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Abstract: For multi-sensor integrated systems, such as the mobile mapping system (MMS), data fusion
at sensor-level, i.e., the 2D-3D registration between an optical camera and LiDAR, is a prerequisite for
higher level fusion and further applications. This paper proposes a line-based registration method
for panoramic images and a LiDAR point cloud collected by a MMS. We first introduce the system
configuration and specification, including the coordinate systems of the MMS, the 3D LiDAR scanners,
and the two panoramic camera models. We then establish the line-based transformation model for
the panoramic camera. Finally, the proposed registration method is evaluated for two types of camera
models by visual inspection and quantitative comparison. The results demonstrate that the line-based
registration method can significantly improve the alignment of the panoramic image and the LiDAR
datasets under either the ideal spherical or the rigorous panoramic camera model, with the latter
being more reliable.
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1. Introduction

Motivated by applications such as vehicle navigation [1], urban planning [2], and autonomous
driving [3], the need for 3D detailed photorealistic models in urban areas has increased dramatically in
recent years. A mobile mapping system (MMS), which collects 3D and/or 2D photographic data while
vehicles move at a regular speed, have been widely used as the efficient data acquisition technology
at street-level [4]. Short range laser scanners (e.g., 100–200 m) and electro-optical cameras are
two primary sensors on a MMS, each of which has its own characteristics. Laser scanners can
acquire 3D information directly, but offer relatively low resolution and short range of use, whereas a
camera captures 2D images with high-resolution textures but the depth information is missing. Thus,
these complementary characteristics between ranging and imaging sensors have been broadly studied
through the so-called camera/LiDAR fusion [5–8].

A prerequisite of data fusion is to transform different datasets to a common coordinate system,
which is often called 2D-to-3D registration. Although the camera and LiDAR sensors are usually
calibrated [9–12] in advance, considerable misalignment may still exist between the two datasets.
Possible reasons for such misalignment are as follows: (1) System calibration errors. The relative
orientation and position offsets between all the sensors, GPS, Inertial Measurement Unit (IMU), LiDAR
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and camera on a MMS, may lack precise measurements by the manufacturer. Further, the offsets and
relative orientations determined prior to data collection may change due to mechanical vibrations [13];
(2) Different acquisition time. The image is collected at a certain exposure time while the corresponding
point cloud data are actually collected via continuous scanning during a period of time, indicating
that the two sensors are not strictly synchronized; (3) Unreliable GPS signals make this even worse.
At street level, the GPS signals often suffer from ambiguity and loss due to multipath and canyon
effects. Even when IMU, Distance Measuring Indicator (DMI) or Different GPS (DGPS) are onboard,
noticeable co-registration errors may still exist. All of the above unavoidable factors call for data-driven
registration methods in the subsequent data processing procedure.

There have been a number of related studies pertaining to 2D-3D registration, and the reader is
referred to the review in [14] for a comprehensive discussion of them. The registration framework
for LiDAR and optical images [15], as outlined in the concept of image registration [16], includes
four components: registration primitives, similarity measure, registration transformation, and
matching strategy.

As to the first component, we use straight-line as the registration primitives in this paper for two
reasons. First, linear features have the potential to be reliably, accurately, and automatically extracted
from both 2D images and 3D point clouds. While the former has been well studied [17–19], the latter has
received relatively less attention. Early studies on 3D line segments usually extracted plane intersection
lines [20,21], and more recent work also considered depth discontinuity lines [22,23]. Applying a
2D line detection algorithm on a set of shaded images rendered from a point cloud with different
views, reference [24] provided reasonable results of 3D line segments from an unorganized point cloud.
And specifically, some studies also focused on linear objects such as poles [25,26] and curbs [27,28].
Second, the methods using linear features exceed those using point features on registration accuracy,
which is demonstrated in the technical report of the “Registration Quality—Towards Integration
of Laser Scanning and their Performance” project, sponsored by European Spatial Data Research
(EuroSDR), 2008–2011 [29].

The principles and concepts of line-based registration originated from the highly researched
topic of line photogrammetry in the late 1980s and early 1990s whereby linear features, especially
straight lines, were regarded as basic an entity as traditional point features. Reference [30] described
the concepts, mathematical formulations, and algorithms related to line photogrammetry, which is
based on the straight lines extracted from digital images. In [31] a collinearity model to establish the
relationship between lower level features, such as edge pixels, instead of fitting lines in the image
space and the control lines in the object space was proposed. Reference [32] proposed the concept
of “generalized points,” a series of connected points representing a linear feature. According to this
concept, the traditional collinearity model can accommodate more complicated features, such as
circles and rectangles, rather than only straight lines. The authors in [20,21] utilized linear features
to determine camera orientation and position relative to a 3D model. Vanishing points extracted
from 2D images and 3D principle directions derived from a 3D model were also used to estimate
camera orientation. In addition, there were also many studies using statistical similarity measures
for the registration of the LiDAR points and images. Reference [33] developed a registration strategy
based on global mutual information and exploited the statistical dependency between the intensity
and measured LiDAR elevation, while [34] investigated the effectiveness of both local and global
mutual information.

All of the above studies were based on the popular frame cameras. However, a panoramic camera
rather than a frame camera is used in our MMS, which means a new panoramic sensor model must be
taken into account. The greatest advantage of a panoramic camera is its 360◦ view angle, essentially
making it a standard component in recently produced MMS. The online street-view maps provided
by Google, Microsoft, and Baidu and Tencent were mostly generated from geo-registered panoramic
imagery. Unfortunately, none of the limited studies on LiDAR and image registration involving
panoramic cameras considered a rigorous panoramic camera model. References [8,35] proposed an
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automatic registration of mobile LiDAR and spherical panoramas; however, only part of the panoramic
image in the limited viewport was used. Moreover, the registration was based on a conventional frame
camera model.

Besides registration, many applications based on panoramic images have been reported in recent
years. In [36] a structure-from-motion (SfM) pipeline for 3D modeling using Google Street View
imagery with an ideal spherical camera model was presented, while [37] presented a piecewise planar
model to reconstruct 3D scenes from panoramic image sequences. A quadrangular prism panoramic
camera model was used for improved image matching. Reference [38] explained both the ideal
spherical camera model and the rigorous panoramic sensor model for a multi-camera rig and their
corresponding epipolar geometry. In [39] the two models were further compared and their effects on
the localization quality in object space and the quality of space resection. In this paper, we utilize the
rigorous panoramic sensor model for image and LiDAR registration. Since there were many studies
based on the ideal spherical camera model, we also attempt to demonstrate its limitations in this paper
by comparing it with the rigorous model.

This paper proposes a rigorous line-based registration method for precise alignment of LiDAR
point clouds and panoramic images. The remainder of this paper is structured as follows: Section 2
introduces a MMS and its sensor frames for the LiDAR and the panoramic camera. Section 3 presents
registration models based on straight-line features for panoramic cameras. Section 4 addresses 3D line
extraction from LiDAR point clouds. Section 5 introduces the datasets and analyzes the registration
results based on our model. Finally, the conclusions and future work recommendations are presented
in Section 6.

2. The Mobile Mapping System and Sensor Configuration

The MMS used in this paper was jointly developed by Wuhan University and Leador Spatial
Information Technology Corporation, Ltd. (Wuhan, China), configured with a Ladybug 3 camera [40],
three low-cost SICK laser scanners [41] (one for ground and two for facades) and a GPS/IMU.
The system and its sensor configuration are shown in Figure 1.
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Figure 1. The MMS used in this study: (a) the vehicle; (b) the panoramic camera, laser scanners, and
GPS receiver.

This section first introduces several key coordinate systems of the MMS and their geometric
relationships, followed by a description of the geo-referenced LiDAR and the rigorous camera model
for a multi-camera rig.
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2.1. Coordinate Systems

As shown in Figure 2, there are three coordinate systems in our MMS: (1) a world coordinate
system; (2) a vehicle platform coordinate system; and (3) a camera-centered coordinate system.
The world coordinate system is the reference for data management and organization. In the proposed
method, the GPS/IMU records the translation and orientation from the world coordinate system to the
vehicle platform coordinate system denoted as M1(R1, T1). The LiDAR points are geo-referenced to the
world coordinate system (the left-bottom dotted line) according to M1 and the calibration parameters
M3 between the LiDAR sensor and the platform. M2(R2, T2) is the transformation from the camera to
the vehicle platform, which is also achieved through prior calibration.

The goal of registration is to determine the transformation M from the LiDAR points to the
panoramic image. Other than a static calibration which concerns only M23, the time series of
localization information M1 is considered. For simplification, the possible errors of M3 are ignored and
the transformation is constructed directly between the georeferenced LiDAR and camera (the bottom
solid line). It is assumed that there exists ∆M(∆R, ∆T) to meet:

M =

[
∆R ∆T
0 1

][
R2 T2

0 1

][
R1 T1

0 1

]
(1)

∆M compensates for several aspects including M3 (as is discussed in Section 1). The line features
are extracted from both the images and the LiDAR points, which are then utilized to determine the
optimal ∆M for an accurate registration. The solution procedure is based on the standard least squares
technique imbedded with RANSAC for removal of possible gross errors in M1.
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2.2. Geo-Refereneced LiDAR

The LiDAR points are geo-referenced to the world coordinate system by the interpolated rotation
values recorded by INS at the corresponding position from the GPS/IMU integrated navigation data
M1 and the calibration parameters M3 between the LiDAR and the IMU [42]. In the proposed system,
three low-cost SICK laser scanners (all linear-array lasers) are equipped to acquire a 3D point cloud of
the object’s facade. The angular resolution (0.25◦–1.0◦) and scan frequency (25–75 Hz) are fixed during
data acquisition. The density of LiDAR points is uneven, i.e., the closer they are to the measured
surface, the higher the density of the points. For instance, the points on the ground are much denser
than those on the top facade. In addition, the point density in the horizontal direction is dependent on
the velocity of the MMS vehicle.
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2.3. Multi-Camera Rig Models

The panoramic image in Figure 3 covers a 360◦ view of a surrounding scene, captured by the
Ladybug 3 system composed of six fisheye cameras. The straight lines in reality are no longer straight
on panoramic images compared to a common frame Figure 3b.
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Generally, the panoramic imaging process can be approximated by an ideal spherical camera
model. However, since the entire image is technically stitched from six individual images through
blending, stitching errors cannot be avoided. This section first introduces the traditional ideal spherical
camera model and then extends it to the rigorous multi-camera rig panoramic model. The spherical
camera model is referred to as the ideal one and the panoramic camera model as the rigorous one.

2.3.1. Spherical Camera Model

Under this model, the imaging surface is regarded as a sphere, whose center is the projection
center. Figure 4a presents a schematic diagram of the spherical projection, where the sphere center
S, the 3D points P in plane π, and the panoramic image point u are collinear [39]. The pixels in a
panoramic image are typically expressed in polar coordinates. Assuming that the width and height of
the panoramic image is W and H respectively, the horizontal 360◦ view is mapped to [0, W] and the
vertical 180◦ view is mapped to [0, H]. Thus, each pixel (u, v) can be transformed to polar coordinate
(θ, ϕ) by Equation (2): {

θ = (2u−W)· πW
ϕ =

(
1− 2v

H
)
·π2

(2)

θ is the horizontal angle between −π and π, and ϕ is the vertical angle between −π/2 and π/2. Let r
be the radius of the projection sphere, Equation (3) is used to calculate a set of Cartesian coordinates.
In most cases, r = 20.0 m for the best stitching accuracy [43].

x = r· cos ϕ· sin θ

y = r· cos ϕ· cos θ

z = r· sin ϕ

(3)

The sphere center S, 3D point P, and edge pixel u are collinear. The relationship between X and P
is established by perspective transformation in Equation (4):

X = λ−1RT(P− T) (4)

where P is the coordinate of the object point, and X(x, y, z) is the Cartesian coordinate of image point u;
R and T are respectively the rotation matrix and translation vector between the object space and the
panoramic camera space; and λ is the scale factor.
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Figure 5. Images of Camera 0–5: (a) 6 fish-eye images; (b) 6 rectified images. (The meaning of the 
Chinese characters on the building is Supermarket for Logistics in Central China) 

Figure 4. Differences between the spherical and panoramic camera models. (a) The dashed line shows
the ray through 3D point P, panoramic image point u, and sphere center S; (b) the solid line shows the
ray through 3D point P′, mono-camera image point uc, panoramic image point u, and the mono-camera
projection center C.

Unlike the traditional camera model, the z coordinate of the image point is not equal to −f,
where f is the focal length in the traditional camera model. In the widely used spherical camera model,
the image point u is under the spherical geometry constraint as Equation (5):

x2 + y2 + z2 = r2 (5)

As a result, Equation (4) actually has two degrees of freedom, i.e., two independent equations.

2.3.2. Panoramic Camera Model

A multi-camera rig consists of several separate and fixed fish-eye lenses. Independent images are
captured by each lens and then stitched to form the entire panoramic image. As shown in Figure 4b,
each lens has its own projection center C, but it cannot be precisely located on sphere center S due to
the manufacturing constraints. The mono-lens center C, instead of sphere center S, panoramic image
point u, and 3D point P′ in object space are collinear.
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The panoramic camera used in this paper is composed of six separate fish-eye lenses. Figure 5a
shows an example of the six raw fisheye images, and Figure 5b shows the corresponding undistorted
images rectified from the raw ones. Rectification from a fisheye to an ideal plane image only depends
on the known camera calibration parameters Kr, including the projection model and the radial and
tangential distortion. The index r means that every fisheye camera has its own calibration parameters.
Since the straight lines, such as the boundaries of buildings, are distorted in the raw fisheye image,
rectified images are used for line extraction.

As shown in Figure 6, the global camera coordinate system is defined for the whole multi-camera
rig, and six local coordinate systems are defined for each lens separately. The global coordinate system
(see Figure 6a) of the panoramic camera is defined by three main directions: the X-axis typically is
along the driving direction; the Z-axis is the zenith direction; and the Y-axis is orthogonal to both
the Y-axis and the Z-axis. Each of the six lenses has its own local coordinate system (see Figure 6b):
(1) The origin is the optical centre of the lens; (2) the Z-axis is the optical axis and points towards
the scene; and (3) the X-axis and the Y-axis are parallel to the corresponding image coordinate.
For each lens, there are three interior orientation elements (focal length f and image centre (x0, y0))
and six exterior orientation parameters (Tx, Ty, Tz, Rx, Ry, Rz) relative to the global coordinate system
(the offsets between C and S in Figure 4b under spherical view). Both of them were acquired in advance
by careful calibration by the manufacturer.
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Although each lens may have its own camera model, the advantages of panoramic imaging may
be overlooked. To address this issue, all six images are projected into the global spherical imaging
surface to obtain uniform coordinates. First, the coordinates of the rectified image of each separate
lens are transformed to the global coordinate system. Each pixel p (x, y) in the rectified images forms a
3D ray in the global coordinate system by Equation (6):

X′ = mRrXr + Tr. (6)

where Xr (x − x0, y − y0, f ) is the mono-camera coordinates of pixel p and the translation vector
Tr (Tx, Ty, Tz) and the local rotation matrix Rr are known, the latter can be calculated by the
following equation:

Rr =


cos Rz cos Ry cos Rz sin Ry sin Rx − sin Rz cos Rx cos Rz sin Ry cos Rx + sin Rz sin Rx

sin Rz cos Ry sin Rz sin Ry sin Rx + cos Rz cos Rx sin Rz sin Ry cos Rx − cos Rz sin Rx

−sinRy cos Ry sin Rx cos Ry cos Rx

(7)
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X′ (x′, y′, z′) is the coordinates transformed into the global panoramic coordinate system, and the scale
factor m defines the distance from the rectified image plane to the projection surface (typically a sphere
or cylinder). By combining Equations (5) and (6), we can resolve m and X′ for a sphere projection.

In the next step, the collinearity equation based on the multi-camera rig is established. As shown
in Figure 4b, the real 3D ray is through CuP′, instead of SuP, which can be vectorized as (X′ − Tr).
Translating the vector to the global camera coordinate system yields:

Tr + λ
(
X′ − Tr

)
= RT(P− T) (8)

Equation (8) would be the same as the sphere projection (4) when Tr is small enough and vanishing.
However, for the self-assembly panoramic camera whose Tr is too large to ignore, the panoramic
camera model is a better choice.

3. Line-Based Registration Method

To simplify the transformation in Equation (1), an auxiliary coordinate system is introduced,
which is close to the camera-centered coordinate system but still has ∆M bias. Using M1 and M2

in Figure 2, LiDAR point Pw is transformed in the world coordinate into the auxiliary coordinate P,
as is defined in Equation (9), which is further discussed below:

P =

[
R2 T2

0 1

][
R1 T1

0 1

]
Pw (9)

3.1. Transformation Model

Suppose a known line segment AB is given in the world coordinate (actually the auxiliary
coordinate in this paper). Its corresponding line in the panoramic image is detected as edge pixels.
The projection ray through the perspective panoramic camera center C, an edge pixel p on panoramic
image, intersects AB on point P, as illustrated in Figure 7. By letting the line be represented by the two
endpoints XA and XB, an arbitrary point P is defined using Equation (10):

P = XA + t(XB −XA) (10)

with t a scale factor along the line.

Sensors 2017, 17, 70 8 of 20 

 

In the next step, the collinearity equation based on the multi-camera rig is established. As shown 
in Figure 4b, the real 3D ray is through CuP′, instead of SuP, which can be vectorized as (܆ᇱ −  .(࢘ࢀ
Translating the vector to the global camera coordinate system yields: ࢘ࢀ + ′܆)ૃ − (࢘ࢀ = ࡼ)்ࡾ − (8) (ࢀ

Equation (8) would be the same as the sphere projection (4) when Tr is small enough and 
vanishing. However, for the self-assembly panoramic camera whose Tr is too large to ignore, the 
panoramic camera model is a better choice. 

3. Line-Based Registration Method 

To simplify the transformation in Equation (1), an auxiliary coordinate system is introduced, 
which is close to the camera-centered coordinate system but still has ΔM bias. Using M1 and M2 in 
Figure 2, LiDAR point Pw is transformed in the world coordinate into the auxiliary coordinate P, as 
is defined in Equation (9), which is further discussed below: ࡼ = ቂࡾ૛ ૛૙ࢀ ૚ ቃ ቂࡾ૚ ૚૙ࢀ ૚ ቃ(9) ࢝ࡼ 

3.1. Transformation Model 

Suppose a known line segment AB is given in the world coordinate (actually the auxiliary 
coordinate in this paper). Its corresponding line in the panoramic image is detected as edge pixels. 
The projection ray through the perspective panoramic camera center C, an edge pixel p on panoramic 
image, intersects AB on point P, as illustrated in Figure 7. By letting the line be represented by the 
two endpoints XA and XB, an arbitrary point P is defined using Equation (10): ࡼ = ࡭ࢄ + ࡮ࢄ)ݐ − (10) (࡭ࢄ

with t a scale factor along the line. 

 

Figure 7. Line-based transformation model on panoramic image. 

Substituting the object point P in Equation (10) to Equation (4) yields the line-based sphere 
camera model: ࢄߣ = ଵିࡾ ஺ࢄ)] − (ࢀ + ࡮ࢄ)ݐ − (11) [(࡭ࢄ

Further, Equations (2) and (3) are combined and P is substituted in Equations (10)–(8), yielding 
the line-based panoramic camera model: ࢘ࢀ + ᇱ܆)ߣ − (࢘ࢀ = ଵିࡾ ஺ࢄ)] − (ࢀ + ࡮ࢄ)ݐ − (12) [(࡭ࢄ

where X' can be obtained from Equation (6). The scalar parameter ߣ and the line parameter t are 
unknown. What we try to resolve is the rotation matrix R and translation T. 

Figure 7. Line-based transformation model on panoramic image.

Substituting the object point P in Equation (10) to Equation (4) yields the line-based sphere
camera model:

λX = R−1 [(XA − T) + t(XB −XA)] (11)
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Further, Equations (2) and (3) are combined and P is substituted in Equations (10)–(8), yielding
the line-based panoramic camera model:

Tr + λ
(
X′ − Tr

)
= R−1 [(XA − T) + t(XB −XA)] (12)

where X′ can be obtained from Equation (6). The scalar parameter λ and the line parameter t are
unknown. What we try to resolve is the rotation matrix R and translation T.

3.2. Solution

To get the best alignment between the two datasets, the non-linear least squares method is used to
solve the unknowns iteratively. Euclidean distance in the panoramic image coordinate system is used
as the similarity metric. Denoting the right-hand term in Equation (11) as

[
X Y Z

]T and combining
Equations (2) and (4), resulting Equation (13):

u =
[
tan−1

(
X
Y

)
·Wπ + W

]
· 12

v =

[
1− sin−1

(
Z√

X2
+Y2

+Z2

)
· 2

π

]
·H2

(13)

where (u, v) is the coordinates in the panoramic image coordinate system and (W,H) is the panoramic
image size.

In addition to the six orientation and translation values (X, Y, Z, ϕ, ω, κ), unknown line parameter
t must be estimated. Here the right terms are multivariate composite functions f u(R, T, t) and
f v(R, T, t). Given one pixel on the corresponding lines, the two equations in Equation (11) are formed
with one line-parameter t introduced. In order to solve the six unknowns, at least six points are needed.
If one point per line is used, six pairs of corresponding lines are needed; and if two points per line are
used, three pairs of corresponding lines are needed. More than two points on a line does not reduce
the rank deficiency but only increases the redundancy.

The equations of i-th pair of corresponding lines can be termed by

{
ui = fu(R, T, t)
vi = fv(R, T, t)

. Defining

a parameter vector X = (X, Y, Z, ϕ, ω, κ, t1, · · · , tn)
T for n pairs of corresponding lines, Equation (13)

is then expanded as Equation (14) after linearization by the Taylor series:
u = u0 + ∂ fu

∂X ·∆X + ∂ fu
∂Y ·∆Y + · · ·+ ∂ fu

∂tn
·∆tn

v = v0 + ∂ fv
∂X ·∆X + ∂ fu

∂Y ·∆Y + · · ·+ ∂ fv
∂tn
·∆tn

(14)

The above equation is expressed in matrix form as Equation (15):

V = A∆− L (15)

where ∆ = (∆XT , ∆YT , ∆ZT , ∆ϕ, ∆ω, ∆κ, ∆t1, · · · , ∆tn)
T and L = (L1; · · · ; Ln) with Li =(

ui − u0
i , vi − v0

i
)T . The coefficient matrix A(A1; · · · ; An). are defined as partial derivative of functions

fu and fv:

Ai =


∂ fu
∂X , ∂ fu

∂Y , ∂ fu
∂Z , ∂ fu

∂ϕ , ∂ fu
∂ω , ∂ fu

∂κ , ∂ fu
∂t1

, · · · , ∂ fu
∂tn

∂ fv
∂X , ∂ fv

∂Y , ∂ fv
∂Z , ∂ fv

∂ϕ , ∂ fv
∂ω , ∂ fv

∂κ , ∂ fv
∂t1

, · · · , ∂ fv
∂tn

 (16)

The results can be obtained by solving the normal equation ∆ =
(
ATA

)−1ATL. The unknowns X
are updated through X← X + ∆ iteratively until the elements of ∆ are less than a given threshold.
In order to assess the accuracy of the results, the standard deviation is calculated by Equation (17):
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m0 = ±

√
VTV

r
(17)

Here r is the number of redundant observations, r = (2 × n) − (n + 6). n is the number of pixels
involved in the transformation, and usually n = 2m with m pairs of corresponding lines. To handle
the mismatch between the LiDAR cloud lines and image lines as well as the occasional large biases
in GPS/IMU records, a RANSAC paradigm [29] is applied in iteration to remove the outliers in the
corresponding line segments from the LiDAR and the camera.

4. Line Feature Extraction from LiDAR

The insufficient density of LiDAR points in a low-cost configuration usually makes 3D line fitting
a challenge. The previous works about line extraction tend to use the intersection of two neighboring
unparalleled planar patches. However, the methods cannot work well in our case. There are only a
few intersections of planar patches in the dataset both due to the point cloud density and flat building
facades. Hence we fit linear features directly from cloud points. There are three types of objects
containing abundant linear features in the common street-view scenes: buildings, pole-like objects and
curbs. In this section, we introduce the methods to fit 3D straight lines from points belonging to the
three objects. It is noted that the line-fitting is based on the well classified 3D point cloud achieved by
the existing algorithms or software.

4.1. Buildings

Buildings provide the most reliable straight line features in street view. Given a mobile
LiDAR point cloud dataset P{pi|pi(xi, yi, zi)} of buildings, a group of 3D line segments
L
{

lj
∣∣lj
(

x0j, y0j, z0j; x1j, y1j, z1j
)}

can be obtained. The detection procedure consists of three
steps: (1) apply a region growing segmentation [44] on P and get a set of planar segments
S{sk|sk(ik1, ik2, · · · , ikn)}; (2) project the points onto the 3D plane model of segments sk (Figure 8a) and
detect the boundary points in each segment sk (Figure 8b); and (3) fit the boundary points into 3D
straight border lines with RANSAC (Figure 8c).
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4.2. Street Light Poles 
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Figure 8. Line segments fitting for building patch: (a) projected points; (b) boundary points; (c) fitting
lines using conventional least square method; and (d) fitting lines using regularity constraints.

In order to overcome the weakness of the traditional least-square regression method [45], certain
constraints are introduced: (1) lines must be through the outermost point, instead of the centroid;
(2) only the lines close to being vertical or horizontal are considered; and (3) only the lines having
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sufficient points are considered (Figure 8d). Compared to the line segments detected by [33] (Figure 8c),
the fitting lines with constraints are more reliable.

4.2. Street Light Poles

The pole-like segments are labeled and divided into separate objects by spatial connectivity and
presented by one or two arrays of points. A percentile-based pole recognition algorithm [46] is adopted
to extract the pole objects, which could exclude disrupting structures, such as a flowerbed at the bottom
of a light pole and non-pole elements such as lamps. The main steps of the algorithm are as follows:
(1) the segment is first sliced into subparts, for which 2D enclosing rectangles and centroids are
derived; (2) the deviation of the centroids between neighboring subparts is checked; (3) the diagonal
length of the rectangle is checked; (4) the neighboring subparts with the maximum length are kept.
The final fitting line segment is defined by the 2D centroids and the minimum and maximum Z values.
The fitting results are shown in Figure 9a.
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4.3. Curbs

Curbs are usually located at a height of 10–20 cm above the road surface and are designed to
separate the roads from the sidewalks. The density of the points on the ground is relatively high,
and the points on curbs present as narrow stripes which are vertical to the road surface [28]. A curb-line
can be approximated as the intersection of the vertical curb with the ground surface. In this paper,
the curb-lines in the following steps: (1) the points assigned as curbs are fitted into a plane parallel to
the Z-axis under a RANSAC method with direction constraint and the noises are filtered as outliers;
(2) the points are fitted into the 2D line segment in the OXY plane, (3) the height of the ground is used
as the Z value of the 2D line segment. The fitting results are shown in Figure 9b.

5. Experiments and Results

5.1. Datasets

The test data were collected on Hankou North Street in the northern part of Wuhan City and
included buildings, trees, poles, streets, and moving cars. Figure 10a shows the test area in Google
Earth, and Figure 10b shows the 3D point cloud of the test area containing about 1.2 million points,
which were previously classified and rendered by classification.
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Figure 10. Overview of the test data: (a) the test area in Google Earth; (b) 3D point cloud of the test area.

In both subfigures, the red dots are the driving path, and each of the dots is the location where
the panoramic camera exposed at an approximate spacing of 7.5 m. The GPS observations were
post-processed with RTK [47] technology and can reach an accuracy of up to 0.1 m.

We first extracted a number of three typical line features from the LiDAR dataset. Second, we
projected the lines to the rectified mono-images to obtain the corresponding 2D lines, followed by
a manual check for eliminating possible one-to-many uncertainty. Then, the proposed registration
approach based on the panoramic camera model was applied. A linear feature from LiDAR was
defined by two 3D endpoints; and a linear feature from an image was defined as a sequence of pixels in
which only two pixels were used in the transformation. Finally, the registration results were assessed
based on 2D and 3D visual comparison before and after registration, quantitative evaluation of check
points, and statistical evaluation of edge pixels and 3D boundary points.

As mentioned in Section 2.1, the MMS recorded the POS data of the vehicle when it captured an
image, while the exterior orientation parameters (EOP) of the camera relative to the vehicle platform
coordinate system were acquired in advance through system calibration. The EOP defined the position
and rotation of the camera at the instant of exposure with six parameters: three Euclidean coordinates
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(X, Y, Z) of the projection center and three angles of rotation (ϕ, ω, κ). Table 1 shows an example of the
POS data and the EOP, which correspond to M1(R1, T1) and M2(R2, T2), respectively, in Equation (9).

Table 1. POS of the vehicle platform and EOP of the camera aboard.

POS EOP

X (m) 38,535,802.519 −0.3350
Y (m) 3,400,240.762 −0.8870
Z (m) 762,11.089 0.4390
ϕ (◦) 0.2483 −1.3489
ω (◦) 0.4344 0.6250
κ (◦) 87.5076 1.2000

Table 2 shows the known parameters of the six cameras in the panoramic camera model. Rx, Ry, Rz

are the rotation angles about the X, Y and Z axes, and Tx, Ty, Tz are the translation along the X, Y and Z
axes. x0, y0 indicate the pixel location of the camera center, and f is the focal length. These parameters
and definitions of the coordinate systems are discussed in detail in Section 2. These parameters are
used in the line-based panoramic camera model (12).

Table 2. Parameters of mono-cameras in the panoramic camera model (image size is 1616 × 1232 in pixels).

Lens ID Rx
(Radians)

Ry
(Radians)

Rz
(Radians)

Tx
(m)

Ty
(m)

Tz
(m)

x0
(Pixels)

y0
(Pixels)

f
(Pixels)

0 2.1625 1.5675 2.1581 0.0416 −0.0020 −0.0002 806.484 639.546 400.038
1 1.0490 1.5620 −0.2572 0.0114 −0.0400 0.0002 794.553 614.885 402.208
2 0.6134 1.5625 −1.9058 −0.0350 −0.0229 0.0006 783.593 630.813 401.557
3 1.7005 1.5633 −2.0733 −0.0328 0.0261 −0.0003 790.296 625.776 400.521
4 −2.2253 1.5625 −0.9974 0.0148 0.0388 −0.0003 806.926 621.216 406.115
5 −0.0028 0.0052 0.0043 0.0010 −0.0006 0.06202 776.909 589.499 394.588

5.2. Registration Results

This section analyzes the registration results based on the panoramic camera model in
the following steps: registration, visual inspection, and quantitative and statistical evaluation.
For comparison purposes, the results from the spherical camera model are presented as well. Table 3
lists the registration results based on the spherical and panoramic camera models. Here the deltas are
the corrections after registration, which are the correction term in Equation (15). The root mean square
error (RMSE) is the assessment of registration accuracy, which is defined in Equation (17). Both RMSEs
were below five pixels. Given an object point 20 m away from the camera center, the error in the object
space was about 6 cm.

Table 3. Registration results based on the spherical and panoramic camera models.

Model
Spherical Panoramic

Deltas Errors Deltas Errors
X (m) −3.4372 × 10−2 1.1369 × 10−3 3.4328 × 10−2 1.0373 × 10−3

Y (m) 1.0653 1.2142 × 10−3 1.0929 1.0579 × 10−3

Z (m) 1.9511 × 10−1 9.9237 × 10−4 2.2075 × 10−1 8.0585 × 10−4

ϕ (◦) −1.2852 × 10−2 1.4211 × 10−3 −1.4731 × 10−2 1.0920 × 10−3

ω (◦) 5.8824 × 10−4 1.4489 × 10−4 1.5866 × 10−3 1.2430 × 10−3

κ (◦) −7.9019 × 10−3 8.4789 × 10−4 −6.7691 × 10−3 7.7509 × 10−4

RMSE (pixels) 4.718 4.244

Figure 11a,c are the panoramic images and the labeled LiDAR point cloud before registration,
and Figure 11b,d are those after registration with the panoramic camera model, which visually proved
that the proposed method effectively removed the displacement between the panoramic image and
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the LiDAR point cloud (see the borders of buildings in Lens ID 0–2, the two poles marked with yellow
pointers in Lens ID 3, and the windows in Lens ID 4).
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To quantitatively evaluate the registration results based on the panoramic camera model, we 
manually selected check points both in the LiDAR points and the images according to the following 
rules: (1) the check points must be correspondent and recognizable in both datasets; (2) the check 
points should be selected from stationary objects with sufficiently dense LiDAR points; and (3) the 
check points should be evenly distributed horizontally. As a result, 20 check points were selected (see 
Figure 12) in the 3D LiDAR point cloud and the panoramic image, whereas 28 corresponding points 
were selected on the rectified mono-camera images. Please note that there are more check points for 
images than for LiDAR points because the check points for the panoramic model in the overlapping 
areas appear twice in adjacent cameras. 
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Figure 11. Alignments of two datasets before and after registration based on the panoramic camera
model with lens id 0–4. (a,b) are the LiDAR points projected to a panoramic image before and after
registration respectively; (c,d) are the 3d point cloud rendered by the corresponding panoramic image
pixels respectively.

To quantitatively evaluate the registration results based on the panoramic camera model,
we manually selected check points both in the LiDAR points and the images according to the
following rules: (1) the check points must be correspondent and recognizable in both datasets;
(2) the check points should be selected from stationary objects with sufficiently dense LiDAR points;
and (3) the check points should be evenly distributed horizontally. As a result, 20 check points
were selected (see Figure 12) in the 3D LiDAR point cloud and the panoramic image, whereas 28
corresponding points were selected on the rectified mono-camera images. Please note that there are
more check points for images than for LiDAR points because the check points for the panoramic model
in the overlapping areas appear twice in adjacent cameras.
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Figure 12. Check points distribution shown on panoramic image. (The meaning of the Chinese
characters on the building is Supermarket for Logistics in Central China).

We projected all the check points to images to determine their 2D coordinates before and after
registration separately. Then, we calculated the Euclidean distances between the projected 2D points
and the image check points as residuals. According to Figure 13, both the spherical and panoramic
camera models reduced the residuals significantly, with the latter showing a slight advantage.
The average residuals decreased from 12.0 to 2.9 pixels with the panoramic camera model (Figure 13b),
and from 20.5 to 6.5 pixels with the spherical camera model (Figure 13a) after registration. The residuals
on most check points decreased substantially after registration, and a few of them showed minimal
change. The latter occurred for the checks points whose initial residuals were small enough before
registration, such as 1, 3, and 20.
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points and (b) the ID of the lens and check points (lens ID—check point ID).
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In order to further evaluate the overall effect of registration, we also calculated the statistical
value “overlap rate” of the linear features from the two datasets. For the panoramic image,
we adopted the EDISON edge detector [48] to extract the edge pixels, as shown in Figure 14a,
in which 8 × windows and 20 pixels were used as the min length of the lines to remove noise.
For the LiDAR points, we extracted the boundary points using 30 k-nearest neighborhoods, and the
results are shown in Figure 14b. From the figures, it can be seen that most of the geometric linear
features in the two datasets corresponded. At the same time, some disturbing elements were present,
such as the edges due to the color difference in the image and the points from missing data in the
LiDAR points.Sensors 2017, 17, 70 16 of 20 
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Figure 14. Linear features of the two datasets. (a) EDISON edge pixels in the panoramic image;
and (b) boundary points in LiDAR point cloud.

Figure 15 illustrates the “overlap rate” of the linear features from the two datasets.
First, we projected the 3D boundary points onto an image and determined the binary image
(see Figure 15b). Second, we performed the Overlap and Union operation on the two binary images
(see Figure 15a,b) to determine the overlap binary image (see Figure 15c) and the union binary image
(see Figure 15d). We then counted the number of non-zero pixels in both binary images: the number in
the overlap binary image is no, and the number in the union binary image is nu. Finally, we defined the
overlap rate as follows:

r = no/nu (18)

If the alignment of the image and the LiDAR point cloud improves, there will be more overlapping
linear features, which means no will increase while nu will decrease and the overlap rate will increase
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after efficient registration. The results in Table 4 show that all of the overlap rates slightly increased up
to 2% after registration. Among the five lenses, Len ID 1 showed the most significant improvement,
mainly because part of the image captured by Len ID 1 was a facade containing many linear elements
(see Figure 5).Sensors 2017, 17, 70 17 of 20 
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Table 4. Overlap rate based on the panoramic camera model before and after registration.

Lens ID Before (%) After (%)

0 7.80 8.29
1 8.31 10.30
2 11.32 11.83
3 9.84 9.90
4 7.42 7.54

6. Conclusions

This paper proposed a line-based registration approach for panoramic images and LiDAR point
clouds collected by a MMS. We first established the transformation model between the primitives from
the two datasets in the camera-centered coordinate system. Then, we extracted the primitives (three
typical linear features) in street view from LiDAR automatically and from panoramic images through
a semi-automation process. Using the extracted features, we resolved the relative orientations and
translations between the camera and LiDAR.

Compared with other related works, the main contribution of this study is that it focused on the
registration between LiDAR and the panoramic camera, which is widely used in a MMS instead of
a conventional frame camera. Two types of camera models (spherical and panoramic) were utilized
in our registration. The experimental results show that both models were able to remove obvious
misalignment between the LiDAR point cloud and the panoramic image. However, the panoramic
model achieved better registration accuracy. It is suggested that a suitable camera model may need
to be chosen for certain data fusion tasks. For example, for rendering a LiDAR point cloud with
acceptable misalignment, the spherical camera model would be adequate while the panoramic camera
model may be necessary for high level fusion tasks such as facade modeling.

There are ways to further improve the registration accuracy and automation of the proposed
method in future work. First, the errors from the LiDAR point cloud itself could not be overlooked.
In our case, the LiDAR points were collected by three laser scanners, whose calibration errors also
influenced the registration accuracy. Moreover, finding reliable correspondences between different
datasets may need to use local statistical similarity such as mutual information. In addition to
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geometrical features, utilizing the physical attributes of LiDAR, such as intensity, is also a future
research topic.
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