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Abstract: This paper proposes a new multi-user eye-tracking algorithm using position estimation.
Conventional eye-tracking algorithms are typically suitable only for a single user, and thereby cannot
be used for a multi-user system. Even though they can be used to track the eyes of multiple users,
their detection accuracy is low and they cannot identify multiple users individually. The proposed
algorithm solves these problems and enhances the detection accuracy. Specifically, the proposed
algorithm adopts a classifier to detect faces for the red, green, and blue (RGB) and depth images. Then,
it calculates features based on the histogram of the oriented gradient for the detected facial region to
identify multiple users, and selects the template that best matches the users from a pre-determined
face database. Finally, the proposed algorithm extracts the final eye positions based on anatomical
proportions. Simulation results show that the proposed algorithm improved the average F1 score by
up to 0.490, compared with benchmark algorithms.

Keywords: eye tracking; face detection; multi-user identification

1. Introduction

Currently, various fields require information about human eye recognition. In particular,
the eye recognition is one of the most important features in applications in vehicles because it can
estimate human fatigue state, which has a direct impact on the safety of the driver and the passenger.
For example, Figure 1a shows a system that checks drowsiness by analyzing the driver’s eyes.
In addition, human eyes can be used as an interface to control the operation of the display in the
vehicle. Figure 1b shows that the eyes of multiple users control the display of the center console.
In these cases, the precise eye positions for multiple users are required. To do so, the eye-tracking
algorithm should calculate accurate positional information in the horizontal direction (x), vertical
direction (y), and depth direction (z), on the basis of the camera device [1,2].
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passenger. For example, Figure 1a shows a system that checks drowsiness by analyzing the driver’s 
eyes. In addition, human eyes can be used as an interface to control the operation of the display in 
the vehicle. Figure 1b shows that the eyes of multiple users control the display of the center console. 
In these cases, the precise eye positions for multiple users are required. To do so, the eye-tracking 
algorithm should calculate accurate positional information in the horizontal direction (x), vertical 
direction (y), and depth direction (z), on the basis of the camera device [1,2]. 
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Figure 1. Various examples in a vehicle application: (a) a drowsiness warning system; and (b) an 
interface control system using multi-user eye tracking. 
Figure 1. Various examples in a vehicle application: (a) a drowsiness warning system; and (b) an
interface control system using multi-user eye tracking.
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Various eye-tracking algorithms have been proposed. A video-based eye-tracking algorithm has
been proposed [3] to track the eye positions in input frames. This algorithm detects the user’s face
using eigenspaces, and estimates motion based on a block-matching algorithm to track the user’s
face. However, this algorithm is only suitable for a single user. Another algorithm uses depth and
color image sequences for depth-camera–based multi-user eye tracking [4]. This algorithm uses an
object-tracking algorithm and eye localization. However, it requires considerable computation time to
track multiple users, and it cannot distinguish between them—i.e., it does not associate any particular
facial region with a single discrete user.

Generally, eye-tracking algorithms require an accurate face-detection algorithm for high
performance. There are two representative face-detection algorithms. A local binary pattern–based
algorithm [5,6] uses local image textures in an input image. Hence, it is robust to gray-scale variations,
and it is efficient insofar as it uses simple binary patterns. Another approach is a robust real-time
face-detection algorithm [7,8]. It uses an integral imaging technique for fast computation. In addition,
it uses cascade classifiers based on an adaptive boost-learning algorithm (AdaBoost) to improve the
detection accuracy. Eye-tracking algorithms can adopt either of these face-detection algorithms.

In this paper, a new multi-user eye-tracking algorithm is proposed. It is based on a previous
study [9], but overall operation blocks are totally changed to enhance performance. The proposed
algorithm performs the calibration of red, green, and blue (RGB) and depth images to prevent
distortion, and uses the user classification module and several features to enhance the performance.
Specifically, it selects the candidate regions (in which faces exist) from an input image. Then, it adopts
an AdaBoost-based face-detection algorithm based on [7], and extracts features from the histogram
of gradient (HOG) in a facial region. Then, it searches for a template that best matches the input face
from a pre-calculated face database. Finally, it estimates and extracts user eye positions based on
anatomical proportions.

This paper is organized as follows. Section 2 describes the proposed multi-user eye-tracking
algorithm. Section 3 presents performance evaluations comparing the proposal with benchmark
algorithms. Section 4 concludes the paper.

2. Proposed Algorithm

Figure 2 shows a conceptual block diagram for the proposed algorithm. First, in the pre-processing
module, the proposed algorithm calibrates the RGB and depth images, which are captured by RGB
and depth cameras. Second, the face-detection module performs face extraction from the input
images. Third, the user-classification module identifies multiple users. Finally, the 3D eye positions are
extracted. Figure 3 shows a detailed block diagram for the proposed algorithm. The specific operations
are described in the following sub-sections.

Sensors 2017, 17, 41 2 of 9 

 

Various eye-tracking algorithms have been proposed. A video-based eye-tracking algorithm 
has been proposed [3] to track the eye positions in input frames. This algorithm detects the user’s 
face using eigenspaces, and estimates motion based on a block-matching algorithm to track the 
user’s face. However, this algorithm is only suitable for a single user. Another algorithm uses depth 
and color image sequences for depth-camera–based multi-user eye tracking [4]. This algorithm uses 
an object-tracking algorithm and eye localization. However, it requires considerable computation 
time to track multiple users, and it cannot distinguish between them—i.e., it does not associate any 
particular facial region with a single discrete user. 

Generally, eye-tracking algorithms require an accurate face-detection algorithm for high 
performance. There are two representative face-detection algorithms. A local binary pattern–based 
algorithm [5,6] uses local image textures in an input image. Hence, it is robust to gray-scale 
variations, and it is efficient insofar as it uses simple binary patterns. Another approach is a robust 
real-time face-detection algorithm [7,8]. It uses an integral imaging technique for fast computation. 
In addition, it uses cascade classifiers based on an adaptive boost-learning algorithm (AdaBoost) to 
improve the detection accuracy. Eye-tracking algorithms can adopt either of these face-detection 
algorithms. 

In this paper, a new multi-user eye-tracking algorithm is proposed. It is based on a previous 
study [9], but overall operation blocks are totally changed to enhance performance. The proposed 
algorithm performs the calibration of red, green, and blue (RGB) and depth images to prevent 
distortion, and uses the user classification module and several features to enhance the performance. 
Specifically, it selects the candidate regions (in which faces exist) from an input image. Then, it 
adopts an AdaBoost-based face-detection algorithm based on [7], and extracts features from the 
histogram of gradient (HOG) in a facial region. Then, it searches for a template that best matches the 
input face from a pre-calculated face database. Finally, it estimates and extracts user eye positions 
based on anatomical proportions. 

This paper is organized as follows. Section 2 describes the proposed multi-user eye-tracking 
algorithm. Section 3 presents performance evaluations comparing the proposal with benchmark 
algorithms. Section 4 concludes the paper. 

2. Proposed Algorithm 

Figure 2 shows a conceptual block diagram for the proposed algorithm. First, in the 
pre-processing module, the proposed algorithm calibrates the RGB and depth images, which are 
captured by RGB and depth cameras. Second, the face-detection module performs face extraction 
from the input images. Third, the user-classification module identifies multiple users. Finally, the 3D 
eye positions are extracted. Figure 3 shows a detailed block diagram for the proposed algorithm. The 
specific operations are described in the following sub-sections. 

 
Figure 2. Overall concept for the proposed multi-user eye tracking algorithm. Figure 2. Overall concept for the proposed multi-user eye tracking algorithm.



Sensors 2017, 17, 41 3 of 9
Sensors 2017, 17, 41 3 of 9 

 

 

Figure 3. Overall block diagram for the proposed algorithm. 

2.1. Pre-Processing Module 

The proposed algorithm uses RGB and depth cameras. In some cases, the pixel resolution of the 
RGB and depth images can differ. Hence, the resolutions must be calibrated, and the proposed 
algorithm increases a low-resolution depth image such that its resolution matches the RGB image. 
The resolution of depth images is generally lower than that of RGB images. To match the resolution, 
the proposed algorithm uses a bilinear interpolation algorithm [10], as shown in Figure 4. For 
example, if the resolution is doubled, it is defined as follows: 

 
 
 

1 1 , 1,,2

1 2 , , 1, 2

1 1 3 , 1, , 1 1, 1,2 2

,

,

,











    

  

  

    

x y x yx y

x y x yx y

x y x y x y x yx y

I I I

I I I

I I I I I

 (1)

where λ1, λ2, and λ3 denote the horizontal, vertical, and diagonal weights, respectively (which are 0.5, 
0.5, and 0.25, respectively), and Ix+1/2,y, Ix,y+1/2, and Ix+1/2,y+1/2 denote the horizontal, vertical, and diagonal 
interpolated pixels, respectively. 

 
Figure 4. Pixel arrangement in bilinear interpolation algorithm when an input image resolution is 
doubled. 

Then, the proposed algorithm extracts the candidate search region. In the input image captured 
by the cameras, the region where users are likely to be when watching a large-sized display such as a 

Figure 3. Overall block diagram for the proposed algorithm.

2.1. Pre-Processing Module

The proposed algorithm uses RGB and depth cameras. In some cases, the pixel resolution of
the RGB and depth images can differ. Hence, the resolutions must be calibrated, and the proposed
algorithm increases a low-resolution depth image such that its resolution matches the RGB image.
The resolution of depth images is generally lower than that of RGB images. To match the resolution,
the proposed algorithm uses a bilinear interpolation algorithm [10], as shown in Figure 4. For example,
if the resolution is doubled, it is defined as follows:

Ix+1/2,y = λ1 ×
{

Ix,y + Ix+1,y
}

,
Ix,y+1/2 = λ2 ×

{
Ix,y + Ix,y+1

}
,

Ix+1/2,y+1/2 = λ3 ×
{

Ix,y + Ix+1,y + Ix,y+1 + Ix+1,y+1
}

,
(1)

where λ1, λ2, and λ3 denote the horizontal, vertical, and diagonal weights, respectively (which are 0.5,
0.5, and 0.25, respectively), and Ix+1/2,y, Ix,y+1/2, and Ix+1/2,y+1/2 denote the horizontal, vertical, and
diagonal interpolated pixels, respectively.
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television is restricted to a certain area. Therefore, the proposed algorithm uses this region to search
for users’ faces, thereby reducing the computation time. The detailed operation for detecting faces is
described in the following sub-section.

2.2. Face-Detection Module

The proposed algorithm uses the classifier-based face-detection algorithm proposed in [7].
This algorithm offers a high detection rate and it can be operated in real time. In addition, the proposed
algorithm analyzes the facial candidate regions selected during pre-processing, thereby enhancing
the detection accuracy while reducing the search region. Specifically, the face-detection algorithm
uses several rectangular features, and calculates these features based on an integral image [7,11].
This integral image technique generates a summed area table to generate the sum of the pixel
values in a rectangular window to enhance the computational efficiency. In addition, it uses simple
classifiers generated by the AdaBoost algorithm [7] to select features from the detected face. Finally,
the face-detection algorithm uses a cascading structure to generate classifiers which can more accurately
detect faces while reducing the operation time. Figure 5 shows the concept for the cascading structure
of the face-detection module in the proposed algorithm. The first classifier rejects negative inputs
using a few operations. The operations at further stages of the cascade also reject negative inputs,
and gradually enhance the accuracy of the detection after multiple stages. Therefore, the proposed
algorithm can detect the facial region exactly.
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2.3. User-Classification Module

After the faces are detected, they are classified individually based on a pre-calculated database.
Figure 6 provides an overall block diagram for this process. The histogram of oriented gradients
(HOG) is used as a classification feature because of its robustness in classifying faces [12]. Specifically,
the horizontal and vertical gradients for the facial region are calculated as follows:

HG = [−1 0 1] ∗ BF,
VG = [−1 0 1]T ∗ BF,

(2)

where HG and VG respectively denote the horizontal and vertical gradients filtered with a 1D-centered
discrete derivative mask, and BF denotes a detected face block. Using the gradients, the HOGs of
magnitude and orientation for each pixel are generated as follows:

Mx,y =
(

HG2
x,y + VG2

x,y

)1/2

,

θx,y = tan−1
(

VGx,y
HGx,y

)
+ π

2 ,
(3)

where Mx,y and θx,y denote the magnitude and orientation of the pixel, respectively. Histograms for
the two properties are generated, and histograms for several blocks are combined into one feature



Sensors 2017, 17, 41 5 of 9

vector. Then, the feature vector is classified using a support vector machine (SVM) [13] to partition the
classes maximally, thereby generating the exact class for the input face.
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2.4. Three-Dimensional Eye-Position Extraction Module

In this module, the proposed algorithm calculates the left and right eye positions. Specifically,
it uses the anatomical proportions for the eye position in a human face. Figure 7 shows a conceptual
image of this module. First, it computes the horizontal and vertical positions (x and y axes), and then
it calculates the depth position (z axis). The image on the left in Figure 7 includes several parameters
for calculating the 3D eye position, and these are derived as follows:

px1 = xi + α,
px2 = xi + 1 − α,

py = yi + β,

pz = dmax ×
Idepth
Imax

,

(4)

where xi and yi denote an initial pixel point in the detected facial region, α and β denote the horizontal
and vertical offsets, respectively, Imax and Idepth denote the maximum intensity level and the intensity
level of the detected face, and dmax denotes the real maximum distance. Using these parameters,
the final left and right eye positions are as follows:

peyeL =
(

px1, py, pz
)
,

peyeR =
(

px2, py, pz
)
.

(5)

Using this module, the proposed algorithm can extract the final 3D eye positions.
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3. Simulation Results

The detection accuracy of the proposed algorithm was evaluated by comparing it with benchmark
algorithms. In addition, the identification ratio with multiple users was calculated for the proposed
algorithm. The RGB camera had a resolution of 1280 × 960 pixels and the depth camera’s resolution
was 640 × 480 pixels. The dataset we used was an image sequence taken with a direct RGB camera
and a depth camera in consideration of the distance change. Three benchmark algorithms were
used: the classifier-based detection algorithm (Algorithm 1) [7], the improved Haar feature–based
detection algorithm (Algorithm 2) [8,9], and the low binary pattern (LBP)-based detection algorithm
(Algorithm 3) [6]. For an objective evaluation, the proposed algorithm calculated by precision, recall,
and F1 scores [14,15], which are derived as follows:

Precision = TP
TP+FP ,

Recall = TP
TP+FN ,

F1 Score = 2 × Precision×Recall
Precision+Recall ,

(6)

where TP, FP, and FN denote the number of true positives, false positives, and false negatives that
were detected, respectively. Using these values, the F1 score was calculated, for which a value of one
indicates perfect accuracy. For the test sequences, we used several sequences at different distances
(ranging from 1 m to 3.5 m) between the camera and multiple users.

First, the accuracy of detection using the proposed and benchmark algorithms was compared.
Table 1 shows the average precision and recall values for the proposed and benchmark algorithms
at different distances. Table 2 shows the average F1 score, combining precision and recall at different
distances. In terms of precision, the total averages of the benchmark Algorithms 1, 2, and 3 were 0.669,
0.849, and 0.726 on average, respectively. In contrast, the proposed algorithm resulted in a perfect
score of 1.000. In terms of recall, the total averages of the benchmark Algorithms 1, 2, and 3 were 0.988,
0.993, and 0.738, whereas the proposed algorithm resulted in 0.988. Therefore, the average F1 score for
the proposed algorithm was up to 0.294, 0.151, and 0.490 higher than those of Algorithms 1, 2, and 3,
respectively. This means that the detection accuracy of the proposed algorithm was higher than that of
the benchmark algorithms. Figure 8 also shows the same results where the precision and recall values
of the proposed algorithm were higher than those of the benchmark algorithms. This was because the
proposed algorithm accurately classified foreground and background images by using several cascade
classifiers after calibrating RGB and depth images.

Figures 9 and 10 show the resulting RGB and depth images from the proposed and benchmark
algorithms at different distances (2.5 m and 3.5 m). The benchmark algorithms detected false regions
as faces, and some faces remained undetected. In addition, these algorithms could not associate
any particular facial region with a single discrete user. On the other hand, the proposed algorithm
accurately detected the faces of multiple users and classified each of them by assigning each face a
different number, as shown in Figures 9d and 10d (here, 1, 2, and 3 are the identification numbers for
the users).

The identification accuracy of the proposed algorithm for each face from multiple users was
also evaluated. Table 3 shows the identification number and ratio for multiple users with the
proposed algorithm. The maximum number of users was three. The identification ratios for Faces 1, 2,
and 3 were 0.987, 0.985, and 0.997, respectively. In total, the ratio was 0.990 on average, which is highly
accurate. This was because the proposed algorithm used the pre-training process for required users,
and hence, it had a higher performance than the conventional algorithms.
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Table 1. Average precision and recall values for the proposed and benchmark algorithms at
different distances.

Distance (m)
Algorithm 1 Algorithm 2 Algorithm 3 Proposed Algorithm

Precision Recall Precision Recall Precision Recall Precision Recall

1.000 0.741 0.981 0.877 0.991 0.730 0.619 1.000 0.981
1.500 0.573 0.985 0.732 0.991 0.493 0.514 1.000 0.985
2.000 0.637 0.975 0.833 0.981 0.825 0.789 1.000 0.975
2.500 0.664 1.000 0.853 1.000 0.713 0.938 1.000 1.000
3.000 0.717 0.991 0.886 1.000 0.824 0.828 1.000 0.991
3.500 0.806 0.991 0.972 0.995 0.708 0.800 1.000 0.991

Random 0.544 0.994 0.792 0.994 0.792 0.677 1.000 0.994

Table 2. F1 score values for the proposed and benchmark algorithms at different distances.

Distance (m)
Algorithm 1 Algorithm 2 Algorithm 3 Proposed Algorithm

F1 Score Difference F1 Score Difference F1 Score Difference F1 Score

1.000 0.844 −0.147 0.931 −0.060 0.674 −0.320 0.991
1.500 0.725 −0.268 0.842 −0.151 0.503 −0.490 0.993
2.000 0.771 −0.216 0.901 −0.086 0.807 −0.180 0.987
2.500 0.798 −0.202 0.921 −0.079 0.811 −0.189 1.000
3.000 0.832 −0.164 0.939 −0.057 0.826 −0.170 0.996
3.500 0.889 −0.107 0.983 −0.013 0.751 −0.245 0.996

Random 0.703 −0.294 0.882 −0.115 0.731 −0.266 0.997

Table 3. Identification number and ratio for multiple users with the proposed algorithm.

Distance (m)
Face 1 Face 2 Face 3

Detection
Number

Detection
Ratio

Detection
Number

Detection
Ratio

Detection
Number

Detection
Ratio

1.000 70/70 1.000 68/70 0.970 70/70 1.000
1.500 70/70 1.000 69/70 0.980 69/70 0.980
2.000 64/68 0.940 67/68 0.980 68/68 1.000
2.500 70/70 1.000 70/70 1.000 70/70 1.000
3.000 70/70 1.000 70/70 1.000 70/70 1.000
3.500 69/70 0.980 70/70 1.000 70/70 1.000

Random 89/90 0.990 87/90 0.970 90/90 1.000
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4. Conclusions 

This paper presented a robust multi-user eye-tracking algorithm using position estimation. It 
determines the candidate eye-position regions from input RGB and depth images. Using this region, 
the proposed algorithm adopts a classifier-based face-detection algorithm, and computes features 
based on the histogram of oriented gradients for the detected facial region. Then, it selects the 
template that best matches the input face from a pre-determined database, and extracts the final eye 
positions based on anatomical proportions. The results of a simulation demonstrated that the 
proposed algorithm is highly accurate, with an average F1 score that was up to 0.490 higher than that 
of the benchmark algorithms. 
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4. Conclusions

This paper presented a robust multi-user eye-tracking algorithm using position estimation.
It determines the candidate eye-position regions from input RGB and depth images. Using this
region, the proposed algorithm adopts a classifier-based face-detection algorithm, and computes
features based on the histogram of oriented gradients for the detected facial region. Then, it selects
the template that best matches the input face from a pre-determined database, and extracts the final
eye positions based on anatomical proportions. The results of a simulation demonstrated that the
proposed algorithm is highly accurate, with an average F1 score that was up to 0.490 higher than that
of the benchmark algorithms.
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