelectrode.
These allowed a higher sensitivity surface sensing and volume in order to trap bacterial cells by
incorporating AC-electro-osmosis (AC-EO) (Figure 4c). Their device demonstrated that the LoD can be
reduced from 3.8 x 10° CFU/mL to 3.5 x 10° CFU/mL by applying this electrohydrodynamic effect in
a whole-cell Staphylococci epidermidis after 20 min of incubation. This LoD reduction is due to the fluid
flow generated by AC-EO that causes indirect bacterial motion, improving the sensitivity of detection.
Again, these types of devices are necessary for low bacterial concentrations. However, based on their
detection time, they are not adequate at emergent sanitary conditions.

In this context, different solutions and approaches have been reported, such as [30,31]. [30]
developed a device capable of detecting bacteria in 1 min. This was performed in drinking water
for E. coli (Figure 4d). They used pDEP since drinking water’s low conductivity makes it difficult to
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analyse by nDEP. In this study two electrode widths (100 and 30 pm) were configured for a bacteria
flow rate of 1500 uL/h. Also, they determined that the optimal detection limit is 300 CFU/mL across
different populations examined (150, 300, 750, and 1500 CFU/mL).

A more rapid and continuous flow microfluidic chip was developed by [36] capable of injecting,
trapping, cleaning and continuously measuring impedance every 30 s. The device was capable of
concentrating 2 x 107 cells/mL of E. coli 5K strains at several continuous flows (5 to 30 pL/min) with
the utilization of pole structures, and 44.2% less bacteria losses.

All of these contributions showed that DEP and IA for bacteria concentration and detection
is being enhanced in various ways, namely, LoD, sensitivity and detection times. This last point
for example, has been reduced from hours to minutes. Additionally, they are not exclusive to one
species of bacteria. In this regard, there has been much progress concerning selectivity, conductivity
variations and flow conditions, involving advances in such different technologies as microfluidic
design, microstructure engineering, electronic instrumentation, and computational data processing.
These improvements are addressed in the following section.

3. Operational Improvements of Combined DEP and IA Targeting Bacteria

3.1. Selectivity and Sensitivity

Methods for detecting bacterial have the imperative necessity to be selective and sensitive due to
the few number of bacteria present in a sample [77]. Even more, when pathogenic bacteria is often
present with non-pathogenic ones [122]. However, the accurate measurement of biophysical properties
of cells in microfluidic devices is limited by the high impedance of probe electrodes, the electric double
layer and stray capacitance [78].

Some of the approaches to improve detection selectivity when combining DEP and IA take
advantage of the agglutination phenomenon caused by the antigen-antibody bonding. This bonding
allows immobilization of the bacteria on the device [30,123] according to their viability or species
type [122]. The immobilized antibodies and the target bacteria banded to the electrode change
the electrochemical impedance, detecting the target bacteria and measuring the impedance of the
antibody [35]. After voltage is applied and turned off, the sample solution is washed away, excluding the
target bacteria. Bacterial cells can conduct when they are present in between two conductors in an IDAM
array because it cell wall, cytoplasm and few other cell components act as conductors [124]. Then the
bacteria could be identified and quantified by quantifying the electrode’s residual impedance [35].

According to [38], there are two methods of using antigen-antibody reaction for bacteria selection.
The first one consists in adding the antibody to the cell suspension for the agglutination of the
antibody-specific bacteria after DEP enrichment. The second method consists in immobilizing the
antibodies onto the microelectrode before DEP, in order to bound the immobilized antibody into the
antibody-specific bacteria.

Undesired non-specific bacteria binding still occurs even using this antibody-modified chip [122]
and the bio-recognition component can be a disadvantage [77]. Moreover, polyclonal antibodies used
as the bio-affinity element to characterise the bacteria require consumption of reagents, increasing
costs and detection times [24].

Improved methods for bacteria selectivity are not exclusive of vegetative forms but also to
sporulated forms. Characterization of this structure is not easy because dormant cells are not
actively generating considerable levels of metabolites. However, bacterial spores have great interest,
for example, for Bacillus anthracis. [125] have demonstrated that spores selectivity could be achieved
by combining DEP and IA. By testing over a mixture of B. mycoides and B. subtillis spores, they showed
that the electrical response of a spore in a gap between two planar microelectrodes can discriminate
between different species and subspecies of Baccillus. In presence of an electrical potential, the surface
charges, responsible of the hydrophilicity of spores, serve as charge carriers. The character of this
surface charge explains the species-specific variations in hydrophobicity and impedance too.
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Spore selectivity can be improved by using fluorescent polystyrene beads in order to eliminate
particles of interest. [46] demonstrated this improvement in B. subtillis spores. They injected fluorescent
polystyrene beads with 2 pm of diameter into a microchannel (10 uL/min of injection rate). The resulting
scenario showed that only one particle type can be selectively concentrated and diverted down the side
channel, allowing the approximation of the concentration of the particles by impedance measurements.
Contaminants are putting apart or reduced facilitating the detection only of the particles of interest.
The use of fluorescent polystyrene beads can be extent to nano-sized particle detection [126], however,
prior labelling requirements can be a drawback of this technique [127].

3.2. Fouling

On the other hand, label-free approaches have demonstrated to improve other operational
challenges such as fouling (the adhesion of cells to the electrode edge), electrode delamination or
bubble formation. [30] used iDEP, also known as contactless DEP (cDEP), with IA using a passivation
layer on the electrode to permit efficient bacteria focusing under high flow conditions. In this study,
they also demonstrated that the geometry and disposition of electrodes play an important role in cDEP
since a decreased electrode width increased the sensitivity of the sensor. They evaluated several types
of electrodes tested under same experimental conditions for E. coli and showed that a gap among the
electrode edge and the channel wall, as well as the passivation layer used were crucial for effective
DEP focusing. This phenomenon could be seen at the Figure 5, which depicts the motion of E. coli
in the focusing electrode. Due to the round shape of the electrode edge, the bacteria were liberated
at the end of the electrode. Figure 5b shows the control experiments with no passivation layer and
Figure 5c using passivation layer without a gap between the channel wall and the electrode edge.
In both, the high pDEP force caused the incapability of E. coli to flow along the electrode edge.

Focused E. coli Channel

Trapped E. coli

WEON NN

E. coli flow E. coli flow
'\ E. coli flow Teappe d coli flow

E. coli
N - Passivation layer ' D) - No gap b/w
- Gap b/w channel “~ - No passivation channel wall
wall and electrode layer and electrode

Figure 5. Characterization of pDEP-based E. coli focusing. (a) The electrode is covered by a passivation
layer. Cells flow through the electrode edge and are liberated at the end of the electrode; (b) Cells
are not flowing. They persist trapped on the electrode, which is not covered by a passivation layer;
(c) Cells flow along the electrode but not liberated from it (reproduced with permission from [30]).

This technique has some drawbacks. First, the use of the passivation layer requires special
attention in order to achieve successful focusing and sensing. For instance, a high electric field could
reduce the layer lifetime [30]. Second, joule heating and an increasing of temperature is caused by the
highly conductive biological fluid and the high electric field intensity [120]. Additionally, manipulating
particles and cells is difficult with iDEP and cDEP due to the collecting patterns, confirming this is still
challenging [128].

Rather than using patterned surface electrodes, an electrically conductive liquid metal used
as the electrode can be controlled. This improvement refers to the concept of liquid electrodes
initially developed by [129,130]. Electrodes constitute a very important element in these systems
but their implementation has some disadvantages. First, they require complicated fabrication
procedures [120,131]. Second, they are susceptible to suffer from fouling, bubbles, and low
throughput [120]. Liquid electrodes are recessed electrodes positioned perpendicularly to the main
channel. Electrodes are then polarized by inverted signals in order to generate the lateral DEP force
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necessary for manipulation of particles in the main channel [132]. The result is to a homogeneous
electrical field over the total channel [130]. Even these electrodes improve the spatial resolution and
increases the resolution range with a simplified fabrication process and reduced costs, it has been
shown that decreases the sensitivity compared to top-bottom electrodes [133].

3.3. Buffer Conductivity Variations

On the other hand, another very critical problem in impedance measurement involving bacterial
species is the buffer conductivity. Buffer is the liquid where cells are suspended, independently of its
origin and/or composition, and this is considered as our media. There is a governing effect of sample
conductivity variations on the impedance quantifications when this media is not controlled [77].
The cellular solution conductivity changes through time, and produces a masking effect on the
impedance measurements. Therefore the quantified impedance is totally dependent to sample buffer
conductivity, and not to the concentration of bacteria [77,134].
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Figure 6. (a) Impedance magnitude; (b) Estimated versus experimental impedance; (c¢) Simulation
of Comsol multiphysics of a single diluted cell on buffer of high conductivity steady buffer;
(d) low-conductivity steady buffer. Flow path and influence to impedance quantification of both
buffer conductivity and trapped bacteria (reproduced with permission from [36]).

Only one previous study has confronted conductivity variations. [36] developed a device in which
the variation of the conductivity was corrected through a specially designed automated protocol,
composed of media conductivity stabilisation and DEP voltage disconnection during impedance
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measuring. On this study, the conductivity of the media linearly increased from 8.2 x 107 S/m
to 2.5 x 1073 S/m. The stabilisation was achieved by controlling buffer conductivity using Milli-Q
water. Impedance changes are highly associated to variations in the conductivity of the media due to
bacteria when cleaning processes does not control the cells’ media. Therefore, for ensuring a reliable
measurement, it was implemented an automatized and periodic cleaning process.

The measured bio-impedance (| Z ), in Figure 6a, demonstrates that the impedance decreases
and the concentration of trapped cells increases, without taking the frequency into account. Figure 6b
shows the change of impedance (A1 Z ) during the trapping course.

This new optimized protocol enables an electrode multiplexing system that disables DEP voltage
when the IA is enabled for concentration monitoring. Changes in sample conductivity dominate
the bio-impedance measurements when left uncontrolled. With this approach, the surface current
density of bacteria (Figure 6¢,d) and the impedance is totally related to the conductivity from the
sample buffer instead of the bacteria concentration (Figure 6c). Current density is principally placed at
the cell membrane by controlling buffer conductivity (Figure 6d), and changes in impedance related
to the quantity of trapped bacteria. Furthermore, including a bacteria-cleaning step in the protocol
demonstrated an effective bio-impedance control of the resulted sample concentration in this study [36].
If applied, this last reviewed improvement could change the data of previous results. Moreover, all the
improvements are a “must” to be considered in the development of new emerging devices.

4. Future Perspectives of DEP and IA On-Chip Platforms

Despite the numerous advances in DEP and IA systems for bacteria concentration and detection
evidenced throughout this review, commercialization remains a daunting task to be addressed in
the coming years. Currently, it is still challenging to find electronic devices combining electronics
and microfluidics for a portable DEP system [41]. Regular commercial devices do not demonstrate
a superior alternative required to replace current technologies [26]. Moreover, most of the microfluidic
devices are limited to proof-of-concept and publications [19,135] due to the absence of consumer
development and validation of market needs [135].

Because of the size of bacteria (most of them are 0.2 um of diameter), miniaturization and
automation of the complete system constitutes a challenge to be addressed [63,136-138]. Research for
miniaturization is also driven by the need to reduce costs by, among other things, increasing throughput
and automation [24]. Due to the current trend to develop fully-integrated lab-on-a-chip devices instead
of bench-top devices [26], efforts need to be made to successfully integrate laboratory functions on
single miniaturized chips as new emerging diagnostic devices [25]. Therefore the final product should
be self-contained, not requiring prior sample treatment, preparation, or amplification [135,139].

Since microfluidic systems must contain some generic methods [19], many innovations are
elaborated and difficult to fabricate. Therefore, the device requires labour intensive manufacturing
techniques. The seamless integration of the different components will determine the portability,
usability, simplicity of manufacturing and costs [135,139].

LOCs are considered the result of the convergence of chemical and biological analysis
techniques and the engineering of computer chips [140,141]. This convergent scenario in areas such as
micro-electronics, micro-sensors and bio-compatible materials makes possible the availability of cheaper
and faster bio-devices [142]. It is in this context that there is a growing interest in fostering the
cross-fertilization of Key Enabling Technologies (KETs), since these create value beyond the sum
of the individual technologies for developing innovative and competitive products, goods and
services [143-145].

Most of the microfluidic on-chip platforms for bacteria detection included in this work are the
result of the convergence of KETs, namely, industrial biotechnology and micro- and nano-electronics.
In particular, Nanotechnology is seen as one important KET for future diagnostics. An example
is evidenced in the impact that nanospheres or nanoparticles can have in these devices [100,146].
In addition, it is expected that in the future, the convergence of other tangential KETs, such as
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Advanced Materials and Advanced Manufacturing Systems, could allow not only more effective and
efficient analysis but also solve manufacturing and cost constraints. Therefore the key parameter to
consider is industrialization, since production approaches always remain behind a new technology.

Even though there are pending challenges-opportunities, it is expected that point-of-care (POC)
devices can generate $34.6 billion by 2021 on the global diagnostic market [147,148]. On the other hand,
the market for microfluidics has been estimated to be $1.6 billion with a forecast rise to $3.6-5.7 billon
by 2018 [135]. It is expected that the rise of POC testing could improve the accessibility to medical
services and improve and facilitate healthcare programs [149]. Undoubtedly, the application of major
interest for microelectromechanical devices is balanced towards medicine [150]. It is expected that
in the coming years, there could be widespread use of LOC and POCs in food safety and medical
diagnostics [151,152].

5. Technology Transfer and Social Return Challenges in Microelectronics

New emerging technological innovations such as those discussed in this review for bacteria
concentration and detection should be assessed not only from a research perspective, but also taking
into account a market-orientation view in order to foster innovation and successfully reach the final
process of technology transfer, which is commercialization. Academics tend to focus their research
on the proof-of-concept phase for a single-chip experiment (chip-to-chip or batch-to-batch) [135,139],
therefore there is a conflict of interest between academia and market which results in reproducibility
failures and LOC variabilities [139].

Universities

New
Innovative
Products and
Services

Scientific Parks

Figure 7. Scheme of a multidisciplinary ecosystem of stakeholders collaborating in the development of
emergent devices (inspired from [144]).

This concern has been addressed by the European Commission in recent years through
their Framework Programme Horizon 2020, the financial initiative for research and innovation.
Unlike previous funding initiatives, this is advocated to solve major societal challenges by overcoming
the gap between research and market through the industrialization of previously mentioned KETs.

Social availability and accessibility of these technologies is a little discussed topic. Bacteria diagnostic
tests need to scope large populations; they will have more impact when everyone can use them [153,154].
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In this sense, microfluidics should satisfy the needs of non-expert users so that it can become a routine
operation for untrained personnel [19,139]. Moreover, market uncertainty is reduced if the product does
not require new skill sets from consumers [155]. In particular, modelling and designing DEP and 1A
devices become critical for implementing systems for near-patient clinical analysis [41]. These devices
would constitute an alternative of existing technologies, with minimal technological investment and
allowing a higher level of market acceptance and uptake [139].

These technological innovations require the coordinated collaboration of researchers, through
innovation communities, in order to overcome research-market barriers [156]. Since healthcare is
a global process, knowledge-share activities require the continuous interaction of multiple actors [157].
Therefore, transferring knowledge from basic research to commercial organizations should be
a responsibility from the universities, research centres, governmental bodies and the industrial
sector [158], facilitating therefore shortest times-to-market [159].

In recent innovation models literature, there has emerged the “Five-Helix Model” concept [160,161]
aimed at satisfying the needs of the healthcare system including life sciences such as medicine,
biotechnology and the nanotechnologies. This concept emphasises the need of a coordinated cooperation
among universities, hospitals, industry, administration and science parks (Figure 7). The schematic
framework of this process resumes a multidisciplinary team, in the context of an innovative community
ecosystem in which the resulting scenario can be the social return of public-funded investments.

6. Concluding Comments

In recent years, emerging microfluidic platforms combining dielectrophoretic and impedance
analysis for bacteria concentration and detection have been developed for replacing conventional
diagnosis techniques. These approaches respond to the need for more rapid, portable, simple and
labour-saving bacteria-detection devices. Different research groups have demonstrated their feasibility
by addressing different aspects. LoD and detection time, as well as sensitivity of devices have been
modified during recent years. Some improved approaches include technical adaptations such as EP
and AC-EO. In addjition, several groups have developed enhancements in the combined system aimed
at improving selectivity, detection times, conductivity variations and particle manipulation.

It has been shown that selectivity could be improved by the use of antigen-antibody or fluorescent
polystyrene beads, this last approach used in sporulated stages of bacteria. However, the costly
and time-consuming difficulties of these labelled-based methods have resulted in other selectivity
improvements such as the cDEP or iDEP, aimed at avoiding fouling by the use of a passivation layer.
The introduction of Impedance Analysis strengthen the characteristics of a DEP-based devices, being
a rapid, sensitive and accurate technological tool for bacteria concentration measurement, as well as
a straightforward technological application of feedback between the device and a post-processing
tool. This feedback allows the system to perform critical functions aiming for a rapid, accurate and
selective device, such as the real-time interaction with the user, the automation of the process, and the
implementation of intelligent algorithms to enhance its performance. As an example, conductivity
variation correction, as it has been demonstrated by only one group of researchers, can be executed
through a specially designed automated protocol. These approaches are the basis of new microfluidic
platforms with other future challenges still to be addressed, for example, their miniaturization,
automatization and commercialization by considering economies of scale, customer acceptance, market
adoption, and what is also important: accessibility and social benefit. All of these perspectives cannot
be accomplished without a collaborative ecosystem of multidisciplinary stakeholders able to transfer
technological innovations by narrowing the gap between basic research and society.
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Appendix
Table Al. Conventional bacteria concentration and detection methods.
Method Type Principle Advantage Limitation Ref.
. . Long separation times, poor specificity, sensitivity
. . . Separation method based in sublimities Techn}une't'hat brings spegc!, of the analyte to the surrounding analytical
Capillary Electrophoresis (CE) Electro-dynamic ot . P quantifiability, reproducibility . . . [13]
capillaries and micro/nano fluidic changes ? environment, requirements for sample purity,
and automation . . .
and microbe aggregation. high salt buffers
Identification of cells by breaking them into Fast technique with high sensitivity, Lack of sample purity, chemical differences in cell
Mass Spectrometry (MS) Chemical Method ionized molecular fragments and measuring quantitative and qualitative analysis, species, variations between stages of [12]
mass/charge ratio of the products differentiates isotopes cell development
Separation technique based on the centrifugal
Centrifugation Physical Method force that separate Partlcles in SO]UFIOH Rapid, inexpensive, 51mple{ non-specific; Bacteria adhere to and sediment with 6]
according to their size, shape, density, amenable to large sample sizes matrix components
and viscosity
Limited to low particulate foods that will not clog
Mechanic force used to separate solids from the filter and by the volume of sample that can be
. . . fluids, liquids or gases by interposing Rapid, inexpensive, simple, non-specific; passed through the filter (i.e., sample filterability).
Filtration Physical Method a medium through which only the fluid amenable to large sample sizes Sample pre-treatment with enzymes and detergents [el
can pass can increase sample filterability but may adversely
affect cell viability
Separation technique based the use of rapid, simple, standards
Immunoseparation Biological Method immunoglobulins (antibodies) reactive with pid, ple, high-non-specific binding [6]
. methods available
the particles to be separated
Sp ectroscoplc' fmgerprlr}t fltOm the InlCrf)blE'il The signal in direct aqueous solution detection is
. sample. Provides quantitative and qualitative . e . P
Raman microprobe spectroscopy Mi : . - High sensitivity and unique often weak because of the small polarizability of
icroscopy information that can be used to characterize, S . X . [15,16]
(RMS) S A N A N molecular specificity most biological molecules compared with dye
discriminate and identify micro-organisms at
. probe molecules
the single-cell level
Use of antibodies to which enzymes have been Useful for detection of infectious and
ELISA Immunologic cova'lently bound. The antigen is rapped S0 toxigenic ba.cterla. (ex. C. perfrmgen§ a Is time-consuming, not very sensitive, and involves [162]
that it may be the target micro-organism or toxin in the intestinal contents of animals). laborious multiple steps
target toxin Able to differentiate the e and b toxins
. . Isan mn v1t'ro techmque', W hich allows the . Ra}pldly detgcts aw ide range of A major disadvantage is that the amount of DNA
. . Nucleic acid amplification of a specific DNA region thatlies ~ micro-organisms in foods, the . .
Polymerase Chain Reaction (PCR) . . e . . sequence known for a given organism [18]
probe-based method between two regions of a known environment and in biological material. .
2 may be limited
DNA sequence Cheaper and robust technique
Possesses unique advantages for sensitive - . .
L An in vitro nucleic acid amplification and specific miRNA detection. LCR Limited by gel electhhorems separation ot
. . . Nucleic acid . - i o e . heterogeneous analysis process, which brought
Ligase chain reaction (LCR) technique that exponentially amplifies targeted ~ exhibits better specificity than primer . - [17]
probe-based method . el about multiplex steps, high cost, and long
DNA sequences extension-based amplification, such as lysis ti
PCR, RCA, LAMP analysis time
Analysis of large numbers of genes at a high Micro-arravs allow thousands of specific Micro-array instruments are expensive, of limited
resolution by the hybridization of labelled DNA or RIXI A sequences to be detepcte d availability and require much skill in extracting
Microarrays Nucleic acid method DNA to a substrate containing thousands of q useful information from the plethora of available [18]

surface-immobilised DNA'’s or
oligonucleotides

simultaneously on a small glass or silica
slide only 1-2 cm? in size

data. However, this is an exciting area that appears
headed for a very bright future
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