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Abstract:



Ground reaction forces and moments (GRF&M) are important measures used as input in biomechanical analysis to estimate joint kinetics, which often are used to infer information for many musculoskeletal diseases. Their assessment is conventionally achieved using laboratory-based equipment that cannot be applied in daily life monitoring. In this study, we propose a method to predict GRF&M during walking, using exclusively kinematic information from fully-ambulatory inertial motion capture (IMC). From the equations of motion, we derive the total external forces and moments. Then, we solve the indeterminacy problem during double stance using a distribution algorithm based on a smooth transition assumption. The agreement between the IMC-predicted and reference GRF&M was categorized over normal walking speed as excellent for the vertical (ρ = 0.992, rRMSE = 5.3%), anterior (ρ = 0.965, rRMSE = 9.4%) and sagittal (ρ = 0.933, rRMSE = 12.4%) GRF&M components and as strong for the lateral (ρ = 0.862, rRMSE = 13.1%), frontal (ρ = 0.710, rRMSE = 29.6%), and transverse GRF&M (ρ = 0.826, rRMSE = 18.2%). Sensitivity analysis was performed on the effect of the cut-off frequency used in the filtering of the input kinematics, as well as the threshold velocities for the gait event detection algorithm. This study was the first to use only inertial motion capture to estimate 3D GRF&M during gait, providing comparable accuracy with optical motion capture prediction. This approach enables applications that require estimation of the kinetics during walking outside the gait laboratory.
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1. Introduction


Assessment of ground reaction forces and moments (GRF&M) is an important stage in the biomechanical analysis procedure. Conventionally, these measures are recorded using force plate (FP) systems, which, despite their high accuracy, have several significant limitations [1]. Firstly, the fixed position of the plates on the ground together with the requirement to step with the whole foot on the plate for a successful measurement may cause subjects to alter their natural gait pattern. Moreover, due to their high cost, most laboratories are equipped with one or a couple of FPs, which makes tracking many successive steps during overground walking impossible. In addition, the measurements are bounded by the laboratory space and cannot be performed outside this area, for example during daily life activities.



Towards ambulatory assessment of kinetics, previous studies have suggested the use of either pressure insoles [2,3,4] or instrumented force shoes [5,6]. The main difference between these two systems is that the former measures only a pressure distribution in the shoe, whereas the latter measures directly three-dimensional forces applied beneath the shoe. Such devices have enabled ambulatory estimation of ankle kinetics [7] and knee kinetics [8], in combination with inertial measurement units (IMUs) and linked segment models. Although these methods are ambulatory and have estimated GRF&M with relative RMS errors of [image: there is no content] [9], they suffer from certain limitations. The low durability and repeatability of the pressure insoles result in a drop in the reliability of the results [10]. As for the instrumented force shoe, it has been suggested that optimization is needed to decrease the size and weight of its wearable instrumentation and make it practical for recording sessions of extended durations [11,12].



Recent advances in biomechanical analysis techniques are allowing the estimation of GRF&M using only kinematic data [13,14,15,16,17,18,19]. When applied to gait analysis, a common problem that needs to be addressed is the distribution of the total external force and moment during periods of double foot support. Several methods have been previously proposed. Two studies proposed approaches based on artificial neural networks to determine the distribution of forces and moments [14,15]. Recently, another approach used a musculoskeletal model-based technique in which a dynamic contact model is used to solve the indeterminacy problem, without using training data [16,17,18]. In another study, Ren et al. introduced a distribution function called the smooth transition assumption, which is based on the observation that the GRF&M on the trailing foot change smoothly towards zero during the double stance phase of gait [19]. The latter assumption was further validated and adjusted to decompose the right and left GRF&M measured from a single force plate [20]. That study pointed out a limitation of the original smooth transition assumption, in which the center of pressure remains constant during the double support due to the use of the same functions for both horizontal moments and vertical force.



To apply kinetics prediction methods to kinematic data, most of the existing research uses optical motion capture (OMC). However, the increased accuracy and reduced size, power and cost of IMUs have enabled the assessment of segment orientation [21] and later full-body motion capture in laboratory-free settings. This technique delivers good accuracy in estimating human body kinematics, such as joint angles [22], and has been previously validated versus optical motion capture estimates [23]. Only a few studies have attempted to assess kinetics from kinematics using such inertial motion capture (IMC) systems. In a recent study, a top-down inverse dynamics approach was applied to estimate GRF&M and L5/S1 joint moments during trunk bending [24]. Another study used IMUs to estimate the joint forces and moments during ski jumping [25]. The common limitation of those studies is that they examined only the total external loads applied on both feet and are, therefore, inapplicable to gait analysis.



Therefore, the aim of this study was to develop a computational method to predict GRF&M, using only IMC-derived kinematics during gait. The method was evaluated for three walking speeds, by comparing the predicted GRF&M with the results of FP measurements. In addition, we performed two sensitivity analyses to investigate the effect of cut-off frequency on the estimated GRF&M, as well as to validate the choice of threshold velocities used in the gait event detection algorithm.




2. Methods


2.1. Experimental Protocol


Eleven (11) healthy male volunteers (age: 30.97 ± 7.15 years; height: 1.81 ± 0.06 m; weight: 77.34 ± 9.22 kg; body mass index (BMI): 23.60 ± 2.41 kg/m2) participated in the measurements performed at the Human Performance Laboratory, at the Department of Health Science and Technology, Aalborg University, Aalborg, Denmark. The experiment was performed in accordance with the ethical guidelines of The North Denmark Region Committee on Health Research Ethics, and participants provided full written informed consent, prior to the experiment.



The core system used in this study is an IMC system (Xsens MVN Link, Xsens Technologies BV, Enschede, The Netherlands [26]) powered by the matching software (Xsens MVN Studio version 4.2.4), delivering data at 240 Hz. The 17 IMU modules were mounted on a tight-fitting Lycra suit on the following segments: head, sternum, pelvis, upper legs, lower legs, feet, shoulders, upper arms, forearms and hands [22,27] (Figure 1). In addition, an OMC system, including eight infrared high-speed cameras (Oqus 300 series, Qualisys AB, Gothenburg, Sweden [28]), was used to capture 53 retro-reflective markers mounted on the body. The placement of the markers on the body is shown in Figure A1 and described in Table A1 in the Appendix section. Furthermore, three FPs (AMTI, Advanced Mechanical Technology, Inc., Watertown, MA, USA), embedded in the floor of the laboratory, recorded GRF&Ms (Figure 2). A combination of the OMC and FP systems (lab-based system) was used as a reference for comparison to the IMC-derived GRF&M predictions. To synchronize the IMC-based and lab-based systems, the Xsens sync station was used. The sampling frequency of the camera-based system was set to 240 Hz and that of FPs to 2400 Hz.


Figure 1. The definition of the 23 segments in the kinematic model of Xsens MVN. An inertial measurement unit is mounted on each of the 17 segments indicated with bold text. The 5 new segments (red italic font) are formed by the combination of MVN segments (within dashed-lined boxes) to match the segment definitions of De Leva [29].



[image: Sensors 17 00075 g001]





Figure A1. A subject in the wearable instrumentation, indicating the placement of the 53 retroreflective markers on the human body segments. All markers apart from clavicle, sternum and C7 are placed on the left side in a mirrored way.



[image: Sensors 17 00075 g008]





Figure 2. The three AMTI force plate system used, denoting the coordinate system of the laboratory. The vertical axis (z) points upwards, perpendicular to the anterior (x) and lateral (y) axes.



[image: Sensors 17 00075 g002]






Table A1. Marker protocol, indicating the marker labels and placement locations on the human body.







	
Label

	
Placement

	
Label

	
Placement




	
Right

	
Left

	
Right

	
Left

	
Center






	
RHDA

	
LHDA

	
Head Anterior

	
RKNL

	
LKNL

	

	
Knee Lateral Epicondyle




	
RHDP

	
LHDP

	
Head Posterior

	
RKNM

	
LKNM

	

	
Knee Medial Epicondyle




	
RSHO

	
LSHO

	
Acromio-clavicular Joint

	
RSHS

	
LSHS

	

	
Shank Superior




	
RUPA

	
LUPA

	
Triceps Brachii

	
RSHI

	
LSHI

	

	
Shank Inferior




	
RELB

	
LELB

	
Elbow Lateral Epicondyle

	
RSHL

	
LSHL

	

	
Shank Lateral




	
RWRL

	
LWRL

	
Radial Styloid

	
RANL

	
LANL

	

	
Lateral malleolus




	
RWRM

	
LWRM

	
Ulnar Styloid

	
RANM

	
LANM

	

	
Medial malleolus




	
RFIL

	
LFIL

	
Second Metacarpal Head

	
RTOM

	
LTOM

	

	
First Metatarsal




	
RFIM

	
LFIM

	
Fifth Metacarpal Head

	
RTOE

	
LTOE

	

	
Third Metatarsal




	
RASI

	
LASI

	
Anterior Superior Iliac Spine

	
RTOL

	
LTOL

	

	
Fifth Metatarsal




	
RPSI

	
LPSI

	
Posterior Superior Iliac Spine

	
RHEE

	
LHEE

	

	
Calcaneus




	
RTHS

	
LTHS

	
Thigh Superior

	

	

	
C7

	
Seventh Cervical Vertebrae




	
RTHI

	
LTHI

	
Thigh Inferior

	

	

	
CLAV

	
Jugular Notch




	
RTHL

	
LTHL

	
Thigh Lateral

	

	

	
STRN

	
Xiphoid Process of the Sternum










Before starting the recordings, the body dimensions of each subject were assessed and applied in the Xsens MVN software. Particularly, the heights of the ankle, knee, hip and top of head from the ground, the widths of the shoulder and pelvis, as well as the length of the foot were measured using a conventional tape with the subject in an upright posture [30]. These measurements were used to calibrate the IMC system using a steady upright posture, known as the neutral pose or n-pose [22]. The software classifies the quality of the calibration as “poor”, “fair”, “acceptable” or “good” based on the steadiness of the subject and the homogeneity of magnetic field around the IMUs at the time of the calibration. The calibration process was repeated before each set of walking speed trials and until the indication “good” was achieved in all cases, to maximize the quality of IMC.



Between the completion of the instrumentation setup and the start of the measurements, the subjects were given a five-minute acclimatisation period, to feel comfortable in the wearable equipment. Throughout the whole experiment, subjects remained barefoot, without wearing any type of footwear, apart from a thin strap wrapped around each foot to firmly mount the inertial measurement unit on these segments.



Gait at a self-selected normal (NW), fast (FW) and slow (SW) speed were measured. FW and SW speeds were instructed to the subjects as at least 20% higher or lower than their mean baseline NW speed, respectively. Particularly, the actual mean walking speeds performed were [image: there is no content] m/s for NW, [image: there is no content] m/s for FW (NW + 23%) and [image: there is no content] m/s for SW (NW − 33%). To prevent the generation of additional external forces, the use of handrails or contact with any other external objects was not allowed. Before each task was recorded, subjects were given oral instructions and practiced the respective movement patterns. At least five successful trials per walking speed were obtained. A trial was considered successful when the right (left) foot hit one of the FPs completely, followed by a complete hit of the left (right) foot on the next FP. This definition ensures that FPs capture both right and left feet successfully within a stride.




2.2. Data Processing: IMC System


Xsens MVN estimates the orientation of segments by combining the orientations of individual IMUs with a biomechanical model of the human body. The orientation of each IMU is obtained by fusing accelerometer, gyroscope and magnetometer signals using an extended Kalman filter [31]. To relate the sensor orientations to segment orientations, a sensor-to-segment calibration procedure is performed. In this procedure, called n-pose, the subject is asked to stand in a known n-pose for a few seconds. The estimated transformation is applied and considered constant during a recording session.



We developed a program in MATLAB to assess the kinetic values from IMC-derived kinematics. By default, Xsens MVN Studio uses 17 IMU sensors to derive the kinematics of 23 segments as shown in Figure 1. Due to lack of literature reporting inertial parameters and relative center of mass positions for these exact segments, the original kinematic model has been adjusted to match the definitions of the 16-segment model reported by De Leva, 1996. To achieve this adaptation, 5 new rigid body segments were defined by merging specific given segments:

	
Head-neck segment, formed by constraining the relative movement between head and neck segments. Kinematics were derived from the orientation of the IMU mounted on the head.



	
Upper trunk segment, formed by constraining the relative movement between T8 and T12, T8 and right shoulder and T8 and left shoulder segments. Kinematics were derived from the orientation of the IMU mounted on the sternum.



	
Middle trunk segment, formed by constraining the relative movement between L3 and L5 segments. Kinematics were derived from interpolation between the upper trunk and pelvis segment.



	
Foot-toe, formed by constraining the relative movement between foot and toe segments. Kinematics were derived from the orientation of the IMU mounted on the foot.








The segment definitions of the pelvis, upper legs, lower legs, hands, forearms and upper arms remained unchanged (Figure 1; Table 1).



Table 1. Segments used in the 16-segment body biomechanical model, as described by De Leva [29], and the corresponding segments derived from the kinematic model of Xsens MVN Studio. The table includes the segment mass ratios (m), the longitudinal position of the center of mass in each segment ([image: there is no content]), as well as the radii of gyration ratios ([image: there is no content], [image: there is no content], [image: there is no content]).







	
De Leva 1996

	
Xsens MVN

	
m (%)

	
[image: there is no content] (%)

	
[image: there is no content] (%)

	
[image: there is no content] (%)

	
[image: there is no content] (%)




	
Definition

	
Equivalent






	
Head

	
Head + Neck

	
6.94

	
50.02

	
30.3

	
31.5

	
26.1




	
Upper Trunk

	
T8 + T12 + Shoulders

	
15.96

	
50.66

	
50.5

	
32

	
46.5




	
Middle Trunk

	
L5 + L3

	
16.33

	
45.02

	
48.2

	
38.3

	
46.8




	
Pelvis

	
Pelvis

	
11.17

	
61.15

	
61.5

	
55.1

	
58.7




	
Upper Arm

	
Upper Arm

	
2.71

	
57.72

	
28.5

	
26.9

	
15.8




	
Forearm

	
Forearm

	
1.62

	
45.74

	
27.6

	
26.5

	
12.1




	
Hand

	
Hand

	
0.61

	
36.24

	
28.8

	
23.5

	
18.4




	
Upper Leg

	
Upper Leg

	
14.16

	
40.95

	
32.9

	
32.9

	
14.9




	
Lower Leg

	
Lower Leg

	
4.33

	
43.95

	
25.1

	
24.6

	
10.2




	
Foot

	
Foot + Toe

	
1.37

	
44.15

	
25.7

	
24.5

	
12.4










For the analysis, two coordinate systems were defined:

	
the global coordinate system of the IMC system ([image: there is no content]), in which the anterior axis points to the magnetic north, the vertical axis matches the direction of the gravitational acceleration and the lateral axis perpendicular to these axes, such that a right-handed coordinate frame is formed



	
the walking coordinate system ([image: there is no content]), which is defined by the same vertical, but has the anterior axes pointing in the walking direction, which means the difference between the two systems is only a rotation around the vertical; the walking direction was derived from known initial and final positions of the pelvis segment and assuming that the subjects walked approximately in a straight line throughout the trial








Knowing the kinematics and inertial properties of the segments of the biomechanical model, we estimated the total external force based on the Newton equations of motion:


[image: there is no content]



(1)




where [image: there is no content] denotes the total three-dimensional external force, N the total number of segments, [image: there is no content] the mass of each segment, [image: there is no content] the linear acceleration in the center of mass of each segment and [image: there is no content].



In a similar way, we calculated the total external moment from Euler’s equation:


[image: there is no content]



(2)




where [image: there is no content] denotes the total three-dimensional external moment, [image: there is no content] the number of end points in each segment (joints and external contact points), [image: there is no content] and [image: there is no content] the angular velocities and angular accelerations of each segment, respectively. The inertia tensor around the center of mass of each segment is denoted by [image: there is no content], the position vectors between the center of mass and the end points denoted by [image: there is no content] and the resultant force in the end points of each segment described by [image: there is no content]. All variables are expressed in the global coordinate system of the IMC system ([image: there is no content]).



Segment linear accelerations exported from the Xsens MVN Studio software were expressed in the origin of each segment as described in detail in the manual of the IMC system [22]. To apply these variables in Equation (1), a translation to the segment’s center of mass was required, defined as:


[image: there is no content]



(3)







The position vectors between the center of mass and the origin of each segment [image: there is no content] and the inertial parameters of the body segments [image: there is no content] and [image: there is no content] were calculated through scaled anthropometric data, based on adjustments to Zatsiorsky–Seluyanov’s inertial parameters reported by De Leva [29]. The total body mass of the subjects includes their actual body mass plus the mass of the wearable instrumentation. The added mass of the inertial motion capture system was in total 390 g (seventeen IMUs of 10 g each, one wireless communication pack of 150 g and one battery of 70 g). These additional masses were initially subtracted from the total measured mass before calculating the net mass of each segment and then added individually to each of the corresponding body segments. The resulting mass was input to the calculation of the moment of inertia from the radii of gyration. The effect of the wearable equipment in the radii of gyration was assumed to be negligible.



Segment angular velocities [image: there is no content], angular accelerations [image: there is no content] and linear accelerations of the origins [image: there is no content], provided by Xsens MVN software, were filtered using a second-order Butterworth zero-phase low-pass filter with a cut-off frequency of 6 Hz.



Our major assumption was that the GRF&Ms are the only significant external loads present. Thus, the total external force (moment) derived from Newton (Euler) equations of motion (Equations (1) and (2)) balances the sum of forces (moments) applied on both left and right lower limbs:


[image: there is no content]



(4)




and


[image: there is no content]



(5)




where [image: there is no content] ([image: there is no content]) and [image: there is no content] ([image: there is no content]) are the ground reaction forces (moments) applied on the left and right foot, respectively.



During the single support phase, the result of the computation is the GRF&M applied on the foot, which is in contact with the ground. The resulting GRM is expressed about the external contact point on that foot, which is chosen as the projection of the ankle joint on the ground. However, during the phase of double support, the system of equations is indeterminate. To overcome this, we applied a distribution algorithm based on a smooth transition assumption function ([image: there is no content]), which was constructed from empirical data similarly to previous studies [19,20]. The curves of the measured GRF&M during the second double support phase were averaged for all steps. Subsequently, a cubic spline interpolation function was used to generate the [image: there is no content]. The generated function curves were compared to the ones proposed by Ren et al. [19] and shown in Figure 3. A direct comparison to the function of Villeger et al. [20] was not possible, because that study calculated the GRM about a fixed point on the plate and not with respect to the body.


Figure 3. The curves of the smooth transition assumption function for the three GRF components ([image: there is no content], three graphs on the top) and three GRM components ([image: there is no content], three graphs on the bottom) used to distribute the total external force and moment among the two feet. Figure illustrates the curve of the GRF&Ms of the right foot between the events of left heel strike and right toe off (second double stance phase) expressed in the coordinate system defined by the walking direction. Continuous lines indicate the curves obtained from the average values across all subjects and trials of our dataset, whereas dashed lines indicate the curves proposed by Ren et al. [19].



[image: Sensors 17 00075 g003]






The distribution function [image: there is no content] was expressed in the coordinate system [image: there is no content]. Since the input variables of the Newton–Euler equations were expressed in [image: there is no content], the same applied to the calculated vectors [image: there is no content] and [image: there is no content]. Therefore, before applying the distribution function, we rotated the force and moment vectors from the coordinate system [image: there is no content] to [image: there is no content], resulting in two new vectors [image: there is no content] and [image: there is no content]. The GRF&Ms applied on the left and right lower limbs are shown in Table 2, where [image: there is no content] and [image: there is no content] are the components of [image: there is no content] for the GRF and GRM, respectively. Both functions depend on time [image: there is no content] relative to the timing of gait events denoted by [image: there is no content], [image: there is no content] for heel-strike and [image: there is no content], [image: there is no content] for toe-off events for the right or left lower limb, respectively. The behavior of the components of [image: there is no content] and [image: there is no content] that was used in this implementation is illustrated in Figure 3.



Table 2. The calculation of the left and right GRF&Ms for each phase of the gait cycle. During single support, the GRF&M of the limb in contact with the ground is equal to the result of the Newton–Euler calculation ([image: there is no content],[image: there is no content]), whereas during the double support phase, this result is distributed among legs based on the gait-event-dependent three-dimensional smooth transition assumption functions for the forces ([image: there is no content]) and moments ([image: there is no content]).







	
Variable

	
First Double Stance

	
Right Single Stance

	
Second Double Stance

	
Left Single Stance




	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]






	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]




	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]




	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]




	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]










To distinguish between the phases of single and double stance, we used a gait event detection algorithm based on a threshold in the norm of the velocities of the heel ([image: there is no content]) and the toe ([image: there is no content]). The positions of the heel and toe points were provided by Xsens MVN Studio, and the velocity threshold ([image: there is no content]) was set equal to the norm of the average velocity of the pelvis segment for each trial. The state of the gait cycle at time t is shown in Figure 4.


Figure 4. A state machine to detect the current state of the gait cycle, based on the previous state and a condition on the velocity of the heel or toe. The velocity [image: there is no content] is equal to the norm of the average velocity of the pelvis segment for each trial.



[image: Sensors 17 00075 g004]






An overview of the algorithmic steps used in our study is shown in Figure 5.


Figure 5. Block diagram of the algorithm used to estimate the GRF&M from anthropometry and inertial motion capture. [image: there is no content] = position, [image: there is no content] = velocity, [image: there is no content] = acceleration, ω = angular velocity, [image: there is no content] = angular acceleration, [image: there is no content] = force, [image: there is no content] = moment, t = time, d = anthropometric dimensions, m = mass, [image: there is no content] = radius of gyration, [image: there is no content] = inertia tensor. Superscript “[image: there is no content]” indicates quantities derived directly from the IMC system, and w denotes quantities expressed in the coordinate system defined by the walking direction. Subscript i indicates a variable of the i-th segment. Additional subscript o denotes that a linear variable is expressed in the origin of the segment, whereas no additional subscript denotes that it is expressed in the center of mass of the segment. Subscript [image: there is no content] = external, R = right, L = left.



[image: Sensors 17 00075 g005]







2.3. Data Analysis: Reference Lab System


The Qualisys Track Manager 2.2 software package was used to process the three-dimensional positions of the markers and the GRF&Ms recorded using the FPs [28]. For each subject, a model for the automatic identification of markers was created, to assist the marker labeling across trials, and gaps were filled in the missing marker trajectories using a visual preview option. The marker trajectories were filtered using a second-order, zero-phase Butterworth low-pass filter with a cut-off frequency of 6 Hz, following the recommendations of the literature [1]. A biomechanical model composed of 16 segments, as described in Table 1, was constructed from the marker trajectories, with segment coordinate frames based on recommendations of the International Society of Biomechanics [32,33]. A custom script was developed in MATLAB R2015a (The MathWorks Inc.; Natick, MA, USA) to downsample the measured GRF&Ms by a factor of 10 to match the sampling rate of the OMC system. Similarly to Ren et al. [19], no filtering was applied to the processed GRF&Ms.



To compare the OMC data with the IMC data, all quantities expressed in the OMC lab coordinate frame ([image: there is no content]) were rotated to the coordinate frame based on the walking direction ([image: there is no content]). Similar to the transformation applied to the IMC, [image: there is no content] is defined by a rotation around the vertical of [image: there is no content], and the walking direction was derived from known initial and final positions of the pelvis segment.



In addition, the timing of the reference gait events (heel strike and toe-off) was identified and logged automatically, using a 5 N threshold on the vertical force measured by each FP. The steps that were only partially captured by the FPs were recognized and excluded based on the horizontal positions of the heel and toe markers during gait events. Due to the limited number of FPs, heel strike events used to denote the end of the gait cycle were not always available directly from the force data. In such cases, a velocity-based gait event detection, driven by the marker data, was used, similarly to Figure 4. The method performed with an error of 12 ± 10 ms in heel strike detection across all walking speeds.



The ground reaction force (GRF) was normalized to body weight and the ground reaction moment (GRM) to body weight times body height. In addition, for each step, the time was normalized to 100% of the gait cycle, defined by two consecutive heel contacts of the same foot. Finally, the six components of the measured and predicted GRF&Ms were compared, per walking speed and in total. The GRM was calculated about the projection of the ankle joint on the ground.



To evaluate the accuracy of our method, we used absolute (RMSE) and relative (rRMSE) root mean square errors, as defined by Ren et al. [19]. The agreement between the measured and predicted data normalized to the gait cycle was derived from Pearson’s correlation coefficients, which were categorized as weak [image: there is no content], moderate [image: there is no content], strong [image: there is no content] and excellent [image: there is no content], according to previous studies [16,34].



Furthermore, we calculated the curve magnitude (M) and phase (P) percentage differences, based on the technique proposed by Sprague and Geers [35]. Out of 525 measured steps in total, 432 valid steps were included, and 93 steps were excluded due to incomplete stepping on the FPs.



In addition to the analysis over a whole gait cycle, we calculated the ρ, RMSE and rRMSE of the GRF&M throughout three sub-phases:

	
DS1: first double stance phase of the ipsilateral foot, between a heel strike of the ipsilateral foot and a toe-off of the contralateral foot.



	
DS2: second double stance phase of the ipsilateral foot, between a heel strike of the contralateral foot and a toe-off of the ipsilateral foot.



	
SS: single stance phase of the ipsilateral foot, between a toe-off of the contralateral foot and heel strike of the contralateral foot.








Moreover, we analyzed the absolute and relative peak differences between the predicted and measured curves. The stance phase has been divided into three phases: early stance [image: there is no content], middle stance [image: there is no content] and late stance [image: there is no content], where [image: there is no content] is the duration of the stance phase and t is the time initialized at the beginning of each stance phase. Within these phases, the following peaks have been sought for both predicted and measured values:

	
In the early stance (ES) phase: the maximum values of lateral and vertical GRF and minimum value of anterior GRF.



	
In the middle stance (MS) phase: the minimum value of the vertical GRF.



	
In the late stance (LS) phase: the maximum values of the GRF components and transverse GRM and the minimum values of frontal and sagittal GRM components.








Finally, we compared the center of pressure (COP) and frictional torque estimates to the FP measurements. To derive these values for the right foot, we used the following equations:


[image: there is no content]



(6)






[image: there is no content]



(7)






[image: there is no content]



(8)






[image: there is no content]



(9)




where [image: there is no content] and [image: there is no content] are the anterior and lateral positions of the center of pressure on the ground with respect to the projection of the right ankle joint on the ground. [image: there is no content] is the frictional torque, [image: there is no content], [image: there is no content] and [image: there is no content] the anterior, lateral and vertical GRF, respectively, and [image: there is no content], [image: there is no content] and [image: there is no content] the frontal, sagittal and transverse GRM, respectively, calculated about the projection of the right ankle joint on the ground. The COP was calculated and analyzed per foot during stance phase, when [image: there is no content] was greater than 5 N. In the same way, the calculations for the left foot were performed. All variables are used in the equations individually for both right and left foot and are expressed in the coordinate system [image: there is no content].



In our implementation, the estimates of GRF&M depend highly on the performance of the gait event detection. Particularly, during the double support phase, the GRF&Ms applied on the ipsilateral foot are driven by the smooth transition assumption function. This is represented by a curve, which is based on the magnitude of each GRF&M component during the last single support frame and assumes zero magnitude on the last frame of double support. Thus, we evaluated the sensitivity of the heel strike and toe-off detection while using the original thresholds, compared to 10% higher and 10% lower than that.



We additionally performed a sensitivity analysis to investigate the effect of the selection of the cut-off frequency used in the second-order Butterworth low-pass filter. The change in the root mean square errors of each component of the GRF&M was used to indicate the impact of the selection in the final estimates.





3. Results


3.1. Accuracy Analysis


The curves of the GRF&M throughout a whole gait cycle during normal walking, estimated via IMC and OMC, are depicted in Figure 6 and Figure 7, respectively.


Figure 6. Ground reaction forces and moments (GRF&M) estimated using IMC (mean (thin grey line) ±1 SD around mean (shaded area)), compared with measured FP data (mean (thick black line) (±1 SD (thin black lines)) during normal walking. Curve magnitudes are normalized to body weight and body weight times body height for the GRF and GRM, respectively. Averaged over right and left steps of all 11 subjects.



[image: Sensors 17 00075 g006]





Figure 7. Ground reaction forces and moments (GRF&M) estimated using OMC (mean (thin grey line) ±1 SD around mean (shaded area)), compared with measured FP data (mean (thick black line) (±1 SD (thin black lines)) during normal walking. Curve magnitudes are normalized to body weight and body weight times body height for the GRF and GRM, respectively. Averaged over right and left steps of all 11 subjects.



[image: Sensors 17 00075 g007]






Table 3 shows the results of the GRF analyzed throughout a whole gait cycle for both the IMC and OMC solutions. Overall, a similar performance by both systems can be observed for all metrics. Small differences were found in the anterior GRF where OMC provided higher accuracy (OMC: rRMSE = 7.4%, IMC: rRMSE = 9.4%). In contrast, similarly small differences were found in the lateral GRF, where IMC performed better. Table 4 shows the GRF estimates during the first and second double stance phase, as well as during the single support. Since the analysis is performed over a smaller period, higher absolute and relative errors are observed. Excellent correlations were found in all phases for both anterior and vertical GRF. The lateral GRF also presented excellent correlation during the second double support phase and strong correlations in the first double support phase. However, during the single support phase, the correlation is moderate and weak for IMC and OMC, respectively.



Table 3. Comparison of ground reaction forces (GRF) estimated from inertial motion capture and optical motion capture versus force plate measurements. ρ = Pearson’s correlation coefficient, RMSE = root mean square error in N/BW, rRMSE = relative root mean square error (%), M = curve magnitude difference (%) and P = phase difference (%). Results are analyzed during normal (NW), slow (SW) and fast walking (FW) for the decomposed right and left GRF.







	

	
Inertial Motion Capture

	
Optical Motion Capture




	

	
NW

	
SW

	
FW

	
NW

	
SW

	
FW






	

	
ρ




	
Anterior

	
0.965

	
0.955

	
0.950

	
0.977

	
0.974

	
0.977




	
Lateral

	
0.862

	
0.853

	
0.821

	
0.814

	
0.814

	
0.757




	
Vertical

	
0.992

	
0.990

	
0.986

	
0.993

	
0.991

	
0.987




	

	
RMSE




	
Anterior

	
0.034 (0.007)

	
0.036 (0.012)

	
0.047 (0.011)

	
0.028 (0.005)

	
0.029 (0.007)

	
0.034 (0.006)




	
Lateral

	
0.017 (0.003)

	
0.018 (0.005)

	
0.022 (0.004)

	
0.017 (0.003)

	
0.018 (0.005)

	
0.022 (0.004)




	
Vertical

	
0.063 (0.035)

	
0.075 (0.039)

	
0.090 (0.040)

	
0.058 (0.031)

	
0.067 (0.027)

	
0.081 (0.025)




	

	
rRMSE




	
Anterior

	
9.4 (2.5)

	
10.4 (3.2)

	
10.9 (3.1)

	
7.4 (1.5)

	
8.0 (1.9)

	
7.5 (1.3)




	
Lateral

	
13.1 (2.8)

	
13.8 (3.3)

	
14.6 (3.1)

	
14.2 (2.9)

	
14.2 (3.3)

	
15.5 (4.0)




	
Vertical

	
5.3 (3.1)

	
6.3 (3.3)

	
6.9 (3.0)

	
4.8 (2.7)

	
5.5 (2.2)

	
6.1 (1.8)




	

	
M




	
Anterior

	
−26.0 (10.5)

	
−28.8 (10.5)

	
−30.2 (9.9)

	
9.5 (3.2)

	
10.5 (3.5)

	
11.0 (3.1)




	
Lateral

	
23.1 (10.7)

	
24.6 (15.9)

	
28.8 (13.2)

	
14.1 (3.5)

	
14.7 (4.3)

	
16.1 (5.3)




	
Vertical

	
−1.0 (2.4)

	
−1.2 (1.9)

	
−1.5 (1.6)

	
3.1 (2.0)

	
3.6 (2.0)

	
4.2 (1.9)




	

	
P




	
Anterior

	
−22.0 (5.2)

	
−23.4 (5.9)

	
−22.5 (5.7)

	
7.2 (2.0)

	
7.7 (2.3)

	
7.1 (1.3)




	
Lateral

	
8.5 (9.6)

	
9.4 (11.0)

	
12.7 (12.6)

	
16.3 (3.7)

	
16.5 (4.7)

	
18.4 (5.7)




	
Vertical

	
0.3 (2.5)

	
0.3 (1.9)

	
0.6 (1.6)

	
2.8 (1.8)

	
3.2 (1.4)

	
3.7 (1.2)










Table 4. Comparison of ground reaction forces (GRF) estimated from inertial motion capture and optical motion capture versus force plate measurements. ρ = Pearson’s correlation coefficient, RMSE = root mean square error in N/BW, rRMSE = relative root mean square error (%). Results are analyzed for all walking speeds during the gait cycle phases of first double stance (DS1), second double stance (DS2) and single stance (SS) for the decomposed right and left GRF.







	

	
Inertial Motion Capture

	
Optical Motion Capture




	

	
DS1

	
DS2

	
SS

	
DS1

	
DS2

	
SS






	

	
ρ




	
Anterior

	
0.918

	
0.976

	
0.975

	
0.921

	
0.983

	
0.993




	
Lateral

	
0.792

	
0.946

	
0.605

	
0.791

	
0.959

	
0.325




	
Vertical

	
0.946

	
0.995

	
0.980

	
0.936

	
0.997

	
0.984




	

	
RMSE




	
Anterior

	
0.058 (0.023)

	
0.066 (0.025)

	
0.033 (0.013)

	
0.056 (0.018)

	
0.055 (0.014)

	
0.018 (0.007)




	
Lateral

	
0.030 (0.012)

	
0.013 (0.007)

	
0.022 (0.007)

	
0.029 (0.011)

	
0.013 (0.009)

	
0.022 (0.007)




	
Vertical

	
0.143 (0.077)

	
0.118 (0.075)

	
0.042 (0.030)

	
0.149 (0.058)

	
0.092 (0.060)

	
0.033 (0.018)




	

	
rRMSE




	
Anterior

	
33.3 (10.8)

	
38.3 (16.5)

	
10.0 (3.6)

	
32.1 (8.6)

	
29.3 (9.6)

	
5.2 (1.6)




	
Lateral

	
30.9 (11.7)

	
25.5 (16.3)

	
35.4 (8.9)

	
29.7 (9.7)

	
22.9 (19.0)

	
34.6 (7.5)




	
Vertical

	
14.4 (6.7)

	
12.1 (8.6)

	
9.0 (5.2)

	
14.2 (4.7)

	
8.9 (9.1)

	
6.5 (2.4)










Similarly, the results for GRM are presented in Table 5 and Table 6 for both IMC and OMC solutions. For all walking speeds, the performance of IMC was comparable to OMC, except for the frontal plane moment where the rRMSE for IMC was between 29.6% and 30.6% across walking speeds, whereas for OMC, that was between 22.7% and 23.5%. In contrast, IMC provided higher correlations for the frontal plane GRM (ρ ranging from 0.709 to 0.710), compared to OMC (ρ ranging from 0.652 to 0.684) in all walking speeds. Excellent correlations were observed in the sagittal plane GRM for both normal walking (ρ = 0.933, rRMSE = 12.4%) and slow walking trials (ρ = 0.916, rRMSE = 13.3%). The correlation and RMSE in the transverse plane moment were similar in both solutions (IMC: ρ = 0.826, rRMSE = 18.2%, OMC: ρ = 0.825, rRMSE = 16.3%, for normal walking speed).



Table 5. Comparison of ground reaction moments (GRM) estimated from inertial motion capture and optical motion capture versus force plate measurements. ρ = Pearson’s correlation coefficient, RMSE = root mean square error in Nm/BW * BH, rRMSE = relative root mean square error (%), M = curve magnitude difference (%) and P = phase difference (%). Results are analyzed during normal (NW), slow (SW) and fast walking (FW) for the decomposed right and left GRM.







	

	
Inertial Motion Capture

	
Optical Motion Capture




	

	
NW

	
SW

	
FW

	
NW

	
SW

	
FW






	

	
ρ




	
Frontal

	
0.710

	
0.707

	
0.709

	
0.684

	
0.675

	
0.652




	
Sagittal

	
0.933

	
0.916

	
0.841

	
0.942

	
0.932

	
0.880




	
Transverse

	
0.826

	
0.811

	
0.749

	
0.825

	
0.817

	
0.768




	

	
RMSE




	
Frontal

	
0.010 (0.004)

	
0.010 (0.004)

	
0.012 (0.004)

	
0.008 (0.001)

	
0.008 (0.002)

	
0.009 (0.002)




	
Sagittal

	
0.013 (0.004)

	
0.015 (0.006)

	
0.020 (0.005)

	
0.016 (0.006)

	
0.019 (0.008)

	
0.026 (0.006)




	
Transverse

	
0.003 (0.001)

	
0.003 (0.001)

	
0.004 (0.001)

	
0.002 (0.001)

	
0.003 (0.001)

	
0.004 (0.001)




	

	
rRMSE




	
Frontal

	
29.6 (9.3)

	
30.2 (9.3)

	
30.6 (8.0)

	
22.7 (4.1)

	
23.0 (4.6)

	
23.5 (4.9)




	
Sagittal

	
12.4 (3.4)

	
13.3 (3.8)

	
16.1 (3.2)

	
12.7 (3.5)

	
13.7 (3.8)

	
16.9 (2.7)




	
Transverse

	
18.2 (4.7)

	
18.8 (4.8)

	
21.6 (4.2)

	
16.8 (4.5)

	
17.6 (4.8)

	
21.0 (4.3)




	

	
M




	
Frontal

	
110.3 (146.3)

	
116.6 (135.7)

	
140.4 (116.1)

	
63.0 (92.0)

	
71.1 (94.9)

	
77.0 (84.8)




	
Sagittal

	
−0.7 (12.4)

	
5.3 (19.0)

	
22.5 (19.6)

	
36.1 (14.6)

	
41.2 (23.9)

	
63.9 (22.6)




	
Transverse

	
49.6 (28.3)

	
54.7 (33.7)

	
75.9 (33.8)

	
45.7 (27.5)

	
54.1 (37.1)

	
82.8 (40.9)




	

	
P




	
Frontal

	
19.7 (8.5)

	
21.5 (10.6)

	
21.0 (9.0)

	
23.8 (7.8)

	
24.7 (8.5)

	
25.2 (8.4)




	
Sagittal

	
13.1 (4.2)

	
13.8 (4.9)

	
16.9 (4.8)

	
10.1 (2.8)

	
11.2 (3.2)

	
13.9 (2.4)




	
Transverse

	
18.0 (5.8)

	
18.9 (6.2)

	
21.0 (6.7)

	
16.3 (3.9)

	
17.1 (4.7)

	
18.6 (5.0)










Table 6. Comparison of ground reaction moments (GRM) estimated from inertial motion capture and optical motion capture versus force plate measurements. ρ = Pearson’s correlation coefficient, RMSE = root mean square error in Nm/BW * BH, rRMSE = relative root mean square error (%). Results are analyzed for all walking speeds during the gait cycle phases of first double stance (DS1), second double stance (DS2) and single stance (SS) for the decomposed right and left GRM.







	

	
Inertial Motion Capture

	
Optical Motion Capture




	

	
DS1

	
DS2

	
SS

	
DS1

	
DS2

	
SS






	

	
ρ




	
Frontal

	
0.556

	
0.803

	
0.431

	
0.515

	
0.951

	
0.472




	
Sagittal

	
−0.262

	
0.994

	
0.940

	
−0.137

	
0.997

	
0.943




	
Transverse

	
0.379

	
0.958

	
0.913

	
0.528

	
0.966

	
0.858




	

	
RMSE




	
Frontal

	
0.010 (0.004)

	
0.005 (0.004)

	
0.014 (0.006)

	
0.012 (0.005)

	
0.004 (0.003)

	
0.010 (0.003)




	
Sagittal

	
0.016 (0.007)

	
0.019 (0.017)

	
0.017 (0.006)

	
0.027 (0.011)

	
0.031 (0.023)

	
0.017 (0.007)




	
Transverse

	
0.004 (0.002)

	
0.003 (0.002)

	
0.003 (0.001)

	
0.005 (0.002)

	
0.004 (0.003)

	
0.003 (0.001)




	

	
rRMSE




	
Frontal

	
60.3 (17.7)

	
46.4 (28.4)

	
54.8 (17.8)

	
72.0 (30.7)

	
37.2 (32.2)

	
37.4 (7.4)




	
Sagittal

	
68.4 (16.2)

	
22.2 (14.9)

	
17.7 (5.2)

	
95.4 (25.7)

	
29.4 (22.1)

	
15.1 (4.1)




	
Transverse

	
56.2 (16.7)

	
31.3 (18.8)

	
23.3 (7.1)

	
61.8 (16.4)

	
35.2 (30.8)

	
19.8 (7.1)










The center of pressure and frictional torque estimates are compared in Table 7. RMSE values were similar in both IMC and OMC solutions. The average RMSE of the anterior COP position ranges from 4.5 cm to 6.6 cm for IMC and from 4.4 cm to 6.5 cm for OMC. The average RMSE of the lateral COP position was ranging from 2.9 cm to 3.6 cm for IMC and from 2.4 cm to 2.7 cm for OMC. The estimates of the frictional torque were comparable for both solutions with rRMSE ranging from 23.5 to 27.6 for IMC and from 25.8 to 29.8 for OMC.



Table 7. Comparison of center of pressure (COP) and frictional torque estimated from inertial motion capture and optical motion capture versus force plate measurements. ρ = Pearson’s correlation coefficient, RMSE = root mean square error in m for COP and Nm/BW * BH for frictional torque, rRMSE = relative root mean square error (%). Analysis performed over stance phase for normal (NW), slow (SW) and fast walking (FW) trials for the decomposed right and left quantities.







	

	
Inertial Motion Capture

	
Optical Motion Capture




	

	
NW

	
SW

	
FW

	
NW

	
SW

	
FW






	

	
ρ




	
Anterior COP

	
0.803

	
0.777

	
0.526

	
0.884

	
0.818

	
0.702




	
Lateral COP

	
0.559

	
0.546

	
0.522

	
0.619

	
0.596

	
0.574




	
Frictional Torque

	
0.776

	
0.775

	
0.677

	
0.764

	
0.746

	
0.676




	

	
RMSE




	
Anterior COP

	
0.045 (0.013)

	
0.050 (0.018)

	
0.066 (0.016)

	
0.044 (0.010)

	
0.054 (0.016)

	
0.065 (0.012)




	
Lateral COP

	
0.029 (0.012)

	
0.031 (0.011)

	
0.036 (0.011)

	
0.024 (0.004)

	
0.025 (0.006)

	
0.027 (0.006)




	
Frictional Torque

	
0.004 (0.001)

	
0.004 (0.002)

	
0.005 (0.002)

	
0.005 (0.002)

	
0.005 (0.002)

	
0.006 (0.002)




	

	
rRMSE




	
Anterior COP

	
21.3 (5.3)

	
22.5 (6.9)

	
28.5 (5.7)

	
19.9 (3.4)

	
22.2 (5.0)

	
25.4 (4.0)




	
Lateral COP

	
32.4 (10.9)

	
34.5 (11.0)

	
37.2 (9.8)

	
28.3 (5.9)

	
28.6 (5.4)

	
29.2 (5.1)




	
Frictional Torque

	
23.5 (5.1)

	
23.9 (6.1)

	
27.6 (5.5)

	
25.8 (7.1)

	
26.5 (7.4)

	
29.8 (5.9)










Finally, Table 8 presents the differences in the peak values of the estimated and measured GRF&M. As shown in the table, low relative errors have been extracted for the peaks of the vertical component for both solutions. In contrast, the differences in peak values were higher for the horizontal components.



Table 8. Differences in the peak values of the ground reaction forces and moments estimated using inertial motion capture and optical motion capture versus measured using force plates. Analysis performed for normal (NW), slow (SW) and fast walking (FW) trials for the decomposed right and left quantities. The subscripts [image: there is no content], [image: there is no content] and [image: there is no content] indicate the phase of stance where each peak was found (early, middle and late stance phase, respectively).







	

	
Inertial Motion Capture

	
Optical Motion Capture






	

	
NW

	
SW

	
FW

	
NW

	
SW

	
FW




	

	
Absolute (N/BW)




	
Anterior GRF [image: there is no content]

	
0.051 (0.027)

	
0.055 (0.032)

	
0.086 (0.024)

	
0.049 (0.019)

	
0.051 (0.023)

	
0.071 (0.017)




	
Anterior GRF [image: there is no content]

	
−0.072 (0.024)

	
−0.073 (0.032)

	
−0.100 (0.027)

	
−0.057 (0.016)

	
−0.058 (0.020)

	
−0.073 (0.020)




	
Lateral GRF [image: there is no content]

	
0.026 (0.018)

	
0.024 (0.016)

	
0.023 (0.016)

	
0.000 (0.018)

	
0.001 (0.020)

	
0.002 (0.026)




	
Lateral GRF [image: there is no content]

	
0.007 (0.014)

	
0.012 (0.020)

	
0.027 (0.024)

	
0.010 (0.015)

	
0.015 (0.022)

	
0.035 (0.024)




	
Vertical GRF [image: there is no content]

	
−0.031 (0.016)

	
−0.031 (0.024)

	
−0.047 (0.023)

	
−0.018 (0.021)

	
−0.019 (0.025)

	
−0.036 (0.026)




	
Vertical GRF [image: there is no content]

	
0.019 (0.011)

	
0.018 (0.012)

	
0.022 (0.012)

	
0.008 (0.008)

	
0.007 (0.007)

	
0.005 (0.009)




	
Vertical GRF [image: there is no content]

	
−0.003 (0.035)

	
0.004 (0.046)

	
0.003 (0.055)

	
0.044 (0.047)

	
0.053 (0.064)

	
0.073 (0.078)




	
Frontal GRM [image: there is no content]

	
−0.001 (0.013)

	
−0.005 (0.015)

	
−0.014 (0.016)

	
−0.002 (0.006)

	
−0.003 (0.008)

	
−0.007 (0.010)




	
Sagittal GRM [image: there is no content]

	
−0.027 (0.020)

	
−0.033 (0.029)

	
−0.062 (0.025)

	
−0.053 (0.023)

	
−0.063 (0.035)

	
−0.098 (0.029)




	
Transverse GRM [image: there is no content]

	
0.003 (0.003)

	
0.004 (0.004)

	
0.006 (0.005)

	
0.006 (0.003)

	
0.007 (0.006)

	
0.013 (0.005)




	

	
Relative (%)




	
Anterior GRF [image: there is no content]

	
25.1 (11.8)

	
26.9 (15.8)

	
34.5 (11.9)

	
24.2 (7.7)

	
25.3 (8.0)

	
28.3 (7.1)




	
Anterior GRF [image: there is no content]

	
−32.2 (12.6)

	
−32.5 (12.9)

	
−36.4 (9.4)

	
−25.0 (7.4)

	
−26.0 (7.6)

	
−26.5 (6.4)




	
Lateral GRF [image: there is no content]

	
65.9 (70.4)

	
55.9 (59.4)

	
50.7 (65.7)

	
3.7 (38.4)

	
8.5 (43.0)

	
14.2 (54.2)




	
Lateral GRF [image: there is no content]

	
15.5 (36.9)

	
32.5 (78.9)

	
79.6 (124.5)

	
19.8 (29.3)

	
42.5 (104.6)

	
111.2 (167.7)




	
Vertical GRF [image: there is no content]

	
−2.8 (1.5)

	
−2.7 (2.0)

	
−3.8 (1.9)

	
−1.5 (2.0)

	
−1.6 (2.2)

	
−2.9 (2.0)




	
Vertical GRF [image: there is no content]

	
2.7 (1.6)

	
2.8 (2.2)

	
4.2 (2.6)

	
1.1 (1.1)

	
1.0 (1.2)

	
1.0 (1.8)




	
Vertical GRF [image: there is no content]

	
−0.2 (3.0)

	
0.4 (4.1)

	
0.4 (4.6)

	
3.8 (4.1)

	
4.7 (5.6)

	
6.2 (6.7)




	
Frontal GRM [image: there is no content]

	
−10.9 (71.0)

	
−42.5 (134.5)

	
−115.8 (195.8)

	
−22.3 (52.6)

	
−36.8 (120.2)

	
−82.1 (194.1)




	
Sagittal GRM [image: there is no content]

	
−34.3 (25.0)

	
−41.8 (36.6)

	
−76.2 (33.3)

	
−66.8 (28.4)

	
−79.5 (44.1)

	
−120.8 (39.3)




	
Transverse GRM [image: there is no content]

	
46.2 (51.9)

	
49.9 (57.2)

	
72.5 (68.7)

	
80.6 (60.2)

	
102.3 (89.1)

	
169.0 (109.2)











3.2. Sensitivity Analysis


The sensitivity analysis on threshold velocities for the gait event detection algorithm is shown in Table 9. The gait events were detected using the inertial motion capture system with an error of [image: there is no content] ms for heel strike and [image: there is no content] ms for toe-off. A 10% increase or decrease in the threshold velocity would only result in a small additional error on the detection of both gait events ([image: there is no content] ms for 10% increase and [image: there is no content] ms for a 10% decrease).



Table 9. Sensitivity analysis on the threshold velocities used for the gait event detection.







	

	
Heel Strike Detection




	
Threshold velocity

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]




	
Mean error (ms)

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]




	

	
Toe Off Detection




	
Threshold velocity

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]




	
Mean error (ms)

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]










Table 10 shows the results of the sensitivity analysis performed to evaluate the selection of the cut-off frequency used in the low-pass filtering. Particularly, it indicates the change in the RMSE per component for six different cut-off frequencies. A low cut-off frequency selection leads to a decrease in the errors in the components with a small magnitude, such as the lateral GRF and the frontal and transverse GRM. In contrast, in the components with larger magnitudes, such as the vertical GRF and sagittal GRM, the accuracy increases with a higher cut-off frequency selection. To solve this inconsistency, the norms of the RMSE changes of the GRF and GRM 3D vectors were also compared. The norm of GRF RMSE is minimized for approximately 7 Hz and the norm of GRM RMSE for 6 Hz.



Table 10. Percentage change in the root mean square error (RMSE) of the three components and norms of the ground reaction force and moment, versus selected cut-off frequency for the second-order, zero-phase Butterworth low-pass filter. Negative values indicate improvement in the accuracy (decreased RMSE). The selected cut-off frequency (6 Hz) was used as a baseline for the comparison.







	
Frequency (Hz)

	
3

	
4

	
5

	
6

	
7

	
8

	
9






	

	
RMSE change (%)




	
Anterior

	
48.56

	
23.30

	
7.45

	
0.00

	
−1.48

	
0.57

	
4.41




	
Lateral

	
−13.78

	
−10.59

	
−5.39

	
0.00

	
7.72

	
18.07

	
29.89




	
Vertical

	
17.61

	
6.93

	
2.26

	
0.00

	
−1.02

	
−1.26

	
−0.96




	
Norm GRF

	
43.56

	
20.34

	
6.23

	
0.00

	
−0.52

	
2.45

	
7.23




	
Frontal

	
−14.94

	
−12.27

	
−6.51

	
0.00

	
7.78

	
15.76

	
24.79




	
Sagittal

	
61.80

	
29.54

	
8.58

	
0.00

	
−1.24

	
0.74

	
4.55




	
Transverse

	
−19.04

	
−11.35

	
−6.62

	
0.00

	
8.71

	
18.37

	
29.22




	
Norm GRM

	
40.75

	
17.22

	
3.76

	
0.00

	
1.90

	
6.09

	
11.88












4. Discussion


In this study, we have developed a method to estimate 3D GRF&Ms during walking, using only kinematics from an IMC system. We evaluated the method for three different walking speeds performed by eleven healthy subjects. The accuracy of our estimates was assessed through comparison with force plate measurements, as well as with comparison to OMC-based estimates.



4.1. Comparison with Reported Optical-Based Estimation


In Table 11, we compare the performance of the IMC-based and OMC-based GRF&M estimation results during normal walking performed in the dataset of this study, with results previously reported in other optical-based studies using ρ and rRMSE.



Table 11. Pearson’s correlation coefficients (ρ) and relative root mean square errors (rRMSE) found in our IMC-based and OMC-based results and reported by previous studies based on optical prediction for normal walking [14,16,19]. The values marked with (*) are sourced from the 10-fold cross-validation performed by Oh et al. [14]. The number of subjects used in each study is denoted by n.







	

	

	
Ground Reaction Force

	
Ground Reaction Moment




	

	
n

	
Anterior

	
Lateral

	
Vertical

	
Frontal

	
Sagittal

	
Transverse






	

	

	
ρ




	
This study (IMC)

	
11

	
0.965

	
0.862

	
0.992

	
0.710

	
0.933

	
0.826




	
This study (OMC)

	
11

	
0.977

	
0.814

	
0.993

	
0.684

	
0.942

	
0.825




	
Ren et al., 2008 *

	
3

	
0.878

	
0.704

	
0.913

	
0.677

	
0.978

	
0.829




	
Oh et al., 2013

	
5

	
0.985

	
0.918

	
0.991

	
0.841

	
0.987

	
0.868




	
Fluit et al., 2014

	
9

	
0.957

	
0.818

	
0.957

	
0.684

	
0.922

	
0.704




	

	

	
rRMSE




	
This study (IMC)

	
11

	
9.4 (2.5)

	
13.1 (2.8)

	
5.3 (3.1)

	
29.6 (9.3)

	
12.4 (3.4)

	
18.2 (4.7)




	
This study (OMC)

	
11

	
7.4 (1.5)

	
14.2 (2.9)

	
4.8 (2.7)

	
22.7 (4.1)

	
12.7(3.5)

	
16.8 (4.5)




	
Ren et al., 2008

	
3

	
10.9 (0.8)

	
20.0 (2.7)

	
5.6 (1.5)

	
32.5 (4.3)

	
12.2 (4.8)

	
26.2 (9.4)




	
Oh et al., 2013

	
5

	
7.3 (0.8)

	
10.9 (1.8)

	
5.8 (1.0)

	
22.8 (4.9)

	
9.9 (1.1)

	
25.5 (4.5)




	
Fluit et al., 2014

	
9

	
9.3 (2.0)

	
14.9 (3.4)

	
6.6 (1.1)

	
22.9 (5.9)

	
12.4 (3.5)

	
40.6 (11.3)










In both the inertial and optical implementation of this study, we found higher correlation coefficients compared to the ones extracted from the 10-fold cross-validation method performed by Oh et al. [14] when they reimplemented the method of Ren et al. [19] for all components apart from the sagittal and transverse plane moments. Regarding rRMSE values, these followed a similar pattern, with the sagittal GRM providing slightly worse accuracy, whereas the transverse plane moment was better estimated in our method.



Compared to the dynamic contact model developed by Fluit et al. [16], we found similar correlation coefficients in all components, apart from the transverse plane, which was much higher in our case (IMC: ρ = 0.826; OMC: ρ = 0.825; Fluit et al.: ρ = 0.704). As for the rRMSE values, our technique performed similarly for four components (anterior, lateral, vertical, sagittal). The rRMSE in the transverse plane was lower in our findings (IMC: rRMSE = 18.2%; OMC: rRMSE = 16.8%; Fluit et al.: rRMSE = 40.60%). Fluit et al. explained that the cause of the inaccuracy in the transverse plane was the one-degree-of-freedom knee joint used. In contrast, the IMC method provided lower accuracy in the frontal plane GRM (IMC: rRMSE = 29.6%; OMC: rRMSE = 22.7%; Fluit et al.: rRMSE = 22.9%).



In the comparison with the results reported by the machine-learning-based method of Oh et al. [14], we noted similar correlations for the anterior (IMC: ρ = 0.965; OMC: ρ = 0.977; Oh et al. ρ = 0.985) and vertical (IMC: ρ = 0.992; OMC: ρ = 0.993; Oh et al. ρ = 0.991). The remaining components provided lower correlations and higher rRMSE in our findings.



The number of subjects included in our study was 11, higher than the previous optical-based studies, which included 3 [19], 5 [14] and 9 subjects [16]. This factor may have contributed to the larger standard deviations found in our RMSE values in anterior and vertical GRF.



In all four studies, regardless of the distribution technique used, the anterior and vertical GRF, as well as the sagittal GRM estimates performed better than the lateral GRF and frontal and transverse GRM. This behavior can be explained by the smaller magnitude of the lateral measures, which causes small accumulated errors in the input to have a relatively large impact on the final estimates. The majority of our results were in good agreement with the OMC-based literature.



This performance comparison demonstrates that IMC can be used in applications such as GRF&M prediction, performing similarly to OMC while exempting the restrictions of OMC mentioned previously in the Introduction.




4.2. Limitations and Sources of Error


In this study, we solved the indeterminacy problem during the double support phases of the gait cycle by utilizing a concept known as the smooth transition assumption. A function was generated from the average values of the force plate data during the second double support phase, similarly to Ren et al. [19]. Since these curves were obtained from the gait of 11 healthy subjects of this study, they may not be suitable for other groups, especially for populations with movement disorders. In addition, the differences found for various walking speeds indicate that a more sophisticated force distribution model is required. Therefore, methods based on either machine learning or dynamic contact models could be incorporated to improve the accuracy, repeatability and range of movements to which the method can be applied.



Filtering the input kinematics was necessary to obtain the best fit and reduce the errors in the GRF&M estimates. We translated the linear accelerations expressed in the origin to the center of mass of each segment. However, these accelerations were already translated from the sensor to the origin of the segment in Xsens MVN and include assumptions about the sensor location on the segment [36]. Moreover, angular accelerations were calculated through differentiation of angular velocities. This differentiation introduced high frequency signals, which require filtering before being used to translate accelerations. Nevertheless, it was demonstrated in the sensitivity analysis (Table 10) that any cut-off frequency between 5 Hz and 7 Hz would result in minor differences in the RMSEs.



The sensitivity analysis on the gait event detection, using the kinematics of the IMC system, proved that the algorithm is valid for the walking speeds included in this study. The algorithm resulted in an error of 14.05 ±13.91 ms, which for a sampling frequency of 240 Hz corresponds to 3.36 ± 3.33 samples. However, this algorithm may not be accurate for considerably slower or faster walking speeds or in cases of lower sampling frequencies. Gait misdetections could lead to considerable errors in the final estimates, so the method should be treated with caution.



In addition, mass ratios and radii of gyration of the body segments were estimated based on anthropometric tables found in the literature [29]. However, these parameters are averages and might not be suitable for all body types, for example for the elderly [37] or obese populations [38]. Therefore, inertia parameter approximations could have contributed to accumulative errors in the total external load estimation.



The IMC system uses a rigid-body linked-segment model in which the positions of the end points and joints were estimated through predefined measured lengths and IMU-derived segment orientations. The segment lengths were measured manually using a conventional measuring tape. Moreover, calibration limitations, such as a mismatch between the neutral pose practiced by the subject and the pose that the computational model is assuming, can cause errors. This limitation may explain the higher errors found in the frontal plane GRM in our solution, since it affects the estimates of the lever arms. Optical motion capture or photogrammetry could be used as an initial input to improve such offsets. Nevertheless, this implementation aimed to propose and investigate a completely laboratory-independent system.



Soft tissue artifacts are another common problem causing inaccuracies in both IMC and OMC kinematics [39,40]. The IMUs measure acceleration and angular velocity on the soft tissue, which moves relative to the bone [22]. This motion may have negative influence on our final estimates, especially in the case of fast walking. On the other hand, the fact that eight of the participants had a normal BMI (18.5 < BMI < 24.9), three were overweight (25 < BMI < 29.9) and no obese participants were included in the experiment probably limits the soft tissue effects in our study.



Finally, the IMC is susceptible to magnetic interferences. Particularly, it has been shown that the magnetic field varies considerably inside gait laboratories [41]. This factor may have influenced the sensor orientations used to derive the segment kinematics in Xsens MVN Studio software. Any input errors in the segment orientations could lead to accumulated errors in the estimated joint positions and, therefore, in the distance vectors between the center of mass and the joint of each segment. The latter are used in important stages of the proposed method, firstly in the translation of each segment’s linear kinematics from its origin to the center of mass (Equation (3)) and secondly in Euler’s equation of motion (Equation (2)). A magnetometer-free approach to inertial motion capture could be adopted to reduce these sources of error [42].




4.3. Future Work


In our experiment, we only included male subjects without any musculoskeletal or neuromuscular disorders. However, we did not evaluate the applicability to patients with motor-related clinical conditions. Several challenges could be encountered in the clinical application of the system. For example, in the case of knee osteoarthritis, the increased static knee misalignment of the patients might lead to difficulty achieving a proper neutral pose to calibrate the IMC system [43]. Moreover, obesity, which is quite common in patients with musculoskeletal problems, could impose practical barriers in the optical and inertial motion capture.



The smooth transition assumption we incorporated can only be applied to gait movements. On top of this, the distribution algorithm allows the real-time estimation only during the single support phase. During double support, the algorithm needs information over the duration of this phase to estimate the kinetics. A real-time solution to distribute the forces could be explored in the future.



In this study, we assume that the GRF&Ms are the only significant external forces applied to the human body. This assumption could be valid for activities such as walking; however, in a wider spectrum of daily life activities, secondary external loads are introduced. Such activities include walking using a cane or stair climbing using handrails. In such cases, direct measurement or modeling of the additional forces and moments would be required. Future work could examine the types and biomechanical importance of forces and moments generated in free-living environments, when performing daily life activities.



Finally, our proposed method is dependent on a full-body motion capture suit, which requires 17 IMUs. In future studies, minimizing the number of sensing modules [44] to make the system more practical for clinical and free-living applications could be investigated. Moreover, our system could be exploited in driving near real-time biofeedback, the popularity of which recently increased in gait training interventions [45].





5. Conclusions


In this paper, we have demonstrated that estimation of 3D GRF&Ms during walking using only kinematic information from inertial motion capture is achievable. Overall, strong and excellent correlations were found for all six estimated components compared to force plate measurements. The results were comparable to the ones reported by studies using OMC input.



The proposed system has high potential in monitoring critical biomechanical parameters in free-living conditions, outside the laboratory. Future work should validate and adapt the system to clinical and daily life applications.
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The following abbreviations are used in this manuscript:



	BMI
	body mass index



	COP
	center of pressure



	FP
	force plate



	FW
	fast walking



	GRF
	ground reaction force



	GRM
	ground reaction moment



	GRF&M
	ground reaction force and moment



	IMC
	inertial motion capture



	IMU
	inertial measurement unit



	NW
	self-selected normal walking



	OMC
	optical motion capture



	rRMSE
	relative root mean square error



	RMSE
	root mean square error



	SW
	slow walking
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