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Abstract: This paper presents a dark current suppression technique for a light detector in a
variable-temperature system. The light detector architecture comprises a photodiode for sensing the
ambient light, a dark current diode for conducting dark current suppression, and a current subtractor
that is embedded in the current amplifier with enhanced dark current cancellation. The measured
dark current of the proposed light detector is lower than that of the epichlorohydrin photoresistor or
cadmium sulphide photoresistor. This is advantageous in variable-temperature systems, especially
for those with many infrared light-emitting diodes. Experimental results indicate that the maximum
dark current of the proposed current amplifier is approximately 135 nA at 125 ◦C, a near zero dark
current is achieved at temperatures lower than 50 ◦C, and dark current and temperature exhibit
an exponential relation at temperatures higher than 50 ◦C. The dark current of the proposed light
detector is lower than 9.23 nA and the linearity is approximately 1.15 µA/lux at an external resistance
RSS = 10 kΩ and environmental temperatures from 25 ◦C to 85 ◦C.

Keywords: light detector; dark diode (DD); photodiode (PD); current amplifier (CA); dark current
cancellation; variable-temperature system

1. Introduction

With the ever-increasing demand for eco-design, environmental legislation for electronics is
focused on two major requirements. One is the internationalization of the restriction of hazardous
substances and the waste of electrical and electronic equipment; the other is a new directive
especially for energy using products and the registration, evaluation, authorization, and restriction of
chemicals [1]. Lifetime extension is an important eco-design strategy for mitigating the environmental
burden of developing new devices. Organic semiconductors increase the lifetime of large-area,
low-cost image sensors by several thousand hours, and they monolithically integrate with photonic
microsystems [2]. Miniaturized power supply units tend to have a smaller environmental impact at
the production stage than traditional electronics do [1]; integrated circuitry can miniaturize power
supplies. Colace reported on the first silicon-integrated, 2-D, light-sensitive array fabricated with
CMOS technology and readout electronics. The proposed chip includes a light-sensitive array,
analog-to-digital converters, dark current cancellation circuitry, and facilities for testing and calibration.
It operates as a near-infrared camera [3].

Dark current cancellation is another important eco-design element for photosensors. In reference [4],
a hybrid CMOS microfluidic microsystem was proposed for electrochemiluminescence-based biochemical
sensing. In the CMOS imager, a two-transistor reset path technique is employed to attenuate the
subthreshold leakage current and to reduce the dark current. The imager achieves a low photodiode
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(PD) dark current of 3.6 nA/cm2, but the reset voltage is as high as 2.3 V. However, sub-dark current
measurement is completed by subtracting the dark signal frame from the captured frame, and the
dark signal frame is stored off chip. Furthermore, a prototype integrated phototransistor-based CMOS
active pixel sensor circuit with scintillating material was presented for X-ray imaging. Cancellation
of the leakage current using a dummy phototransistor technique was tested and proved efficient [5].
In reference [6], an ultralow dark signal was presented for an embedded active-pixel CMOS image
sensor. To achieve in-pixel dark current cancellation, a combined photogate and PD photon-sensing
device was developed [6]. Specifically, the dark current was cancelled using a sensing device that was
fabricated with a large area. In the current study, dark current cancellation was performed using a
current amplifier (CA). A CA is a good photo-detection circuit, which is easily fabricated with CMOS
technology. By cancelling the dark current, we can not only enhance the sensitivity of the CA but also
reduce the power consumption. The proposed light detector provides a high performance and small
chip area.

A high dynamic range light-to-frequency converter (LFC) chip is proposed with dark current
suppression up to 125 ◦C. By regulating the cathode voltage of the PD and using a replica amplifier,
the dark current is reduced. Measurements show that the output frequency is more insensitive
to the ambient temperature and process variation. Supply voltage variation is also minimized by
implementing a constant delay module [7]. Figure 1 shows a demonstration board design which is
implemented with the light-dependent resistor (LDR), the light-emitting diode (LED), and an LED driver
printed circuit board (PCB). The typical LED driver with the LDR operates with a large dark current.

In this study, a CA with enhanced dark current cancellation was fabricated using 0.18 µm 1P2M
CMOS technology with a chip area of 762 µm × 452 µm, including pads. Simulated and measured
results were obtained with white LED light and characterized using a lux meter at a supply voltage
VCC of 3.3 V, an external resistance RSS of 10 kΩ, and an environmental temperature varying from
−40 ◦C to 125 ◦C. The rest of this paper is organized as follows. Section 2 elucidates the proposed
circuit topology of the light detector. Section 3 presents the simulated and measured results, and in
Section 4, conclusions are drawn.
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Figure 1. Demonstration board design implemented with the LDR, LED, and LED driver PCB.

2. Proposed Circuit Topology of the Light Detector

In this section, we propose a CA with dark current cancellation that is composed of a dark diode
(DD) and a photodiode (PD). The DD senses the dark current in dark environment, while the PD
senses the photodiode current in electric lighting. Figure 2 presents the schematic cross-section of an
n+/p-substrate PD and its equivalent circuit. The PD is built with a p-n junction, which is sensitive
to the environmental temperature. Figure 3 shows the simulated PD dark current as a function of
environmental temperature (◦C) and bias voltage (V) in dark conditions. According to the simulated
results, the PD dark current (nA) is highly sensitive to the environmental temperature, but insensitive
to the bias voltage.
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Figure 2. n+/p-substrate PD: (a) cross-section; and (b) the equivalent circuit. 
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where ILight, also called the photodiode current, includes the illumination current ILux and the dark 

current IDark, which flow from VDD to the ground in a dark environment. The photocurrent ILight and 

dark current IDark are amplified A times. If the CA operates in a variable-temperature system without 

dark current cancellation, the dark current causes malfunction. This is the reverse of the characteristic 

of p-i-n PDs. For a reverse biased diode, the reverse bias current IR can be defined by the following 

equation with reverse bias voltage V [8]: 
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Figure 2. n+/p-substrate PD: (a) cross-section; and (b) the equivalent circuit.
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Figure 3. Simulated PD dark currents versus the environmental temperature (◦C) and bias voltage (V)
in dark conditions.

Furthermore, the sensing area of the PD is another important factor. The simulated dark current
is approximately proportional to the area ratio, which is defined as the ratio of the PD area to
300 µm × 300 µm. Figure 4 shows the simulated dark current as a function of the environmental
temperature (◦C) in dark conditions. The smaller the area ratio is, the smaller the dark current is.
All simulated dark current levels are settled to 0.3 pA due to imperfect diode model, which is provided
from foundry. Figure 5 shows the CA of the PD, which operates without dark current cancellation.
The resistance of the PD RPD is equal to the voltage drop VPD in the PD divided by its current
ILight. The light current of the PD ILight is amplified with a current mirror, whose magnification is
approximately equal to (W2/W1) × (W4/W3) × (W6/W5) with equal length (L) for all MOSFETs. Thus,
the output current IO can be expressed with the total current gain A:

IO =
(W2/L2)

(W1/L1)
× (W4/L4)

(W3/L3)
× (W6/L6)

(W5/L5)
× ILight

= A × ILight

(1)

where ILight, also called the photodiode current, includes the illumination current ILux and the dark
current IDark, which flow from VDD to the ground in a dark environment. The photocurrent ILight and
dark current IDark are amplified A times. If the CA operates in a variable-temperature system without
dark current cancellation, the dark current causes malfunction. This is the reverse of the characteristic
of p-i-n PDs. For a reverse biased diode, the reverse bias current IR can be defined by the following
equation with reverse bias voltage V [8]:
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IR = IS × exp(qV/nkT − 1) (2)

where IS is the saturation current, q is the electronic charge, kT is the Boltzman energy, and n is a
parameter of which the value depends on contributions from both diffusion and surface-generation
currents. For a 4H-SiC avalanche photodiode (APD), the dark current is close to the measurement
limit at low bias levels. At high bias, the dark current is relatively insensitive to temperature,
a characteristic that signifies tunneling. If we assume that the tunneling dark current undergoes
avalanche multiplication similar to that of the photocurrent at high bias, the total dark current is
expressed by reference [9]:

Idark = Gain(V, T)× Itunneling (3)

where Gain(V, T) is an additional correction factor obtained through photocurrent measurement.
The tunneling current Itunneling is proportional to A × V3/2 with the device area A and the effective bias
voltage V [9]. The objective of this study was to obtain a zero dark current in order to achieve higher
photo resistance sensitivity.

Sensors 2017, 17, 15 4 of 12 

 

where IS is the saturation current, q is the electronic charge, kT is the Boltzman energy, and n is a 

parameter of which the value depends on contributions from both diffusion and surface-generation 

currents. For a 4H-SiC avalanche photodiode (APD), the dark current is close to the measurement 

limit at low bias levels. At high bias, the dark current is relatively insensitive to temperature, a 

characteristic that signifies tunneling. If we assume that the tunneling dark current undergoes 

avalanche multiplication similar to that of the photocurrent at high bias, the total dark current is 

expressed by reference [9]: 

 ,
dark tunneling

I Gain V T I   (3) 

where Gain(V, T) is an additional correction factor obtained through photocurrent measurement. The 

tunneling current Itunneling is proportional to A × V3/2 with the device area A and the effective bias 

voltage V [9]. The objective of this study was to obtain a zero dark current in order to achieve higher 

photo resistance sensitivity. 

 

Figure 4. Simulated PD (dark) current versus standardized area ratio in dark conditions. 

 

Figure 5. CA without dark current cancellation. 

Figure 6 shows a CA with dark current cancellation that is composed of a dark diode (DD) and 

a PD [10]. The DD senses the dark current IDark in dark environments, while the PD senses the 

photodiode current ILight in electric lighting. The photodiode size of PD (APD) is two times of that of 

DD (ADD); and the MOSFET size of M2 is two times that of M1, e.g., APD = 2 × ADD and (W/L)M2 = 2 × (W/L)M1. 

Thus, the drain current ID3 of M3 is equal to the illumination current ILux and the output current IO is 

expressed by: 

LuxDarkLuxDarkDarkLightD IIIIIII 3  (4) 

M1 M2

M3

M5 M6

M4

VDD

VSS

ILight

IO

Figure 4. Simulated PD (dark) current versus standardized area ratio in dark conditions.

Sensors 2017, 17, 15 4 of 12 

 

where IS is the saturation current, q is the electronic charge, kT is the Boltzman energy, and n is a 

parameter of which the value depends on contributions from both diffusion and surface-generation 

currents. For a 4H-SiC avalanche photodiode (APD), the dark current is close to the measurement 

limit at low bias levels. At high bias, the dark current is relatively insensitive to temperature, a 

characteristic that signifies tunneling. If we assume that the tunneling dark current undergoes 

avalanche multiplication similar to that of the photocurrent at high bias, the total dark current is 

expressed by reference [9]: 

 ,
dark tunneling

I Gain V T I   (3) 

where Gain(V, T) is an additional correction factor obtained through photocurrent measurement. The 

tunneling current Itunneling is proportional to A × V3/2 with the device area A and the effective bias 

voltage V [9]. The objective of this study was to obtain a zero dark current in order to achieve higher 

photo resistance sensitivity. 

 

Figure 4. Simulated PD (dark) current versus standardized area ratio in dark conditions. 

 

Figure 5. CA without dark current cancellation. 

Figure 6 shows a CA with dark current cancellation that is composed of a dark diode (DD) and 

a PD [10]. The DD senses the dark current IDark in dark environments, while the PD senses the 

photodiode current ILight in electric lighting. The photodiode size of PD (APD) is two times of that of 

DD (ADD); and the MOSFET size of M2 is two times that of M1, e.g., APD = 2 × ADD and (W/L)M2 = 2 × (W/L)M1. 

Thus, the drain current ID3 of M3 is equal to the illumination current ILux and the output current IO is 

expressed by: 

LuxDarkLuxDarkDarkLightD IIIIIII 3  (4) 

M1 M2

M3

M5 M6

M4

VDD

VSS

ILight

IO

Figure 5. CA without dark current cancellation.

Figure 6 shows a CA with dark current cancellation that is composed of a dark diode (DD)
and a PD [10]. The DD senses the dark current IDark in dark environments, while the PD senses
the photodiode current ILight in electric lighting. The photodiode size of PD (APD) is two times of
that of DD (ADD); and the MOSFET size of M2 is two times that of M1, e.g., APD = 2 × ADD and
(W/L)M2 = 2 × (W/L)M1. Thus, the drain current ID3 of M3 is equal to the illumination current ILux
and the output current IO is expressed by:
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ID3 = ILight − IDark = IDark + ILux − IDark = ILux (4)

IO =
(W/L)6
(W/L)5

× ILux = B × ILux (5)

where (W/L)n is the metric ratio of transistor Mn, and B is the current gain. That is, (W/L)M3 = (W/L)M4

and (W/L)M6 = B × (W/L)M5. The output current IO operates without the dark current IDark. That is,
the dark current is cancelled in Figure 6. However, it is difficult to achieve a zero illumination current
in light application because of the MOSFET mismatch in the CA. When both the DD and PD operate
only with dark current, the two equivalent resistors of the DD and PD are expressed as RDD and
RPD, respectively, and the current symbols, IDark1, IDark2, IDark3, and IDark4, denote the dark currents
of M1, M2, M3, and M4, respectively, in dark conditions. As shown in Figure 7, the output current IO

is achieved:

IO = B × IDark4 (6)

where B is the current gain displayed in Equation (6) and is approximately 10,000 times. The output
current IO includes the amplified dark current of M4. This circuit operates with a large dark current.
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Figure 6. CA with dark current cancellation.
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The dark current in Figure 7 must be reduced. Figure 8 displays a CA with enhanced dark
current cancellation. The MOSFET size of M3 is two times of that of M4, e.g., (W/L)M3 = 2 × (W/L)M4.
As shown in Figure 8, current steering is implemented to draw a different current, ILight − IDark,
which is equal to the illumination current ILux. The output current IO can then be expressed with the
total current gain AE, if (W/L)M1 = (W/L)M2, (W/L)M5 = (W/L)M6, and (W/L)M8 = AE × (W/L)M7.
The output current IO in Figure 8 operates without the dark current.

IO =
(W/L)8
(W/L)7

×
(

ILight − IDark

)
= AE × ILux (7)
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When both the DD and PD operate only with dark currents, the two equivalent resistors of the DD
and PD are expressed as RDD and RPD, and the current symbols, IDark1, IDark2, and IDark3, denote the
dark currents of M1, M2, and M3, respectively. As shown in Figure 9, the output current IO is obtained.

IO = AE × (IDark2 − IDark3) = AE × Io f f (8)

where AE is the current gain, as in Equation (7). The output current IO can be reduced to approximately
zero if the dark current of M2 is approximately equal to that of M3 (IDark2 ≈ IDark3). The proposed
circuit can also suppress the dark current induced by the environmental temperature, as described in
Equation (3).
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Figure 8. CA with enhanced dark current cancellation.
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Figure 9. Dark currents of all MOSFETs in the proposed CA with enhanced dark current cancellation.

3. Simulated and Measured Results

Figure 10 presents the simulated PD dark current versus temperature for CAs. Three types of
CA were compared. First, the proposed CA with enhanced dark current cancellation is indicated by
Figure 10a. Next, a CA without dark current cancellation is denoted by Figure 10b. Finally, a CA with
dark current cancellation is denoted by Figure 10c. According to the simulated results, the proposed
CA with enhanced dark current cancellation operates with the lowest dark current. This means that
the dark current can be cancelled perfectly with the proposed CA. The CA without dark current
cancellation, which is denoted by Figure 10b, operates with a larger dark current. Note that the
dark current level of curve Figure 10c is higher than that of Figure 10b below approximately 50 ◦C,
because the magnification of curve Figure 10c is higher than that of curve Figure 10b.

Figure 11 shows the simulated total current IDD of the proposed CA as a function of illumination
at three external resistances, namely RSS = 1 kΩ, RSS = 10 kΩ, and RSS = 25 kΩ. As shown in Figure 11,
a lower RSS expands the illumination detection range. Two higher resistances, RSS = 10 kΩ and
RSS = 25 kΩ, sharply force the proposed CA into saturation at 280 lux and 140 lux, respectively. Thus,
for wide application, selecting a low RSS is beneficial. Figure 12 shows the setup of the proposed CA
that was used for measurement, with a current meter (A), voltage meter (V), and the design under test
(DUT) chip. The external resistance RSS was used to measure the total current IDD, which was varied
by applying illumination (lux) with white LED light.
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Tables 1 and 2 summarize the simulated and measured dark current IDark and total current IDD

of the proposed CA with enhanced dark current cancellation at the PD area of 300 µm × 300 µm
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and a PD to DD area ratio of 2 times. Table 1 indicates that the measured dark currents are smaller
than those of the simulations. This is because the PD model was always adopted in the simulations,
but is not proven in the silicon process. However, the measured total currents are larger than those
of the simulations. The total light current is approximately linear as a function of illumination in the
simulation and the measurements in Table 2.

Table 1. Simulated and measured dark currents versus temperature for the proposed CA with enhanced
dark current cancellation.

Temperatures (◦C) Simulations Measurements

25 13.6 nA 1.24 nA
85 21.6 nA 9.23 nA

105 77.0 nA 36.4 nA

Table 2. Simulated and measured total currents versus illumination (lux) of the proposed CA with
enhanced dark current cancellation.

Illuminations (lux) Simulations Measurements

10 8.78 µA 18.2 µA
100 99.3 µA 145.0 µA
200 194.0 µA 236.0 µA

Figure 13 shows a 65,536-point FFT simulation with a noise level of 80 dB and an external
resistor RSS of 1 kΩ for the proposed CMOS light detector. This figure presents a simulated frequency
response of 10 Monte Carlo samples with random noises at node VSS, which is shown in Figure 12.
If a photodiode current signal, which is a superposition of a 250 lux (peak-to-peak) noiseless sine
wave with a frequency of 210 Hz and a DC 500 lux, is fed to the proposed CMOS light detector, a plot
of the frequency response of the simulated 10 Monte Carlo samples with random noises is made in
Figure 14 at node VSS for the proposed light detector. The current signal with frequency of 210 Hz
performs without any random noises. Table 3 shows the simulated total harmonic distortions (THDs),
signal-to-noise ratios (SNRs), and signal-to-noise+distortion ratios (SNDRs) of the 10 Monte Carlo
samples with random noises at node VSS of Figure 14 for the proposed light detector. As shown in
Table 3, those simulated results of THD, SNR, and SNDR are roughly consistent. The Monte-Carlo
approach can capture very nonlinear noise behaviors.
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Table 3. Simulated THDs, SNRs, and SNDRs of the 10 Monte Carlo samples with random noises at
node VSS of Figure 14 for the proposed light detector.

Samples 1 2 3 4 5 6 7 8 9 10

THD (dB) −39.84 −39.82 −39.84 −40.41 −39.85 −39.75 −40.27 −40.52 −40.06 −40.75
SNR(dB) 52.60 51.16 50.99 50.15 51.86 52.41 50.39 50.05 51.43 52.64
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Figure 15 shows the measured dark current versus temperature for the proposed CA with
enhanced dark current cancellation. The maximum dark current is approximately 135 nA at 125 ◦C.
This measurement proves that the proposed CA performs with low dark current as a function of the
environmental temperature. According to the measurements in Figure 15, the device performs with
zero dark current at temperatures lower than 50 ◦C and exhibits an exponential relation at temperatures
higher than 50 ◦C. Notice that two measured dark currents are consistent in Figure 15, although chip
#1 and chip #2 perform with different maximum dark currents at 125 ◦C.
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Table 4 summarizes the measured dark currents versus temperature of the proposed CAs, Chap #1
and Chip #2. Table 5 summarizes the measured output currents with respect to the illumination of the
proposed CAs. According to the measured output currents in Table 5, the proposed CA performs with
good linearity and wide illumination range.

Table 4. Measured dark currents versus temperature of the proposed CAs, Chip #1 and Chip #2.

Temperatures (◦C) Chip #1 Chip #2

25 1.39 nA 1.24 nA
85 9.7 nA 9.23 nA

105 35 nA 36.4 nA

Table 5. Measured output currents with respect to illumination with RSS of 1 kΩ for the proposed CAs.

Illumination (lux) Chip #1 Chip #2

10 17.2 µA 18.2 µA
100 142 µA 145 µA
200 237 µA 236 µA
300 426 µA 430 µA
600 776 µA 776 µA
750 943 µA 947 µA
900 975 µA 980 µA

Figure 16 shows the total current as a function of illumination (lux) for the proposed CMOS light
detector with dark current suppression at room temperature. The larger RSS is, the lower the total
current. As shown in Figure 16, two curves with RSS = 10 kΩ and RSS = 25 kΩ indicate saturation at low
illumination, but the curve with RSS = 1 kΩ does not display saturation until 1000 lux. The measured
total currents IDD match those in Figure 11. Figure 17 shows the microphotograph of the proposed
CMOS light detector with dark current suppression in a variable-temperature system. Note that the
PD area APD is twice as large as the DD area ADD. This arrangement not only lowers the dark current
by contracting ADD but also enhances the luminous efficiency by enlarging APD.
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Figure 17. Microphotograph of the proposed CMOS light detector.

4. Conclusions

This study presents a current steering method for drawing the current difference and lowering the
dark current that is applied to the light detector in a variable-temperature system. The maximum dark
current of the proposed CA is approximately 135 nA at 125 ◦C; and that the light detector proposed
in this study performs with a low dark current as a function of the environmental temperature.
Furthermore, the device obtains a zero dark current at temperatures lower than 50 ◦C and exhibits an
exponential relation at temperatures higher than 50 ◦C. In addition, the larger RSS is, the lower the
total current is. Two curves with RSS = 10 kΩ and RSS = 25 kΩ indicate saturation at low illumination,
but the curve with RSS = 1 kΩ does not display saturation until 700 lux. Low external resistance Rss
results in a wide detected range of illumination (lux). The PD area APD is twice as large as the DD area
ADD. This design not only lowers the dark current by contracting ADD but also enhances the luminous
efficiency by enlarging APD. The chip area of the light detector is 762 µm × 452 µm, including pads.
According to the measured results, the proposed CA successfully eliminates dark current from 50 ◦C
to 125 ◦C.
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