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Abstract: In this paper, a new low-complexity method for two-dimensional (2D) direction-of-arrival
(DOA) estimation is proposed. Based on a cross-correlation matrix formed from the L-shaped
array, the proposed algorithm obtains the automatic pairing elevation and azimuth angles without
eigendecomposition, which can avoid high computational cost. In addition, the cross-correlation
matrix eliminates the effect of noise, which can achieve better DOA performance. Then, the theoretical
error of the algorithm is analyzed and the Cramer–Rao bound (CRB) for the direction of arrival
estimation is derived . Simulation results demonstrate that, at low signal-to-noise ratios (SNRs)
and with a small number of snapshots, in contrast to Tayem’s algorithm and Kikuchi’s algorithm,
the proposed algorithm achieves better DOA performance with lower complexity, while, for Gu’s
algorithm, the proposed algorithm has slightly inferior DOA performance but with significantly
lower complexity.

Keywords: low-complexity; 2D DOA estimation; L-shaped array; automatic pairing; theoretical
analysis; Cramer–Rao bound

1. Introduction

Direction-of-arrival (DOA) estimation, which has found its potential applications in the fields of
sonar, radar, wireless communication, etc, is an important research branch of array signal processing [1].
Two-dimensional (2D) [2,3] direction-of-arrival (DOA) estimation with different structured arrays, such
as two-parallel arrays [4–7], L-shaped arrays [8–15], and uniform rectangular array [16,17] has drawn
a remarkable amount of attention. In [18], it has been proven that the estimation performance of the
L-shaped array prevails over many other structured arrays. Therefore, there has been growing
interest in 2D DOA estimation utilizing the L-shaped arrays. Tayem and Kwon [12] presented
computationally efficient 2D angle estimation with a propagator method using one or two L-shaped
arrays. Unfortunately, this method cannot pair the 2D angles automatically and may cause a matching
failure problem. Consequently, a pair-matching method using a cross-correlation matrix was proposed
to remove the aforementioned problem in [13]. However, the correct estimation of the incoming
“virtual angles” [12] was the fatal problem at a low signal-to-noise ratio (SNRs) and with a small
number of snapshots, which seriously affected the estimation performance of 2D DOAs.

A method [14] based on joint singular value decomposition (JSVD) of two cross-correlation
matrices (CCMs), which mitigated the additive noise effect, was put forward to estimate elevation

Sensors 2017, 17, 190; doi:10.3390/s17010190 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
http://www.mdpi.com/journal/sensors


Sensors 2017, 17, 190 2 of 14

and azimuth parameters without additively pairing procedures. However, the method required
heavy calculation due to SVD operation and “beamforming-like” spectral search operation.
A two-dimensional angle matching algorithm based on the estimated signal covariance matrix is
proposed in [19]. When the signal source is coherent, it can be achieved by minimizing a cost
function constructed by the two covariance matrices. This method is robust to the CCM-ESPRIT
algorithm. Tayem [20] divided two uniform arrays on the L-matrix into two subarrays and computed
the cross-covariance matrices on the two uniform arrays, respectively. Then, adding the two mutual
covariance matrices with their transpose matrix, respectively, we can obtain two new cross-covariance
matrices. By segmenting these two new matrices, we can get the two-dimensional angle estimation
with linear operation. However, the method still requires a two-dimensional angle matching process.
By using the conjugate symmetry of two uniform linear array patterns on the L-array, the effective
aperture of arrays can be extended in [21], and, then, the automatic matching of the two-dimensional
angle parameters based on the PM algorithm and ESPRIT algorithm can be obtained, which avoids
the cumbersome peak searching process. Therefore, the method not only has good direction finding
precision, but also has the advantage of low complexity. A novel cumulants-based approach [22] to
2D DOA estimation for coherent non-Gaussian sources with two parallel ULA (uniform linear arrays)
is presented. It has a lesser amount of calculation, which avoids constructing several FOC (fourth
order cumulants)-based sub-matrices to form two full rank spatially smoothed matrices. When two
close coherent signals are present, it is more effective and efficient than the FOC-FSS (fourth-order
cumulants-based forward spatial smoothing) method in 2D DOA estimation in both white noise and
color Gaussian noise situations. Wu [23] proposed a novel 2D direct-of-arrival and mutual coupling
coefficients estimation algorithm for uniform rectangular arrays. The algorithm can achieve a better
performance than those auxiliary sensor-based ones. It first built a general mutual coupling model that
is based on banded symmetric Toeplitz matrices and then used the rank-reduction method to solve the
2D DOA estimation problem. With the obtained DOA information, the mutual coupling coefficients
can be estimated.

Chen [24] derived a series of 2D DOA estimators with a new data vector that combines the
received array data and its conjugate counterparts for mixed circular and non-circular signals based on
a 2D array structure consisting of two parallel ULAs. However, it can give a more accurate estimation
when the number of sources is within the traditional limit of high resolution methods and still work
effectively when the number of mixed signals is larger than that of the array elements. In addition,
it avoids the complicated 2D spectrum peak search and therefore has a much lower computational
complexity. A multiresolution approach [25] for the DOA estimation of multiple signals based on a
support vector classifier has been presented. This method defines a probability map of the incidence of
an electromagnetic signal and performs a synthetic zoom in the angular sector iteratively. Then, it is
able to estimate the DOAs of a number of sources greater than the maximum allowed by conventional
eigenvalue decomposition methods for a fixed planar array geometry, and provide good results dealing
with both a single signal and multiple signals.

In this paper, based on CCMs, a new pair-matching algorithm is presented to achieve 2D
angles with low complexity. Firstly, the elevation angles are estimated by a linear operation of
the cross-correlation matrix formed from an L-shaped array, and then the corresponding azimuth
angles are achieved by the interrelationship between the elevation and azimuth angle without an
additional paired procedure. Moreover, the Cramer–Rao bound (CRB) for 2D DOAs of an L-shaped
array is studied. The complexity advantage of the proposed algorithm is analyzed, which is significant
as sensors and snapshots increased. Furthermore, the theoretical error of the proposed algorithm
is derived.

The rest of this paper is organized as follows. Section 2 presents the array signal model.
Description of the proposed algorithm is introduced in Section 3. Section 4 analyzes the complexity
of the proposed algorithm. The theoretical error analysis of the proposed algorithm is derived in
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Section 5. The analysis of the CRB of the L-shaped array is given in Section 6. The experimental results
are compared with several existing approaches in Section 7. Finally, Section 8 concludes this paper.

Throughout the paper, the notations (·)∗, (·)T , (·)−1, (·)+, and (·)H represent conjugation,
transpose, inverse, pseudo-inverse, and conjugate transpose, respectively. We use E[·] and arg(·)
to separately indicate the expectation and phase angle operator.

2. Array Signal Model

As illustrated in Figure 1, K far-field narrowband plane wave signals si(t), i = 1, . . . , K, impinge
on the L-shaped array structured by two uniform orthogonal arrays in the x–z plane. Each array
consists of N identical omni-directional sensors separated by λ/2 inter-element spacing d, namely,
d = λ/2, where λ is the wavelength of the incident waves. The ith source has an elevation angle θi
and an azimuth angle ϕi. The observed signal vectors at the sub-arrays along the x-axis and z-axis are
written in matrix form as

X(t) = Ax(ϕ)S(t) + Nx(t), (1)

Z(t) = Az(θ)S(t) + Nz(t), (2)

respectively, where X(t) = [x1(t), x2(t), . . . , xN(t)]T and Z(t) = [z1(t), z2(t), . . . , zN(t)]T are the N × 1
received signal vectors along the x-axis and z-axis, respectively. S(t) = [s1(t), s2(t), . . . , sK(t)]T is the
K × 1 incoming signal vector. Nx(t) = [nx1(t), nx2(t), . . . , nxN(t)]T and Nz(t) = [nz1(t), nz2(t), . . . , nzN(t)]T

are the Gaussian white noise vectors along the x-axis and z-axis, respectively. In addition,
Ax(ϕ) = [a(ϕ1), a(ϕ2), . . . , a(ϕK)] and Az(θ) = [a(θ1), a(θ2), . . . , a(θK)] are denoted as N × K
array manifold matrices of the x-axis and z-axis, respectively. N × 1 array manifold vectors
a(ϕi) = [a1(ϕi), a2(ϕi), . . . , aN(ϕi)]

T and a(θi) = [a1(θi), a2(θi), . . . , aN(θi)]
T have the form of

ak(ϕi) = e−j(2π/λ)dx(k−1) cos ϕi and ak(θi) = e−j(2π/λ)dx(k−1) cos θi along the x-axis and z-axis,
respectively. We suppose that the source signals are non-Gaussian and uncorrelated to each other;
the Gaussian noises with zero-mean and variance σ2 are statistically independent to the signals.

Sk(t) K=1,2,…,K

Figure 1. L-shaped array configuration for 2D DOA estimation.
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3. The Proposed Algorithm

Firstly, a cross-correlation matrix Rxz is obtained as follows:

Rxz = E[X(t)ZH(t)]

= Ax(ϕ)RsAH
z (θ),

(3)

where Rs = E[S(t)SH(t)]. From Equation (3), it can be noted that the additive noise is removed by the
cross-correlation operation. Let Rxz1 and Rxz2 be the first and last N − 1 columns of Rxz, and we have

Rxz1 = Ax(ϕ)RsAH
z1(θ), (4)

Rxz2 = Ax(ϕ)RsAH
z2(θ)

=Ax(ϕ)RsΛH(θ)AH
z1(θ),

(5)

where Az2(θ) = Az1(θ)Λ(θ),Λ = diag(e−j(2π/λ)d cos θ1 , . . . , e−j(2π/λ)d cos θK ), Az1(θ) and Az2(θ) denote
the first and last N − 1 rows of Az(θ), respectively. When the incoming signal covariance matrix Rs is
diagonal matrix, Equation (5) can be rewritten as

Rxz2 = Ax(ϕ)ΛHRsAH
z1(θ). (6)

By combining Equations (4) and (6), a new 2N × (N − 1) matrix R is defined as follows:

R =

[
Rxz1

Rxz2

]
=

[
Ax(ϕ)

Ax(ϕ)ΛH(θ)

]
RsAH

z1(θ)

= Axe(ϕ, θ)RsAH
z1(θ).

(7)

Then, we partition the matrix Axe(ϕ, θ) in Equation (7) as

Axe(ϕ, θ) = [AT
xe1(ϕ, θ),AT

xe2(ϕ, θ)]T , (8)

where Axe1(ϕ, θ) and Axe2(ϕ, θ) are the K × K and (2N − K) × K sub-matrices of Axe(ϕ, θ). Here,
a K× (2N − K) propagator matrix P is defined that satisfies

PHAxe1(ϕ, θ) = Axe2(ϕ, θ). (9)

Similarly, we partition R in Equation (7) into K × (N − 1) sub-matrix R1 and (2N − K) × (N − 1)
sub-matrix R2, which has the following relationship

PHR1 = R2. (10)

In practice, the propagator matrix P is achieved by minimizing the following cost functions

ζcsm(P) =
∥∥∥R2 − PHR1

∥∥∥2

F
, (11)

where ‖·‖2
F signifies Frobenius norm. The estimate of P is as follows:

P̂ = (R̂1R̂H
1 )−1R̂1R̂H

2 . (12)

To maximize usage of array information, we introduce an extended propagator matrix Pe

as follows:
Pe =

[
IH

K P̂
]H

, (13)
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where IK is the K × K identity matrix. In the noiseless case, right-multiplying by Axe1(ϕ, θ) of
Equation (13), we obtain [

IK
P̂H

]
Axe1(ϕ, θ) = Axe(ϕ, θ) =

[
Ax(ϕ)

Ax(ϕ)ΛH(θ)

]
. (14)

Next, we partition Pe into two N × K sub-matrices Pe1 and Pe2, and Equation (14) can be
rewritten as [

Pe1

Pe2

]
Axe1(ϕ, θ) =

[
Ax(ϕ)

Ax(ϕ)ΛH(θ)

]
. (15)

According to Equation (15), we get

Pe1Axe1(ϕ, θ) = Ax(ϕ), (16)

Pe2Axe1(ϕ, θ) = Ax(ϕ)ΛH(θ). (17)

Then, we introduce a new matrix ψ that can be expressed as

ψ = P+
e1Pe2 = Axe1(ϕ, θ)ΛH(θ)A−1

xe1(ϕ, θ). (18)

In Equation (18), by performing eigen-value decomposition (EVD) of ψ, eigenvalues α̂i and
corresponding eigenvectors A′1 that correspond to the diagonal elements of ΛH(θ), and the estimate of
Axe1(ϕ, θ) can be achieved, respectively. Here, we denote

A′1 = Axe1(ϕ, θ)Ω, (19)

where Ω is a permutation matrix with Ω−1 = Ω.
Then, according to the expression of ΛH(θ), the elevation angles are as follows:

θ̂i = arc cos(arg(α̂i)λ/2πd). (20)

In addition, using Pe11 to denote the first (N − 1) rows of Pe1, Pe12 to denote the last (N − 1) rows
of Pe1, Pe21 to denote the first (N − 1) rows of Pe2, and Pe22 to denote the last (N − 1) rows of Pe2,
respectively, we define

B1 =
[

PT
e11 PT

e21

]T
A′1, (21)

B2 =
[

PT
e12 PT

e22

]T
A′1. (22)

With the assumption that A′ = Axe(ϕ, θ)Ω, we know that Pe11A′1, Pe12A′1, Pe21A′1, Pe22A′1 are the
first (N − 1) rows, the second to N-th row, the (N + 1)-th to (2N − 1)-th row, the last (N − 1) rows of
A′, respectively, so

Pe11A′1Φ̂ = Pe12A′1, (23)

Pe21A′1Φ̂ = Pe22A′1, (24)

which contribute to
B1Φ̂ = B2, (25)

where Φ̂ = ΩΦΩ - 1 with Φ = diag(e−j(2π/λ)d cos ϕ1 , . . . , e−j(2π/λ)d cos ϕK ) . In addition, the azimuth
angles lie in the diagonal elements β̂i of B+

1 B2 as follows:

ϕ̂i = arc cos(− arg(β̂i)λ/2πd). (26)
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At this point, 2D elevation and azimuth parameters have been automatically paired by EVD
operation. The summary of the proposed algorithm is shown as follows:

Step 1: Compute Rxz and R from Equations (3) and (7).
Step 2: Estimate P and Pe with Equations (12) and (13).
Step 3: Execute eigen-decomposition of ψ in Equation (18).
Step 4: Construct B1 and B2 from Equations (21) and (22).
Step 5: Attain 2D elevation and azimuth from Equations (20) and (26).

4. Complexity Analysis

As for the complexity, we analyze on the basis of the matrix complex multiplication, which
mainly involves in auto-correlation or cross-correlation matrix construction, EVD or SVD operation,
pseudo-inverse operation, and “beamforming-like” spectral search. Define the search step of
azimuth ϕ ∈ [0, 180◦] with ∆ϕ = 0.01◦. The major computations of the proposed algorithm is
about O[N2L + 2K3 + (7N − 4)K2 + K(N − 1)(2N − K)], while Tayem’s algorithm [12], Kikuchi’s
algorithm [13], and Gu’s algorithm [14] cost approximately O[2(2N − 2)2L + 2(N − 1 − K)3 +

2K3 + 8(N − 1)K2 + 4K(N − 1)(2N − 2 − K) + 2NKL], O[3N2L + 2N3 + 2NKL], O[N2L + 8N3 +

180◦(N2)/∆ϕ)], respectively, where L denotes the number of snapshots. Due to sample snapshots
L >> N > K, therefore, the proposed algorithm has lower complexity than others.

Figure 2a,b shows the complexity comparison between the proposed method and other methods.
From both Figure 2a,b, we find that the proposed method has lower computational load than others as
sensors and snapshots increase.
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Figure 2. (a) Complexity comparison versus sensors; and (b) complexity comparison versus snapshots.

5. Theoretical Performance Analysis

The perturbation is caused by noise in the proposed method, and we analyze on the basis of the
matrix perturbation theory [26,27].

Let X̂ = X + ∆X, Ẑ = Z + ∆Z, and the covariance matrix with perturbation be expressed as

R̂xz = Rxz + ∆Rxz

= E(XZH) + E(X∆ZH) + E(∆XZH) + E(∆X∆ZH),
(27)

where ∆Rxz is the perturbation of the covariance matrix.
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Then, R̂xz1 = Rxz1 + ∆Rxz1, R̂xz2=Rxz2 + ∆Rxz2 where ∆Rxz1, ∆Rxz2 is the first and last N − 1
columns of ∆Rxz . From Equation (7), we can get

R̂ = R + ∆R

=

[
Rxz1

Rxz2

]
+

[
∆Rxz1

∆Rxz2

]
.

(28)

R̂1 = R1 + ∆R1, R̂2 = R2 + ∆R2, where ∆R1, ∆R2 are the first K rows and the last (2N − 1) rows of
∆R, respectively.

From Equation (10), we get (P + ∆P)H(R1 + ∆R1) = R2 + ∆R2, according to PHR1 = R2 and,
neglecting the second-order term ∆PH∆R1, we can get ∆PH

∆PH = (∆R2 − PH∆R1)R+
1 . (29)

The extended propagator matrix P̂e is as follows:

P̂e = Pe + ∆Pe

=
[
IH

K P
]H

+
[
0H

K ∆P
]H (30)

and P̂e1 = Pe1 + ∆Pe1, P̂e2 = Pe2 + ∆Pe2, where ∆Pe1, ∆Pe2 are the first and last N rows of ∆P.
According to Equation (18), ψ̂ = ψ + ∆ψ, ψ = P+

e1Pe2 . Similar to Equation (29), we can get
∆ψ = P+

e1(∆Pe2 − ∆Pe1ψ).
By performing EVD of ψ̂ with perturbation, the influence to eigenvalues αi can be expressed as

α̂i = αi + ∆αi and ∆αi = vi∆ψiui, where vi and ui stand for the left and right orthogonal eigenvectors
associated with αi of ψ, respectively.

Let φi = arg(αi). Then, Equation (20) can be written as θi = arccos(φiλ/2πd), θ̂i = θi + ∆θi.
The perturbations of elevation ∆θi can be obtained according to the theorem of first-order
approximation of multivariate function [28]. Specific content is as follows.

For z close to x, the first-order approximation of f near x can be represented as:

f (z) = f (x) +∇ f (x)T(z− x), (31)

where ∇ f (x) denotes the gradient of f and is a column vector. Thus, we can get

∆θi =
∂θi
∂φi
× ∆φi

= Dθ × ∆φi

= Dθ × Im(∆αi
αi
),

(32)

where Dθ = − λ/2πd√
1−( arg(αi)λ

2πd )
2
.

For Equations (21) and (22), the perturbations are

B̂1 =

[
P̂e11

P̂e21

]
Â1
′ =

[
Pe11

Pe21

]
A1
′ +

[
∆Pe11

∆Pe21

]
A1
′ +

[
Pe11

Pe21

]
∆A1

′ +

[
∆Pe11

∆Pe21

]
∆A1

′ (33)

B̂2 =

[
P̂e12

P̂e22

]
Â1
′ =

[
Pe12

Pe22

]
A1
′ +

[
∆Pe12

∆Pe22

]
A1
′ +

[
Pe12

Pe22

]
∆A1

′ +

[
∆Pe12

∆Pe22

]
∆A1

′ (34)

and Â1
′ = A1

′ + ∆A1
′, where ∆A1

′ is the estimation error of A1
′.

According to Equation (25), Φ̂ = Φ + ∆Φ, and ∆Φ = B+
1 (∆B2 − ∆B1Φ) can be obtained with a

similar method to Equation (29). It can be easily obtained that the perturbations of diagonal elements
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βi are the diagonal elements of ∆Φ. Let ζi = arg(βi), and the perturbations of the azimuth can be
expressed as follows, similar to elevation:

∆ϕi =
∂ϕi
∂ζi
× ∆ζi

= Dϕ × Im(∆βi
βi

),
(35)

where Dϕ =
λ/2πd√

1−( arg(βi)λ
2πd )

2
.

Therefore, the root mean-squared error of two-dimensional direction of arrival estimations are

∆θi = Dθ · Im(
∆αi
αi

), (36)

∆ϕi = Dϕ · Im(
∆βi
βi

). (37)

6. Cramer–Rao Bound (CRB) Analysis

In the case of L-shaped array configuration, the Cramer–Rao bound (CRB) of 2D DOAs is
considered here. Rewrite the received data from L-shaped array as

Y(t) =

[
X(t)
Z(t)

]
=

[
Ax(ϕ)

Az(θ)

]
S(t) +

[
Nx(t)
Nz(t)

]
= AS(t) + N.

(38)

The Fisher information matrix (FIM) F with respect to ϕ = [ϕ1, ϕ2, . . . , ϕK] and θ = [θ1, θ2, . . . , θK]

can be written as

F =

[
F11 F12

F21 F22

]
. (39)

Note that the (i, j)-th element of F11 [29] is given by

F(ϕi, ϕj) = 2 Re{trace[(Ȧϕi
S)Hγ−1(Ȧϕj

S)]}

= 2 Re{trace[(ȦϕeieT
i S)Hγ−1(ȦϕejeT

j S)]}

= 2 Re[(eT
i ȦH

ϕ γ−1Ȧϕej)(eT
j SSHei)]

= 2L Re[(ȦH
ϕ γ−1Ȧϕ)ij(RT

s )ij].

(40)

Similarly, we get the (i, j)-th element of F12, F21 and F22, respectively, as follows:

F(ϕi, θj) = 2 Re{trace[(Ȧϕi
S)Hγ−1(Ȧθj

S)]}

= 2 Re{trace[(ȦϕeieT
i S)Hγ−1(ȦθejeT

j S)]}

= 2 Re[(eT
i ȦH

ϕ γ−1Ȧθej)(eT
j SSHei)]

= 2L Re[(ȦH
ϕ γ−1Ȧθ)ij(RT

s )ij],

(41)

F(θi, ϕj) = 2 Re{trace[(Ȧθi
S)Hγ−1(Ȧϕj

S)]}

= 2 Re{trace[(ȦθeieT
i S)Hγ−1(ȦϕejeT

j S)]}

= 2 Re[(eT
i ȦH

θ γ−1Ȧϕej)(eT
j SSHei)]

= 2L Re[(ȦH
θ γ−1Ȧϕ)ij(RT

s )ij],

(42)
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F(θi, θj) = 2 Re{trace[(Ȧθi
S)Hγ−1(Ȧθj

S)]}

= 2 Re{trace[(ȦθeieT
i S)Hγ−1(ȦθejeT

j S)]}

= 2 Re[(eT
i ȦH

θ γ−1Ȧθej)(eT
j SSHei)]

= 2L Re[(ȦH
θ γ−1Ȧθ)ij(RT

s )ij],

(43)

where Re(·) denotes the real part, ei denotes the i-th column of the identity matrix, trace(·) denotes
the trace of a matrix and Mij denotes the (i, j)-th element of M, Ȧςm , Ȧς(m = i, j, ς = ϕ, θ), Rs and γ

has the form of
Ȧςm =

∂A
∂ςm

, (44)

Ȧς =

[
∂A
∂ς1

, ∂A
∂ς2

,..., ∂A
∂ςK

0N×K

]
, (45)

Rs =
1
L

SSH , (46)

γ =

[
Q 0
0 Q

]
. (47)

In Equation (47), Q has different expressions for different type of noises as below:

Q =

{
IN , for white noise,
P, for unknown noise,

(48)

where IN denotes the N×N identify matrix, and the (p, q)-th element of the unknown noise covariance

matrix P is 0.8|p−q|e
j(p−q)π

2 .
According to Equations (40) to (43), we obtain

F11 = 2L Re[(ȦH
ϕ γ−1Ȧϕ)⊗ (RT

s )], (49)

F12 = 2L Re[(ȦH
ϕ γ−1Ȧθ)⊗ (RT

s )], (50)

F21 = 2L Re[(ȦH
θ γ−1Ȧϕ)⊗ (RT

s )], (51)

F22 = 2L Re[(ȦH
θ γ−1Ȧθ)⊗ (RT

s )], (52)

where ⊗ denotes the Hadamard matrix product.
Then, the CRB matrix C can be expressed as

C = F−1, (53)

and we can obtain the CRB of azimuth and elevation parameters as follows:

CRBϕi = Ci,i , (54)

CRBθi = Ci+K,i+K , (55)

where Ci,i denotes the (i, i)-th element of C.
Therefore, we define the CRB for the parameters of the i-th source as

CRBi =
√

Ci,i + Ci+K,i+K i = 1, 2, ..., K. (56)
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7. Experimental Results

Simulation experiments are conducted in this part. In all experiments, the elements spacing of
L-shaped array is λ/2.

In the first experiment, we examine the scattergram of 2D elevation and azimuth of the proposed
algorithm compared with that of the Kikuchi algorithm in both white noise and unknown noise
situations. The number of isotropic sensors N is 5. Two uncorrelated equal power signals with
elevation θi and azimuth ϕi incoming separately from (55◦, 65◦) and (75◦, 80◦). In addition, their SNRs
are set to 20 dB and the number of snapshots are fixed at 300. Five hundred independent trials are
carried out.

Figures 3 and 4 show that 2D DOA statistic performance of the proposed algorithm is better
than the Kikuchi algorithm, especially in an unknown noise situation. In addition, pairing failures
are emerging in Figures 3b and 4b. The reason is that the noise factor in the proposed algorithm has
been removed, and the difference between “virtual angles” is small in the Kikuchi algorithm when
pair-matching is required.

54 56 58 60 62 64 66
74

75

76

77

78

79

80

81

Elevation(degree)

Az
im

ut
h(

de
gr

ee
)

White noise

54 56 58 60 62 64 66
74

75

76

77

78

79

80

81

Elevation(degree)

Az
im

ut
h(

de
gr

ee
)

White noise

Figure 3. The angle estimation scattergram in a white noise situation. (a) The proposed algorithm; and
(b) the Kikuchi algorithm.
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Figure 4. The angle estimation scattergram in an unknown noise situation. (a) The proposed algorithm;
and (b) the Kikuchi algorithm.
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In the second experiment, the proposed algorithm in theoretical analysis and experimental studies,
Tayem’s algorithm, Kikuchi’s algorithm, Gu’s algorithm and CRB are compared in terms of root mean
square error (RMSE) with respect to SNRs and snapshots in white noise situations. Define RMSE as

RMSEi =
√

1
1000 ∑1000

l=1 [(ϕ̂i,l − ϕi)2 + (θ̂i,l − θi)2] i = 1, 2, ..., K. (57)

The number of isotropic sensors N is 7. The 2D angle parameters of two signals with equal power
are from the incident direction [ϕ1, θ1] = [80◦, 65◦], [ϕ2, θ2] = [55◦, 45◦]. Figures 5 and 6 show the 2D
angle estimation performance with 200 sampling snapshots and 5dB, respectively, in a white noise
situation. In addition, 1000 Monte Carlo trials are conducted in Figures 4 and 5.
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Figure 5. RMSE versus SNRs in a white noise situation. (a) s1(t); and (b) s2(t).
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Figure 6. RMSE versus Snapshots in a white noise situation.(a) s1(t); and (b) s2(t).

From Figures 5 and 6, it can be noted that the theoretical estimation performance of the proposed
algorithm is better than the experimental at low SNR, and, with the increase of SNR and snapshots,
they gradually overlap together. In addition, the proposed algorithm is better than Tayem’s algorithm,
Kikuchi’s algorithm, but slightly inferior to Gu’s algorithm at low SNR and with a small number of
snapshots. As the SNR and snapshots increased, the estimation performance of the proposed algorithm
is close to Gu’s algorithm with lower computational cost, which avoids SVD of the cross-correlation
matrix R and “beamforming-like” spectral search.
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In the third experiment, the proposed algorithm in theoretical analysis and experimental studies,
Tayem’s algorithm, Kikuchi’s algorithm, Gu’s algorithm and CRB are compared in terms of RMSE
with respect to SNRs and snapshots in an unknown noise situation. The parameters configured in
this experiment are the same as the second experiment. Figures 7 and 8 show the 2D DOA statistic
performance in an unknown noise situation.
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Figure 7. RMSE versus SNR in an unknown noise situation. (a) s1(t); and (b) s2(t).

 Snapshots  
            
   (a)      

0 200 400 600 800 1000

 R
M

S
E

(d
eg

re
e 

)

10-2

10-1

100

101

102
Unknow noise

proposed algorithm(theoretical)
proposed algorithm(erperimental)
Tayem-algorithm
Kikuchi-algorithm
Gu-algorithm
CRB

 Snapshots  
            
   (b)      

0 200 400 600 800 1000

 R
M

S
E

(d
eg

re
e 

)

10-2

10-1

100

101

102
Unknow noise
proposed algorithm(theoretical)
proposed algorithm(erperimental)
Tayem-algorithm
Kikuchi-algorithm
Gu-algorithm
CRB

Figure 8. RMSE versus Snapshots in an unknown noise situation.(a) s1(t); and (b) s2(t).

Apparently, as shown in Figures 7 and 8, similar conclusions can be drawn. From Figures 7 and 8,
it can be noted that the trend of theoretical and experimental estimation performance of the proposed
algorithm is the same as Figures 5 and 6. Then, we can get that the DOA estimation performance of
Tayem’s algorithm and Kikuchi’s algorithm deteriorates seriously because Tayem’s algorithm and
Kikuchi’s algorithm are sensitive to the type of noise. In addition, the estimation performance of the
proposed algorithm is roughly the same as Gu’s algorithm at low SNR and with a small number of
snapshots. At high SNR and with a large number of snapshots, the estimation performance of the
proposed algorithm is very close to Gu’s algorithm with lower computational cost.
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8. Conclusions

A novel low-complexity method for 2D angle parameter estimation is proposed in this paper.
The explicit description of the proposed method is derived to achieve the automatic pairing 2D
angle parameters. In addition, the theoretical performance analysis and CRB of 2D DOAs is given.
Simulation results show the effectiveness of the proposed algorithm in contrast to other algorithms,
especially at low SNR and with a small number of snapshots.
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