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Abstract: Reliable continuous glucose monitoring (CGM) enables a variety of advanced technology
for the treatment of type 1 diabetes. In addition to artificial pancreas algorithms that use CGM to
automate continuous subcutaneous insulin infusion (CSII), CGM can also inform fault detection
algorithms that alert patients to problems in CGM or CSII. Losses in infusion set actuation (LISAs)
can adversely affect clinical outcomes, resulting in hyperglycemia due to impaired insulin delivery.
Prolonged hyperglycemia may lead to diabetic ketoacidosis—a serious metabolic complication in
type 1 diabetes. Therefore, an algorithm for the detection of LISAs based on CGM and CSII signals
was developed to improve patient safety. The LISA detection algorithm is trained retrospectively
on data from 62 infusion set insertions from 20 patients. The algorithm collects glucose and insulin
data, and computes relevant fault metrics over two different sliding windows; an alarm sounds when
these fault metrics are exceeded. With the chosen algorithm parameters, the LISA detection strategy
achieved a sensitivity of 71.8% and issued 0.28 false positives per day on the training data. Validation
on two independent data sets confirmed that similar performance is seen on data that was not used
for training. The developed algorithm is able to effectively alert patients to possible infusion set
failures in open-loop scenarios, with limited evidence of its extension to closed-loop scenarios.

Keywords: type 1 diabetes; fault detection; continuous subcutaneous insulin infusion;
sensor-augmented pump

1. Introduction

Improvement in care for patients living with type 1 diabetes is currently tied to emerging external
medical device technology, including continuous glucose monitors and insulin infusion pumps, seeking
movement towards closed-loop artificial pancreas systems [1,2]. Since a goal of these devices is to
reduce adverse events due to glucose excursions, artificial pancreas systems are often designed with
patient safety rather than tight control as the highest priority. However, artificial pancreas systems
still require patient involvement when changing sensors, choosing infusion set sites, and diagnosing
potential problems. One major potential problem with any artificial pancreas system is the loss of the
infusion set’s ability to actuate the system. Faulty actuation occurs for a number of reasons, including
dislodged catheters, insulin leakage or lipohypertrophy at the infusion set site, and mechanical failure
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of the infusion set. Additional hazards associated with continuous subcutaneous insulin infusion
are presented in [3,4]. Alarming a patient when a faulty infusion set is detected has the potential to
mitigate or prevent the resulting hyperglycemic glucose excursions.

Fault detection strategies can be first classified into hardware- or analytically-redundant
approaches. Hardware redundancy involves incorporating extra hardware for the sole purpose
of detecting a particular fault. In the case of pressure-induced sensor attenuations (PISAs) [5],
two continuous glucose monitors (CGMs) can be worn, and PISAs can be detected by directly
comparing the outputs of these two sensors. Figure 1 illustrates how such an approach can
be developed. Analytically-redundant approaches instead compare the data with a human’s
understanding of that data. The interested reader is referred to [6] for an overview of fault detection
systems based on analytical redundancy. In the context of infusion set faults, analytical redundancy
is usually incorporated by either comparing the CGM signal with a model-derived glucose signal or
analyzing characteristics of input (administered insulin) and output (glucose) signals.
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Figure 1. Illustration of continuous glucose monitor (CGM) sensor fault detection based on hardware
redundancy. In this example, (A) a patient wears two CGM sensors at different locations, and (B)
these signals are compared to generate a residual. A potential fault detection scheme based on
hardware redundancy would analyze the residual for fault signatures; in this case, a simple threshold
at ±20 mg/dL was used.

Despite their promise to improve the safety of both open-loop and closed-loop insulin infusion
strategies, there have only been a few strategies to detect losses in infusion set actuation (LISAs)
proposed in the scientific literature, and even fewer evaluated on patient data. Kovács et al.
transformed the Bergman Minimal Model (BMM) into an input-affine, linear parameter-varying
space, and infusion set faults were detected via an unknown input filter [7]; however, the methodology
was not evaluated on real patient data. A robust control strategy based on the Hovorka Model was
formulated by Vega-Hernandez et al. [8,9], but again, the strategy was not evaluated on real patient
data. The BMM was also used in an Unscented Kalman Filter framework and applied retrospectively
to data from an intravenous glucose tolerance test [10]. A classifier based on multivariate statistical
analysis was trained on simulated data from the UVa/Padova simulator [11,12]. A fault detection
scheme requiring CGM and carbohydrate intake data based on modal interval analysis was applied
to a modified BMM [13], and the fault detection algorithm was tested against the UVa/Padova
simulator. Another approach [14,15] identified black-box state-space models, and these models were
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again evaluated on in silico data from the UVa/Padova simulator. A comparison of three different
strategies was given by Baysal et al. [16], and the algorithms were finally evaluated on patient data.
Cescon et al. [17] also evaluated infusion set failure algorithms on clinical data as opposed to simulated
faults, but tried to anticipate—as opposed to detect—failures. Furthermore, these authors assumed
that the patient will respond to every alarm by changing the infusion set, and they report a sensitivity
and specificity of 55% and 66%, respectively.

Incomplete knowledge about the various causes of LISAs and their probabilities of occurrence
creates much uncertainty around modeling sources of LISAs necessary in simulation studies. One of the
main advantages of this work is the evaluation of the proposed LISA detection algorithm on substantial
amounts of clinical data rather than simulated scenarios. Furthermore, the simplicity of the algorithm
eases integration with artificial pancreas systems, requiring negligible computational resources.

2. Materials and Methods

This section defines the criteria for determining an infusion set failure, and follows with a
discussion of the data and training procedure used in algorithm development. Illustrations are
provided to demonstrate the core concepts of the proposed approach.

2.1. Notation

In the derivations that follow, k represents time in minutes, LW represents the length of the long
window, SW represents the length of the short window, xi|j represents the average of quantity x in a
window from time j to time i, and ∆xk represents the quantity xk − xk−1.

2.2. Algorithm Development

Insufficient insulin administration leads to elevated glucose levels. However, patients differ in
their level of control, and fault detection algorithms should be robust to this inter-patient variability.
Furthermore, patients may improve or degrade their level of control over time, leading to intra-patient
variability. To account for the different levels of control and the possibility that an individual’s control
may change over time, the fault detection algorithm makes use of the average glucose reading over
a long time horizon, CGMk|k−LW . This long-term CGM average provides a patient-specific baseline
level of control. The average glucose in a shorter time horizon, CGMk|k−SW , is used to capture only
the most recent history of a patient’s glucose levels, and describes his/her current level of control.
If CGMk|k−SW is greater than CGMk|k−LW , the area between these two curves AUCk is accumulated in
the glucose fault metric (GFM). However, if CGMk|k−SW falls below CGMk|k−LW , the GFM resets to a
value of 0. Formally, the glucose metric can be described by:

AUCk =
(

CGMk|k−SW −CGMk|k−LW

)
· ∆tk

GFMk =

GFMk−1 + AUCk if
CGMk|k−SW

CGMk|k−LW
> 1

0 otherwise

(1)

To eliminate false positives, an alarm is only issued if the number and slope of glucose readings
in the short time window are above certain thresholds. An illustration of the calculation of the GFM is
presented in Figure 2.

Elevated glucose levels alone are not indicative of an infusion set failure. Indeed, some glucose
excursions are definitely caused by meals. However, many patients do not choose to use the meal
bolus calculators provided on their insulin infusion pumps, and some artificial pancreas algorithms do
not require meal information for successful operation [18,19]. In an effort to make this algorithm as
widely applicable as possible, meal information is not incorporated, but an additional insulin fault
metric (IFM) is proposed. Insulin-on-board is a well-established metric in the diabetes community that
describes a pharmacodynamic bound on the current plasma insulin levels [20]. Insulin-on-board can
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be described by passing the administered insulin through a first-order filter. However, since insulin
must first travel through the subcutaneous compartment before it can affect a patient’s blood glucose
levels, the administered insulin is passed through a second-order filter to obtain the plasma insulin
estimate (PIE). The PIE then estimates the amount of active insulin in the blood, rather than the total
amount of insulin injected in the body. PIE at time k is obtained from the linear system.
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Figure 2. Illustration of the glucose fault metric (GFM) calculation for LW = 24 h and SW = 1 h.
(A) The length of the horizontal lines corresponding to CGMk|k−LW and CGMk|k−SW indicate the
length of time of long window (LW) and short window (SW), respectively; (B) averages are computed
for each new data point. The marked points correspond to the horizontal bars in the top figure;
(C) when CGMk|k−SW < CGMk|k−LW , GFM = 0. However, when CGMk|k−SW > CGMk|k−LW , the
area between these two curves accumulates in GFM.
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A one-minute sample time is used here, since insulin boluses and basal changes can occur at
shorter time scales than the five minutes between most commercial CGM measurements. The variable
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Insulink is calculated by summing the total bolus insulin and the current basal rate in units per
minute. This approach [21] and similar approaches [22] have been used in artificial pancreas systems.
The average PIE in the short window PIEk|k−SW is compared to that in the long window PIEk|k−LW .
Since individual insulin requirements vary, this comparison is normalized by PIEk|k−LW . Then, IFM is
given by:

IFMk =
PIEk|k−SW −PIEk|k−LW

PIEk|k−LW
=

PIEk|k−SW

PIEk|k−LW
− 1 (3)

An example illustrating the function of the IFM is presented in Figure 3.
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Figure 3. Illustration of the insulin fault metric (IFM) calculation for LW = 24 h and SW = 1 h. (A) The
patient’s glucose level is given over time. Time points with retrospective alarms are shaded in red;
(B) the basal and bolus insulin administration is passed to a second-order filter to determine the plasma
insulin estimate (PIE); (C) the IFM calculated from the given insulin profile.

With the GFM and IFM defined, it is now possible to derive criteria for issuing an infusion set
failure alarm that is independent of a patient’s specific level of control and insulin requirements.
Thresholds are placed on the allowable GFM, IFM, and CGM slope in the short window. Exceeding all
three of these thresholds simultaneously signals an alarm.
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2.3. Training and Validation Data

Three different data sets were used to evaluate the performance of the LISA detection algorithm.
The data set T1 used to train the system was taken from a study investigating the effect of infusing
insulin in lipohypertrophic sites [23]. Failure dynamics were independent of the lipohypertrophy
status of the infusion site [23]; therefore, all data were combined for training. Once the parameter
set was determined from the training set, this algorithm was tested on completely independent data
sets from one study V1 investigating Teflon versus steel infusion sets [24] and a different study V2
investigating the use of hyaluronidase for influencing the subcutaneous insulin pharmacokinetics [25].
Since hyaluronidase alters insulin pharmacokinetics, only the control group in V2 (no hyaluronidase
administered) was used for validation. Testing on data independent from the training set ensures that
the developed algorithm generalizes well to new patient data, and is not simply fit to the specific data
used in algorithm generation. Additional details of the different data sets are described in Table 1.

Table 1. Data set characteristics and algorithm performance. FP: false positive.

T1 V1 V2

Reference [23] [24] [25]
Number of patients 20 18 13
Number of infusion sets 62 49 22
Total patient days 352.7 275.7 106.9
Number of infusion set failures 23 15 10
Algorithm Sensitivity 71.8% 73.3% 71.4%
Algorithm FP/day 0.28 0.27 0.28
Algorithm Median Minutes to Detect 262 210 280
Algorithm Glucose at Detection (mg/dL) 289 300 264

2.4. Performance Evaluation

All data sets were obtained from studies that clinically detected infusion set failures; however,
the exact time of these infusion set failures is not known, since these failures were not induced.
Therefore, the start of the failure was selected retrospectively by a team of engineers and clinicians,
and was generally determined to coincide with the most previous trough in the CGM data, as done
previously [16]. Although this uncertainty in the true start time of a fault is a limitation of this approach,
this drawback was deemed favorable to creating faults in a simulation environment that makes
considerable assumptions as to glucose–insulin dynamics and the dynamics of LISAs. The uncertainty
in the true start of an infusion set fault coupled with the more realistic scenario of a patient responding
to an alarm event rather than each serial data point prompted the evaluation of the algorithm based
on alarm events rather than individual data points. Sensitivity was calculated based on whether or
not an alarm sounded between the estimated start time and the clinically detected fault, and false
positives were also evaluated on an event basis. Since true negatives and therefore specificity cannot be
determined in this framework, parameters in the LISA algorithm were chosen to maximize sensitivity
and minimize the number of false positives per day in a pseudo-receiver operating characteristic
curve (pROC) curve. This analysis based on alarm events follows previous performance evaluation
procedures used for the detection of infusion set failures [16].

3. Results and Discussion

A parameter set consisting of the (1) long time window length; (2) short time window length;
(3) GFM threshold; (4) IFM threshold; and (5) glucose slope threshold was determined via the pROC
curve. The parameter set with metrics closest to the upper left corner was chosen for future analysis.
Figure 4 displays the pROC curve, and Table 2 lists the parameter ranges investigated and the chosen
parameter values. The “. . . ” in Table 2 indicate a continuation of the previous step size until the end
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value is reached. All combinations of the parameters listed in Table 2 were investigated and plotted in
Figure 4. With the chosen values, the algorithm was able to achieve a 71.8% sensitivity with 0.28 false
positives per day. It is important to note that the LISA detection algorithm sent alerts at fairly high
glucose levels (Table 1), indicating that the LISA detection algorithm will not completely prevent
hyperglycemia following an infusion set failure. However, since these failures were detected earlier by
the algorithm than by the patients, LISA-induced hyperglycemia will likely be mitigated if the LISA
detection algorithm were implemented in real-time.

Table 2. Parameter ranges tested in algorithm development and the selected values from the
pseudo-receiver-operating characteristic (pROC) analysis.

Parameter Name Units Parameter Range Selection

LW h {6, 12, . . . , 36} 24
SW h {5/60, 0.5, 1, . . . , 6} 1
GFM threshold (mg/dL)·min {50, 75, . . . , 400} 100
IFM threshold unitless {0, 0.05, . . . , 1} 0.4
Glucose Slope threshold (mg/dL)·min {0, 0.05, . . . , 2} 0.3

Once suitable parameters were obtained from analysis of the training set, the LISA detection
algorithm was validated against V1 and V2. Failure characteristics were independent of the infusion
set material; therefore, all infusion sets in V1 were evaluated as a single group. Table 1 summarizes the
performance of the algorithm in these validation studies. Since the validation results closely resembled
the training results, the algorithm generalizes to new data sets well.
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Figure 4. The pROC generated from the performance of different algorithm parameter sets on T1.
The marker for the chosen parameter set is enlarged and highlighted in red.

Additionally, the validation results of V1 obtained the same sensitivity with fewer false positives
per day than the algorithms tested by Baysal et al. [16] that were trained on this data. These previous
algorithms are described briefly as: (1) the multivariate statistical analysis (MSA) decomposes fault
metrics via principal components and compares the magnitude of the first principal component and
the glucose slope in a two hour window to determine a fault; (2) the model-based analysis (MBA)
uses an interactive multiple model approach to simulate one case when insulin is fully ineffective
and one case where insulin is fully effective, and these predictions are combined in a Bayesian
probabilistic environment; and (3) the Threshold approach simply alarms only when the glucose level
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reaches 305 mg/dL, and will not issue a subsequent alarm for at least six hours to reduce false positives.
The comparison results are highlighted in Table 3. One important observation in any of the algorithms
tested on data set V1 is that the sensitivity is 73%. One explanation for this result is the fact that faults
are quickly addressed by the clinical staff in these studies rather than allowing the possibly faulty
conditions to continue for a longer portion of time. Indeed, the missed faults had an average duration
or 4.9 h, whereas the detected faults had an average duration of 10.6 h. Presumably, these missed
detections would be eventually detected, but patients cannot be subjected to these clinically unsafe
conditions for ethical reasons.

Table 3. Data set characteristics and algorithm performance. MBA: model-based analysis; MSA:
multivariate statistical analysis.

Algorithm Name LISA MBA MSA Threshold

Reference — [16] [16] [16]
Sensitivity 73% 73% 73% 73%
FP/day 0.27 0.43 0.36 0.33
Median Minutes to Detect 210 181 240 225
Detection Glucose (mg/dL) 300 277 315 313
Validation Results? 3 7 7 7

One inherent assumption of the LISA detection algorithm is the pharmacokinetic profile of insulin.
When hyaluronidase was administered to decrease the time to peak insulin effect, the LISA detection
algorithm only achieved a sensitivity of 44.4% and issued 0.33 FP/day, differing markedly from
the performance when hyaluronidase was not administered. Therefore, this algorithm should be
retrained with a new insulin pharmacokinetic profile if the injected insulin differs significantly from
the assumed profile.

Although the algorithm issued fewer false positives than previous approaches, patients may
experience alarm fatigue with the current system. However, the largest source of false positives was
attributed to under-bolused meals, since—for all patients that provided meal information—80.2%
of false positives occurred within two hours of a meal (the median time since the previous meal
was 63 min). Furthermore, the median glucose reading when a false alarm occurred was 292 mg/dL
across all data sets. Thus, the false positives may improve clinical outcomes by alerting patients
to scenarios of hyperglycemia requiring more insulin delivery. Furthermore, incorporating meal
information is an important future direction to reduce false positives for patients who wish to provide
this information to a fault detection algorithm.

Although this algorithm was developed for use in the presence of meals, the algorithm performs
similarly when the fault occurs during the night time where only basal insulin is administered.
Across all data sets, there were three cases of infusion set failure at night, and all three of these cases
were correctly detected by the algorithm with similar mean glucose and time to detection as reported
in Table 1. These results are a promising indication that the LISA detection algorithm can correctly
identify faults overnight; however, algorithms specific to detecting faults in the absence of meals may
perform better in this scenario [14].

The algorithm was developed on open-loop data to improve the current level of care; however,
future commercial artificial pancreas devices will need to focus on fault detection and intra-patient
variability more than in current clinical trials. Therefore, the algorithm was then evaluated on ten
infusion sets from a closed-loop study at a diabetes camp [26]. The algorithm successfully detected
the two infusion sets in the study and issued 0.32 false positives per day. These results suggest that
the algorithm may extend into closed-loop scenarios with similar performance. Since this closed-loop
data set is rather limited, ongoing studies are under investigation as to the performance of this LISA
detection algorithm in online, closed-loop scenarios.
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4. Conclusions

Diabetes technology seeks to improve clinical outcomes and reduce patient burden. Although this
increase in a patient’s quality of life is advantageous under everyday scenarios, it can also
lead to a decreased awareness toward adverse events as systems become more automated.
Therefore, future devices will need to incorporate fault detection strategies to a greater degree than
the current state-of-the-art. The algorithm developed herein was able to detect infusion set failures in
open-loop scenarios, and may extend to closed-loop scenarios with similar performance. Detecting
adverse actuator faults will improve the safety and performance of artificial pancreas devices by
alerting patients to check—and possibly replace—their infusion sets.
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Abbreviations

The following abbreviations are used in this manuscript:

CGM continuous glucose monitoring
CSII continuous subcutaneous insulin infusion
LISA loss in infusion set actuation
PISA pressure-induced sensor attenuation
BMM Bergman minimal model
GFM glucose fault metric
PIE plasma insulin estimate
IFM insulin fault metric
FP false positive
pROC pseudo-receiver operating characteristic curve
MSA multivariate statistical analysis
MBA model-based analysis
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