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Abstract: It is important to monitor compound event by barrier coverage issues in wireless sensor
networks (WSNs). Compound event barrier coverage (CEBC) is a novel coverage problem. Unlike
traditional ones, the data of compound event barrier coverage comes from different types of sensors.
It will be subject to multiple constraints under complex conditions in real-world applications.
The main objective of this paper is to design an efficient algorithm for complex conditions that
can combine the compound event confidence. Moreover, a multiplier method based on an active-set
strategy (ASMP) is proposed to optimize the multiple constraints in compound event barrier coverage.
The algorithm can calculate the coverage ratio efficiently and allocate the sensor resources reasonably
in compound event barrier coverage. The proposed algorithm can simplify complex problems to
reduce the computational load of the network and improve the network efficiency. The simulation
results demonstrate that the proposed algorithm is more effective and efficient than existing methods,
especially in the allocation of sensor resources.

Keywords: compound event barrier coverage; multi-constraints; multiplier method; aggregate
function; wireless sensor networks

1. Introduction

Barrier coverage has been widely used in wireless sensor networks [1]. With the extensive use of
WSN applications, different types of sensors, different accuracy requirements and the different costs
of sensors represent a severe challenge to network construction [2,3]. This problem is also one of the
hot issues in WSNs. In our daily life, barrier coverage has a wide range of applications. For example,
barrier coverage can detect illegal immigrants when they are crossing the border in border monitoring
applications. Other uses are community security monitoring, battlefield intrusion monitoring and the
monitoring of wildlife sanctuaries, etc. [4]. Unlike other coverage issues, barrier coverage pays more
attention to detecting targets that cross the barrier area [5].

It is not possible to determine whether there is a target intrusion by relying solely on a single type
of sensor data which exceeds a set threshold in a complex monitoring environment. For example, in
battlefield monitoring, infrared, sound, vibration and video sensors are all very important monitoring
equipment to monitor whether there is an enemy invasion [6]. We cannot simply assume an enemy
invasion when the data of a vibration sensor exceeds a threshold, because there may be wind
disturbance or large wild animals walking through, so in order to determine the occurrence of an
intrusion, we also need to combine the vibration data with data from infrared and video sensors
for comprehensive analysis and judgment. The invasion events can be finally detected with high
confidence by analyzing the correlations among different types of data. Therefore, the application of
multiple types of sensors in the barrier coverage is essential. In this paper, we focus on the barrier
coverage problem for a sector in WSNs equipped with different kinds of sensors.
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For the current research on barrier coverage, sensors are generally considered to be homogeneous,
but in practical applications, many different types and numbers of sensors are often applied in barrier
coverage in order to save costs and energy. For instance, a large number of sound, infrared and
vibration sensors are applied to assist the video sensors, because sound, infrared and vibration sensors
are low cost and have low power consumption, which makes them suitable for long-term continuous
work compared to video sensors [7,8].

At the same time, due to the special conditions of the barrier coverage in applications, there
will be many constraints to consider, such as time constraints, distance constraints, cost constraints
and minimum confidence constraints, etc. Time constraints refer to the fact that the barrier coverage
in a battlefield application needs to cover the battlefield area within the stipulated time. Distance
constraints mean that in a battlefield or forest fire detection scenario, barrier coverage needs to monitor
a specific length of the region, so that the length of the strong barrier coverage area is not less than the
target area. Cost constraints mean that in the battlefield monitoring, there are limited material and
monetary conditions, to achieve the best coverage effect; the minimum confidence constraints refer to
the need for accurate judgment of enemy invasion in battlefield monitoring and the need for accurate
monitoring of the occurrence of the forest fire. Specifically, the accuracy of the judgment should not be
less than 90%, that is, the minimum confidence constraint is 0.9. There are also some trade-off relations
among those constraints. For example, if we require a minimum confidence constraint of 0.90, in order
to achieve this confidence, many high confidence sensors such as camera sensors must be used, but
the cost of a camera sensor is higher and the sensing radius is also smaller compared to other types
of sensors. Due to cost constraints and distance constraints, we cannot use too many camera sensors.
These are trade-off relations between the constraints.

In practical application, after the sensor resource allocation, the sensors will undergo lots of
problems while working, such as stopping working, information transmission errors and so on.
In order to solve the above problems, according to the monitoring performance and stability of
different sensors, the sensors are assigned different confidences. These confidences reflect the accuracy
and stability of the sensors. Therefore, it is necessary to propose a series of systems to study the
compound event barrier coverage in wireless sensor networks, so that the monitoring performance
of the barrier coverage to achieve the best performance when the network is constrained by all the
above constraints.

The event barrier coverage is a novel coverage problem which is different from the traditional
barrier coverage where deployment costs of sensors, total budget and compound events are not
considered. The traditional barrier coverage is concerned about whether there is a target intrusion.
According to the monitoring requirements, it can also be classified as strong barrier coverage and
weak barrier coverage, while event barrier coverage is concerned with the cost of sensors, and the
total budget for the monitoring process. The goal of the barrier coverage is to monitor target intrusion,
while the purpose of the event barrier coverage is to study how to monitor events more effectively
under multiple constraints.

A compound event is constituted by the sub-events which satisfy specific temporal and spatial
constraints in a barrier area. The occurrence of a compound event indicates that all the corresponding
sub-events occur. However, the occurrence of corresponding sub-events cannot guarantee that
a compound event occurs. The accumulation of the confidence of individual sub-events can be
considered as the sign of the occurrence of a compound event in a barrier area. To the best of our
knowledge, this is the first work to study the event barrier coverage problem.

There have been a series of works on event problems. Gao et al. [9] first proposed the event
detection problem in heterogeneous sensor networks. On the basis of event detection, the problem of
compound event coverage under a single cost constraint has been considered [10]. The above study
only considered the ideal application scenario. However, in many practical applications, people tend
to pay more attention to monitoring the performance after deployment, rather than just the initial
coverage conditions.
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With the development of science and technology, sensors have become cheaper and cheaper, but
it is still practically impossible to deploy a large number of the same sensors over a long border in
practical application, such as battlefield monitoring. For example, China has 22,000 km of border, so if
a video sensor has a sensing range of 100 m, and the cost of each video sensor node is $10, the cost for
full border coverage would be enormous. On the other hand, using low-precision vibration or sound
sensors, etc., the monitoring performance cannot meet the needs. The barrier coverage is often used
to monitor narrow strip areas, so it is important to investigate the use of various types of sensors to
complement each other for monitoring performance.

Traditional combinatorial optimization methods, such as the genetic algorithm, simulated
annealing algorithm and particle swarm algorithm [11–15], cannot be applied to compound event
barrier coverage. First, the different sub-events are not independent of each other. For example,
in river monitoring, if a river is contaminated, the toxins and pH in the river will change. At the
same time, due to the death of microorganisms in the water, the temperature of the river will rise.
The elevated temperature in the water will cause further changes in toxins and pH. Accumulation of
different sub-events will lead to the occurrence of the target event. At the same time, some sensors are
cheap, but important; while other sensors are expensive but not so important in the construction of
barrier coverage which does not meet our usual knowledge. Second, according to different monitoring
requirements, we require the premise of not reducing other performance, so that a performance
can achieve an optimal, rather than a global optimal value. For example, the shortest deployment
time, or the lowest cost, or the best coverage quality, and so on. Finally, due to the limitations of
multiple constraints, the traditional combinatorial optimization methods will require a large amount
of computation which cannot meet the requirements of real-time systems.

Based on the above analysis, compound event barrier coverage can effectively solve the joint
application problem of a variety of sensors in barrier coverage. Our contributions may be summarized
as follows:

• The compound event barrier coverage problem is formulated based on a joint probability model.
At the same time, the joint probabilistic model is used to solve the problem of effectively merging
sub-event confidence in the barrier coverage problem. To the best of our knowledge, this is the
first work to study the compound event barrier coverage optimization problem.

• The problem of compound event barrier coverage with time constraints, distance constraints, cost
constraints and minimum confidence constraints is proposed. In battlefield applications, in order
to take the preemptive actions, it is necessary to complete the barrier coverage within a limited
time, so the barrier coverage problem is time-bound. At the same time, due to the complex terrain
of the battlefield, such as the existence of rivers and minefields, the barrier coverage path will be
limited. In battlefields and other hazardous environment, the logistics supply will be limited, so
the barrier coverage will also be subject to cost constraints. In this paper, a multiplier method
based on active-set strategy is proposed, which effectively solves the problem of compound event
barrier coverage under time constraints, distance constraints, cost constraints and minimum
confidence constraints, etc. To the best of our knowledge, this is the first work to study the
compound event barrier coverage optimization problem under multiple constraints.

• The effectiveness and efficiency of our compound event barrier coverage mechanism are better
than previous algorithms as proved by extensive simulations. The results show that our technique
is more computationally efficient, especially when the network topology is relatively complex.

The rest of the paper is organized as follows: Section 2 briefly introduces related work.
In Section 3, we present the definitions of the compound events model based on joint probability
density. In Section 4, we analyze the problem of compound event barrier coverage optimization, and
propose a multiplier method based on active-set strategy to solve the problem of compound event
barrier coverage optimization under multiple constraints. The simulation experiments and evaluation
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are given in Section 5, and compared with the latest event coverage algorithm. Finally, the conclusions
and prospects for future work are offered in Section 6.

2. Related Works

In order to effectively monitor the target area, it is necessary to deploy sensors according to
the network monitoring task [16–18]. The paper [19] is the first to consider target coverage and
connectivity jointly for WHSNs with multiple sensing units in heterogeneous wireless sensor networks
(HWSNs). Wireless communication between sensors allows the formation of flexible sensor networks,
which can be deployed rapidly over wide or inaccessible areas [20]. In [21], the authors proposed
an adaptation of the gradient descent method to optimize the position and orientation of sensors to
solve the sensor placement problem. The novelty of the proposed method lies in the combination
of gradient descent optimization with a realistic model, which considers both the topography of the
environment and a set of sensors with directional probabilistic sensing. The paper [22] proposes a
depth-adjustment deployment algorithm based on two-dimensional convex hull and spanning tree for
UWSNs. In mobile wireless sensor networks, nodes are allowed to move autonomously for deployment.
The paper [23] presents an experimental evaluation of both reactive deployment approaches: rule-based
and behavior-based ones which tend to provide better coverage and communication balance, especially
for a large number of nodes in areas with obstacles.

Coverage problems are generally divided into three categories: point coverage, area coverage [24]
and barrier coverage [25]. Barrier coverage is primarily used to monitor targets which cross the target
area [26]. Barrier coverage can also be divided into strong barrier coverage, weak barrier coverage,
k-barrier coverage and so on. The research of compound event barrier coverage is a new research field,
which mainly focuses on the reasonable deployment of sensor resources in barrier coverage, in order
to achieve the optimization of coverage quality [10]. The paper [27] constructs a directional barrier
graph to provide strong barrier coverage over a given belt region. In [28], the authors believe that
sometimes detecting intruders is not sufficient, so a strong k-barrier coverage algorithm is proposed to
detect an intruder and distinguish whether the intruder is legal or not.

With the gradual deepening of research in barrier coverage, there is also a growing requirement
for monitoring, so many types of sensors are required to complete the barrier coverage together [29].
Different types of sensors have different properties and coverage performance. The paper [30] proposes
a centralized connected target k-coverage algorithm to solve coverage problems by coordinating
relations between heterogeneous sensors. By using heterogeneous sensors, a novel greedy barrier
construction algorithm is proposed to solve the problem that one barrier is not robust to provide
barrier coverage under both sunny and rainy weather [31]. However, the above discussion simply
uses the characteristics of heterogeneous sensors which does not take into account the confidence
merging problem between the sensors and sensor resource allocation problem based on monitoring
events. With the increase of monitoring requirements, there is an urgent need to study event-based
barrier coverage problems.

An approximate compound event detection problem is investigated for the first time where
compound events are integrated by multi-mode data generated by different types of sensors.
Algorithms are proposed to compute the optimal transmitting scheme with minimum cost as the
constraint when the confidence of the compound event exceeds the threshold [9]. On the basis of event
detection, the problem of compound event coverage under single cost constraint is considered in [10].
The authors believe that the occurrence of a compound event is the cumulative result of multiple
sub-events. A wireless sensor network is designed to detect single (or atomic) events or compound
events and ensure the coverage and connectivity conditions [32]. The above work assumes that
wireless sensor networks work in an ideal environment [33–35]. However, in practical applications,
the barrier coverage works in complex environments, and compound event barrier coverage is subject
to many constraints. So far, no studies have been done on compound event barrier coverage under
multi-constraints conditions.
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For multi-constrained optimization problems, Pareto frontier optimization methods and multiplier
methods are usually employed. In [36], the authors adopted a multi-objective particle swarm
optimization based on Pareto optimality to solve such multi-objective optimization problem and find a
better tradeoff between time delays and energy consumption. In [37], the authors take advantage of the
Pareto-optimal theory and technique to select appropriate cluster heads in wireless sensor networks.
A large number of sensor nodes in the network will produce a huge computational load. Considering
the complexity of the Pareto front algorithm, the multiplier method will be more suitable for sensor
network applications, so in [38], the authors make use of consensus optimization in conjunction
with the alternating direction method of multipliers (ADMM). This proposed algorithm converges
significantly faster as compared to the traditional methods.

Studies on deployment strategy, barrier coverage, heterogeneous sensor networks, event coverage
and multi-constrained optimization problems are discussed, respectively. The paper [10] cannot
propose an effective method for calculating merging confidence of compound event coverage
in wireless sensor networks. At the same time, this paper only studies the problem of event
coverage under a single cost constraint which cannot satisfy the application requirements in complex
environments because in practical applications, the barrier coverage problem will be subject to a variety
of constraints, like time constraints, distance constraints, cost constraints and minimum confidence
constraints and so on, so it can be seen that there are some gaps in the study of compound event
barrier coverage under multiple constraints. Therefore, this paper presents a compound event barrier
coverage model with multiple constraints, which can calculate the merging confidence of compound
event effectively and distribute the sensor network resource reasonably.

3. The Event Model

The existing event coverage model is a compound event model proposed by Gao et al. [9].
An event in barrier coverage is defined as an occurrence of an invasion event or an object during a
period of time through a barrier area. Events are classified into sub-events and compound events.
A sub-event characterizes a state of the physical world or the information of an object reflected by a
single sensing value, e.g., a numerical value exceeding some given threshold, or a meaningful pattern
in an audio stream. A compound event is composed by atomic events satisfying multi-constraint
conditions, such as temporal and spatial constraints, which expresses an observable occurrence of
a complex phenomenon or an object. The sub-events satisfying multi-constraints, such as temporal
constraints or spatial constraints can constitute a compound event. The occurrence of a compound
event indicates that all the corresponding sub-events occur. For example, in a forest fire monitoring
system, temperature sensors, infrared sensors, smoke density sensors and camera sensors are deployed
in the monitored field to monitor the occurrence of the forest fire. When the forest fire occurs in the
monitored area, anomalies can be detected by the four types of sensors and the corresponding data are
generated. By jointly processing all these data, a “forest fire occurrence” event can be determined.

Therefore a sub-event is defined as an intrusion target that triggers a single sensor in the barrier
area. For example, targets that invade the barrier area can raise the environment temperature, which
triggers an infrared sensor. More specifically, an sub event is defined by s(t, c, E), where t is the
time of the event occurrence, which could be a punctual time point or a time-interval, c is the
coordinate where the event occurs, which could be either a point or a track, and E is used to define
the threshold value of the event occurring, represented by a logic expression. For example, sub-event
e(t, c, E) = (15/8/2016, (x, y), Vibration > 5 mm/s), expresses the vibration at location (x, y) on 15 August
2016 is greater than 5 mm/s.

Compared with the traditional area coverage, the barrier coverage does not need to cover the
entire area, but only needs to ensure the effective monitoring of targets which pass through the
sensor network. The barrier coverage pays more attention to the concept of Target of Interest (TOI).
For example, in forest fire monitoring, firefighters are more concerned about the coverage quality of
the fire area to forecast the spread of a fire. In battlefield monitoring, the army is more concerned
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about the coverage quality in the front of the battlefield region, to determine whether there is enemy
invasion. In environmental applications, quality inspectors are more concerned about the coverage
quality in particular waters to determine whether there is a pollution situation.

Therefore, in the event barrier coverage, depending on the monitoring needs of different scenarios,
we focus on monitoring values of specific sensors in specific areas, that is, the probability of the
sub-event. For example, in forest fire monitoring, event barrier coverage focuses on the monitoring
of temperature sensors in the fire area, namely, the occurrence probability of the sub-event that
temperature greater than the threshold. The confidence of the occurrence of the compound event can
be obtained by analyzing the confidence of the sub-events. Therefore, how to calculate the confidence
of the compound event reasonably has become a very important issue.

In barrier coverage, the confidence of a compound event is combined by the confidence of many
sub-events. The compound event is considered to occur when the confidence level of the compound
event reaches the threshold value. The traditional method [10] only defines a combination operator,
and does not propose an exact calculation method. In this paper, the joint probabilities method can be
used to calculate the merged confidence of the sub-events effectively.

The coverage quality of coverage mechanism α = {α1, α3} represents the combination of confidence
of sub events generated by the nodes from category 1 and 3, namely, f (α) = f (α1Θα3) = g(α1Θα3). Also,
the coverage quality of α = {α1, α2, α3, α4} is f (α) = f (α1Θα2Θα3Θα4) = g(α1Θα2Θα3Θα4), where α is
the confidence of the different types of sub-events, that is, the confidence of different sensors; f (α) is
the compound event; f (α) is defined by α1Θα2Θα3Θα4.

Definition 1 (Joint Probability). pi is the confidence of sub-event αi. P is the confidence of the compound
event after merging. The combination operator Θ is defined as calculating the joint probability.

Therefore, the confidence formula can be obtained:

P = 1−
n

∏
i=1

(1− pi) (1)

From the nature of the joint probability method:

P ≥ MIN(pi) (2)

For example, e1(t, c, E) = (t1, (x1, y1), toxin level > 5 g/mL), represents the event of the toxin level at
time t1 in location (x1, y1) being greater than 5 g/mL.

e2(t, c, E) = (t2, (x2, y2), pH > 7.0) represents the event of the pH value at t2 in location (x2, y2)
being greater than 7.0. The compound event which indicates a pollution breakout can be speculated by the sub
events e1 and e2, i.e., E[(e1, 0.3), (e2, 0.6), t1, s1] = (toxin level > 5 g/mL ∩ pH > 7.0 ∩ t1 = t2 ∩ s1 = s2)
= 0.72. This means that the probability of the pollution breaking out is 0.72, if the two sub-events
happen in the same location and at the same time. This is the first work to calculate the confidence of
compound event coverage accurately, while previous works were based on historical data and the
experience of professionals [10]. For simplicity, the arithmetic operator “*” is adopted as the symbol of
the joint probability in the following content.

4. Compound Event Barrier Coverage Optimization Problem

4.1. Main Idea

The objective of the study of compound event barrier coverage optimization is to allocate
each type of sensors to optimize the barrier coverage so as to achieve better performance under
multi-constraint conditions.
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Within a barrier coverage area, a compound event is monitored by n different types of sensors
which constitute each sub-event. The occurrence of a compound event E is the result of the
accumulation of several sub-events e. If there are no time, distance and cost constraints, we can increase
the number of sensors to get better monitoring performance in barrier coverage. However, unlike
traditional coverage scenarios, barrier coverage is subject to many constraints due to its application in
hazardous and complex environments.

4.2. Problem Formulation

The following optimization problems with various multi-constraints are established:

max f (α) = f (α1, α2, . . . , αn)

s.t. f i(α) = gi(α1, α2, . . . , αn) ≤ 0(i = 1, 2, . . . , m)
(3)

where f (α) is the coverage optimization function. α represents different types of sensors.
fi(α) represents multi-constraints. gi(α) is a constraint function. Solving the variable vector
α = [α1, α2, . . . , αn]

T(x ∈ Rn), which satisfied m constraints so that the objective function f (α) is
maximized, that is, the coverage ratio is the maximum.

For Equation (3), the relaxation factor yi is introduced into the equality constrained
optimization problem:

max f 0(α),
s.t. f i(α) + yi = 0 (i = 1, 2, . . . , m)

(4)

Construct an augmented objective function:

ψ̃(α, y, λ, σ) = f 0(α)−
m

∑
i=1

λi[ f i(α) + y2
i ] +

σ

2

m

∑
i=1

[ f i(α) + y2
i ]

2
(5)

In order to optimize the model and reduce the computational complexity of the model, the
problem is transformed:

max f 0(α),
s.t. fmax(α) = max

{
f i(α)

}
≤ 0.

(6)

The feasible region is Ω. Therefore, when constructing an augmented Lagrange function, we only
need to introduce a multiplier λ ∈ R and an auxiliary variable y ∈ R. Although the current maximal
function cannot inherit the smoothness of the original function, it can approximate the maximum
function using the aggregation function. The aggregation function is also called exponential penalty
function which can be derived from the maximum entropy principle [39]. Aggregate function can be
expressed as:

fp(α) =
1
p

ln

(
m

∑
i=1

exp
{

p f i(α)
})

, (7)

where p is the smoothing parameter, p > 0.

Definition 2 (Monotonicity). fp(α) decreases monotonically with the increase of p. At the same time, there is:

fmax(α) ≤ fp(α) ≤ fmax(α) +
1
p

ln m (8)

We can get the following relation by calculating fp(α) gradients and Hesse arrays:

∇ fp(α) =
m

∑
i=1

µi(α, p)∇α f i(α), (9)
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∇αα fp(α) =
m
∑

i=1
µi(α, p)∇αα f i(α) + p

m
∑

i=1
µi(α, p)∇α f i(α)∇α f i(α)−

p
m
∑

i=1
µi(α, p)∇α f i(α)

m
∑

i=1
µi(α, p)∇α f i(α)

(10)

In Equation (10):

µi(α, p) =
exp

{
p f i(α)

}
m
∑

i=1
exp

{
p f i(α)

} ∈ (0, 1] (11)

m

∑
i=1

µi(α, p) = 1 (12)

In order to reduce the computational cost of aggregate functions, an active-set strategy is used [40]. For the
aggregation function fp(α), the subset Ω ⊂ M is considered. Define the function f Ω : Rn → R as:

f Ω(α) = max
i∈Ω
{ f i(α)} (13)

The smooth approximation function is:

f Ω
p (α) = 1

p ln( ∑
i∈Ω

exp
{

p f i(α)
}
)

= f Ω(α) + 1
p ln( ∑

i∈Ω
exp

{
p f i(α)− f Ω(α)

}
)

(14)

We can get:
∇α f Ω

p (α) = ∑
i∈Ω

µi(α, p)∇α f i(α), (15)

In Equation (15):

µi(α, p) =
exp

{
p f i(α)

}
∑

k∈Ω
exp

{
p f k(α)

} ∈ (0, 1]. (16)

Definition 3 (Active-set Strategy). For any of α ∈ Rn and i ∈ Ω, the following equation is satisfied:

lim
p→∞

µi(α, p) =

{
1

|Ω(α)| , i ∈ Ω̂(α)

0 , Otherwise
(17)

lim
p→∞

pµi(α, p) = 0, i /∈ Ω̂(α) (18)

lim
p→∞
∇α f Ω

p (α) = ∑
i∈Ω(α)

1
|Ω(α)|∇α f i(α) (19)

where Ω(α) represents:
Ω(α) =

{
i ∈ M| f (α) = f Ω(α)

}
(20)

The study of [40] shows that the active-set strategy can reduce the gradient calculation by 75%.
Equation (6) is simplified:

max f 0(α),
s.t. fp(α) ≤ 0.

(21)

The relaxation factor y ∈ R was introduced for transformation:

max f 0(α),
s.t. fp(α) + y2 ≤ 0.

(22)
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Then the augmented Lagrange function is:

ψp(α, y, λ, σ) = f 0(α)− λ[ fp(α) + y2] +
σ

2
[ fp(α) + y2]

2
(23)

In order to eliminate y, ψ̃p(α, y, λ, σ) is minimized with respect to y by letting ψ̃p(α, y, λ, σ) = 0, so we
can get:

y[σy2 − (λ− σ fp(α))] = 0 (24)

Then:

y2 =

{
1
σ [λ− σ fp(α)] , λ− σ fp(α)0
0 , Otherwise

(25)

Thus:
− λ[ fp(α) + y2] +

σ

2
[ fp(α) + y2]

2
=

1
2σ

[(min
{

0, λ− σ fp(α)
}
)

2 − λ2] (26)

Equation (26) was taken back into ψ̃p(α, y, λ, σ) to eliminate y. We can then get:

ψ̃p(α, λ, σ) = min
y

Ψ̃p(α, y, λ, σ) = f 0(α) +
1

2σ
[(min

{
0, λ− σ fp(α)

}
)

2 − λ2] (27)

Equation (25) is brought into the multiplier iteration formula λk+1 = λk − σ( fp(αk) + y2). Then:

λk+1 =

{
0 , λk − σ fp(αk)0
λk − σ fp(αk) , Otherwise

(28)

After simplification:
λk+1 = min

{
0, λk − σ fp(α

k)
}

(29)

Similarly, Equation (25) is brought into | fp(αk) + y2
k | ≤ ε. Then we can get the terminate condition:

min{| fp(α
k)|, |λk

σ
|} ≥ ε (30)

4.3. Active Set Multiplier Policy (ASMP)

Through the analysis of the model, it is converted to solve the following equation.

min
y

Ψ̃p(α, λ, σ) = f 0(α) +
1

2σ
[(min

{
0, λ− σ fp(α)

}
)

2 − λ2] (31)

Then a multiplier method based on active-set strategy is designed to solve above problem.
Because this algorithm is designed for the fixed parameters pi, λi, σi, for the sake of convenience,
we denote ψ̃(α) = ψ̃pi (α, λi, σi) and ψ̃Ω(α) = ψ̃Ω(α, λi, σi). At the same time, for ∀ε ≥ 0, we denote
set-valued mapping:

Qε : Rn → 2M, Qε(x) =
{

j ∈ M| fmax(α)− f j(α) ≤ ε
}

. (32)

The details of the procedure for solving sub-events are given in Algorithm 1.
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Algorithm 1: Sub-event Algorithm

1: Initialization: t = 0, αi0 = αi−1, α ∈ (0, 1
2 ), β ∈ (0, 1), ε > 0, Ω0 = Ωt(αi0), B0 = E(Unit Array).

2: Solve the equation set Btd = −∇xψ̃Ωt(αit) for d. Determine the search direction dt.
3: Determine the smallest non-negative integer for mt that satisfies the constraint:
ψ̃Ωt(αit + βmt dt)− ψ̃Ωt(αit) ≤ αβmt∇αψ̃Ωt(αit)dt

4: Do τt = σmt , αi,t+1 = αit + τtdt, Ωt+1 = Ωt ∪Qε(αi,t+1);
5: Judge, if ‖∇αψ̃Ωt+1(αi,t+1)‖ ≤ ε dt, make αi = αi,t+1, then exit; Otherwise, set t = t + 1,
Skip back to step 1.

Considering the property of each sub-event, as given in the above equations, the procedure for
solving each compound event is given in Algorithm 2.

Algorithm 2: Active Set Multiplier Policy (ASMP)

1: Initialization: α0 ∈ Rn, p10, p̂0, λ1 ∈ R, σ10, µ1, µ1, ε(p)0.
2: Set i = 1.
3: Solving sub-events: Utilizing αi−1 as the initial point, use Algorithm 1 to solve the unconstrained
problem maxΨ̃pi (α, λi, σi) to get the maximum point αi;
4: Verify termination conditions: If ‖∇αψ̃pi (α

i, λi, σi)‖ ≤ ε(pi) does not satisfied, skip to step 3; if
pi p̂, then stop; otherwise set pi+1 = µpi, αi+1 = αi, i = i + 1, go to step 2;
5: Update penalty parameters: If ‖∇αψ̃pi (α

i, λi, σi)‖ ≥ ∇αψ̃pi (α
i−1, λi, σi)‖, set σi+1 = µσi;

otherwise set σi+1 = σi;
6: Update multipliers: λi+1 = min

{
0, λi − σi fpi (α

i)
}

;
7: Set λi+1 = min

{
0, λi − σi fpi (α

i)
}

, skip to step 1.

Notation 1. For the standard BFGS correction, the use of Armijo search cannot guarantee the iterative matrix
of positive definite. Therefore, in step 1 of Algorithm 1, the modified BFGS correction formula is used for Bt:

Bt = Bt−1 −
Bt−1st−1sT

t−1Bt−1

sT
t−1Bt−1st−1

+
zt−1zT

t−1

sT
t−1zt−1

(33)

In the formula:

st−1 = αit − αi,t−1; zt−1 = θt−1yt−1 + (1− θt−1)Bt−1st−1; yt−1 = ∇αψ̃Ωt(αit)−∇αψ̃Ωt−1(αi,t−1).

where:

θt−1 =

 1 , sT
t−1yt−1 ≥ 0.2sT

t−1Bt−1st−1
0.8sT

t−1Bt−1st−1

sT
t−1Bt−1st−1−sT

t−1yt−1
, Otherwise

(34)

By using a multiplier method based on active-set strategy, the problem of event coverage under
multi-constraint conditions can be solved effectively. The multiplier method based on an active-set
strategy (ASMP) is used to solve the trade-offs among constraints by transforming the multiple
constraints into multi-inequality constraints. In the multiplier method, the multi-inequality constraints
represent the multiple constraints; the variable to be solved is the number of each sensor. In the process
of optimization with the multiplier method, the objective function optimizes the coverage quality of
the network, and the number of each sensor and the final coverage ratio are obtained. Then simulation
experiments are used to prove it.
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5. Experiments and Evaluation

In this section, we evaluate the performance of the proposed algorithms through simulations and
compare our results with the OCQ-Max-fit, OCQ-Greedy and OCQ-Naïve algorithms using the same
experimental parameters.

5.1. Environment Settings

We use MATLAB2014a to perform the ASMP simulation experiments. In the experiments, we
use five types of sensors. The confidence of the five different types of sensors is 0.05, 0.1, 0.45, 0.15
and 0.25, respectively. Each type of sensors has different deployment time, perceived radius, and
deployment cost, depending on its nature. The parameter meanings for our experiments are presented
in Table 1. The monitoring area is set at a band width of 600 m × 100 m. Experiments are conducted
five times with the aim of covering at each condition for evaluation purposes, and these experiments
are performed on a desktop computer equipped with an Intel(R) Core(TM) i5-4590 CPU @ 3.30 GHz,
an 4-GB memory and the 64-bit Windows 7 operating system.

Table 1. Parameters of Experiments.

Symbol Meaning Deployment
Time T/s

Perceived
Radius R/m Cost C/s Confidence S

α1 Optical Density Sensor 1 30 25 0.1
α2 Temperature Sensor 2 15 10 0.05
α3 Video Sensor 5 10 35 0.45
α4 Smoke Density Sensor 1 25 20 0.15
α5 Infrared Sensor 3 20 15 0.25

5.2. Experimental Evaluation

Experiments have been conducted for evaluating the performance and efficiency of our compound
event barrier coverage mechanisms under multi-constraints. The time constraints, distance constraints,
cost constraints and minimum confidence constraints for four cases are presented in Table 2. The results
of our experimental evaluation are presented and discussed in the following.

Table 2. Multi-constraint Parameters under Four Conditions.

Case Time
Constraints

Distance
Constraints

Cost
Constraints

Minimum
Confidences

Coverage
Ratio

Running
Time

1 47 555 495 0.80 59.7% <1 s
2 101 1320 1215 0.82 73.6% <1 s
3 165 1430 1140 0.90 83.5% <1 s
4 336 1850 2285 0.99 92.5% <1 s

In Figure 1, Case 1 has a harsh time constraint, so more optical density sensors which can be
deployed relatively fast have been used. Case 2 has a strict distance constraint, so the optical density
sensors and smoke density sensors which have larger perceived radius have been more used. Case 3
has a limited cost constraint, so the number of the lower cost temperature sensors is 35. This number
is relatively large. At the same time, taking into account the need to meet the requirement of high
confidence, the number of infrared sensors is also 34. Case 4 has a strict minimum confidence
requirement, so the video sensors which have higher confidence have been used in a large number
of applications, compared to the former three conditions. However, under the cost and deployment
time constraint, the number of video sensors is limited to 34. The number of temperature sensors (49)
is the largest. The simulation results show that the ASMP algorithm can allocate sensor resources
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effectively under multiple constraint conditions, and make the performance of barrier coverage meet
the requirements of the application.
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Figure 1. Sensor resource allocation for the compound event barrier coverage under multi-constraint
conditions. As the number of nodes increases, the network coverage gradually increases.

5.3. Comparison with the OCQ-Max-Fit, OCQ-Greedy and OCQ-Naïve Algorithms

The purpose of the simulation experiments is to verify whether the proposed algorithm can
reasonably apply five different types of sensors under complex multi-constraint conditions to achieve
the best coverage effect. In order to verify the performance of the algorithm, we compared with the
latest compound event algorithms in the next simulations. In this paper, we compare the OCQ-Max-fit,
OCQ-Greedy and OCQ-Naïve algorithms with single cost constraints, because the event coverage
under multiple constraints has never been studied before in barrier coverage. Experimental results
show that the proposed algorithm outperforms the latest algorithms in terms of cost saving, large area
barrier coverage and operational efficiency. This section presents the result of our experiments for the
compound event barrier coverage technique (ASMP) with respect to OCQ-Max-fit, OCQ-Greedy and
OCQ-Naïve, which can be classified into a knapsack constraint and greedy problem. As mentioned
before, the ASMP algorithm adopted in our technique is much better than the mechanism of the
OCQ-Max-fit, OCQ-Greedy and OCQ-Naïve algorithms.

Figure 2 shows the coverage quality when the total budget is set to different values for the
OCQ-Greedy, OCQ-Max-fit and ASMP algorithm, respectively. With the increase of the budget, the
quality of coverage increases. On the other hand, the coverage quality optimized by our technique
is much better than that achieved by OCQ-Greedy and OCQ-Max-fit, when the total budget which
is restrained by budgetary constraints is relatively more. This is due to the fact that when the
total budget is relatively large, the number of sensor nodes and computational complexity increase
significantly. The OCQ-Greedy algorithm based on a greedy algorithm only chooses the current
optimal solution, which is probably the local optimal solution. OCQ-Max-fit enumerates the skyline
points of deployment schemes to compute the coverage quality. Enumeration methods are very
simple and only suitable for a relatively small network scale. However, ASMP uses the aggregate
function to approximate the maximal function, and only a small part of the functions are involved
in the computation. Therefore, the gradient computation is reduced significantly, which reduces the
computational cost and is more suitable for large-scale networks.
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Figure 2. Comparison of the coverage quality when the total budget is set to various values,
OCQ-Greedy, OCQ-Max-fit and ASMP are utilized, respectively, in our experiments. This figure
shows that the coverage quality increases significantly when the total budget is set to a relatively
large value.

Figure 3 displays the coverage quality versus deployment area. With the increase of the barrier
coverage area, the coverage quality is declining under a limited cost constraint.
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Figure 3. Comparison of the coverage quality for our method (ASMP) with respect to the OCQ-Greedy
and OCQ-Max-fit coverage algorithm, when the deployment area A is set to various values, and the
coverage quality, which changes with the deployment area A, is set to various values. This figure shows
that the coverage quality optimized by our algorithm is much better than that of the OCQ-Greedy and
OCQ-Max-fit options, especially when the network deployment area is relatively large.

The ASMP algorithm can quickly optimize the network performance, so after a large increase
in the target area, the target area can still be effectively covered. The coverage quality is significantly
better than those achieved with the OCQ-Greedy and OCQ-Max-fit algorithms.

Figure 4 shows the relationship between the coverage quality and the number of the types of
nodes. The total confidence of the compound event is distributed equally among each sub-event.
The coverage quality becomes worse with the increase of the number of the kinds of the nodes when
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the total budget is fixed. As the ASMP is more suitable for large-scale complex scenes, when the sensor
type increases, its performance is better than that of the OCQ-Greedy algorithm.Sensors 2017, 17, 25 14 of 17 
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Figure 4. Comparison of the coverage quality for our method (ASMP) with respect to the OCQ-Greedy
algorithm when the number of the types of nodes is set to various values, and the coverage quality,
which changes with the types of nodes, is set to various values. This figure shows that the coverage
quality optimized by our algorithm is much better than that of OCQ-Greedy, especially when the
number of the types of nodes is relatively small.

Figure 5 depicts the comparison of the number of deployment schemes derived by OCQ-Naïve,
OCQ-Max-fit and ASMP. With the increase of the total budget, each of the algorithms needs to derive
more deployment schemes.
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Figure 5. Comparison of deployment schemes for our technique (ASMP) with respect to OCQ-Naïve
and OCQ-Max-fit when the total budget is set to various values, respectively, and the deployment
schemes, which drift with the total budget, are set to various values. This figure shows that the
increase of deployment schemes for our coverage strategy is much slower than that of OCQ-Naïve and
OCQ-Max-fit, especially when the total budget is relatively sufficient.

However, the growth rate of ASMP is much slower than that of OCQ-Naïve and OCQ-Max-fit,
which indicates that ASMP is more efficient than OCQ-Naïve and OCQ-Max-fit. This is because the
aggregation function in ASMP can effectively reduce the calculation cost and make the algorithm
more efficient.
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Figure 6 demonstrates the comparison of the running time for the three algorithms. The running
time of the OCQ-Naïve algorithm grows rapidly with the increase of the total budget. ASMP runs
a little faster than OCQ-Max-fit. However, their growth is almost negligible with respect to the
OCQ-Naïve algorithm. Compared to OCQ-Naïve and OCQ-Max-fit, ASMP uses the aggregate function
to approximate the maximal function, and only a small part of the functions are involved in the
computation, therefore, the gradient computation is reduced significantly, which reduces the total
computational cost and is more suitable for large-scale networks.
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Figure 6. Comparison of the running time for our technique (ASMP) with respect to OCQ-Naïve
and OCQ-Max-fit, respectively, when the total budget is set to various values and the running time,
which changes with the total budget, is set to various values. This figure shows that the increase of the
running time for our coverage strategy is much smaller than that of OCQ-Naïve and a little smaller
than that of OCQ-Max-fit, especially when the total budget is relatively sufficient.

6. Conclusions and Future Work

In this paper, the problem of compound event barrier coverage under multiple constraints has
been studied. The event model has been composed for sub-events and compound events, and the
joint probabilistic method has been used to solve the problem of merging the confidence. Aiming at
the problem of multiple constraints in the application of barrier coverage, a multiplier method based
on an active-set strategy is proposed. Experimental results show that the proposed algorithm can
allocate network resources reasonably well according to the actual situation of the network, effectively
improve the coverage quality of the network, and reduce the computation cost of the network. Event
coverage with multi-constraint conditions has a wide range of practical applications. In the future, we
intend to investigate the barrier coverage in underwater wireless sensor networks based on the actual
characteristics of the networks.
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