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Abstract: Monitoring soil and crop condition is vital for the sustainable management of agricultural
systems. Often, land management decision-making requires rapid assessment of conditions, which
is difficult if samples need to be taken and sent elsewhere for analysis. In recent years, advances
in field-based spectroscopy have led to improvements in real-time monitoring; however, the cost
of equipment and user training still makes it inaccessible for most land managers. At the James
Hutton Institute, we have developed a low-cost visible wavelength hyperspectral device intended to
provide rapid field-based assessment of soil and plant conditions. This device has been tested at the
Institute’s research farm at Balruddery, linking field observations with existing sample analysis and
crop type information. We show that it is possible to rapidly and easily acquire spectral information
that enables site characteristics to be estimated. Improvements to the sensor and its potential uses
are discussed.
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1. Introduction

Assessment of crop condition and soil characteristics in agriculture is vital for maximising yields.
Often, it would benefit growers to receive the results of an assessment as quickly as possible, as the
crop condition and soil nutrient levels that drive management decisions can change rapidly. Currently,
samples are sent off to a laboratory for analysis, which adds time and cost to the process. Any method
that can allow rapid in-field assessment of soils and crops, or the rapid capture of data to allow
office-based automated assessment will improve the ability of growers to make timely and informed
day-to-day management decisions.

Field spectroscopy has potential in this area, as an approach that may allow high-quality data
relating to soil and crop characteristics to be captured rapidly and non-invasively. Ref. [1] discussed
the potential for hyperspectral scene analysis in agriculture, particularly for the detection of pests
and diseases before they become visible to the human eye. In a review of infrared spectroscopy for
in-field plant characterisation, Ref. [2] highlighted the potential of this particular wavelength range
for compositional analysis and phenotyping of plants, while Ref. [3] demonstrated that mid-infrared
spectroscopy could be used for assessment of soil properties following land use change. Ref. [4]
identified the benefits of soil spectroscopy, including speed, cost-effectiveness and the fact that it can
be used non-destructively. They also reviewed specific priority areas for improvement of the field,
including the development of spectral libraries and standards.

Ref. [5] highlighted the potential for IR (Infrared) spectroscopy across agricultural practices
in developing countries, with many of their points regarding diagnostics and support for land
management decision support being valid for agriculture in developed countries as well. They also
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identified capacity-building that would be required in terms of centres of excellence, equipment design
and the development of decision support systems. This work and others (e.g., [6]) highlight existing
constraints on the use of hyperspectral equipment and developments that need to be made. One of the
main areas where improvement is required is portability, although recent development of low-weight
and low-cost hyperspectral systems for field spectroscopy is leading to devices light enough that they
can be attached to small Unmanned Aerial Vehicles (UAVs) (e.g., [7]).

A number of different crop characteristics have been identified as amenable to spectroscopic
evaluation. Identification and phenotyping using NIR (Near Infrared) spectroscopy have been
found to discriminate dry leaves of different medicinal plant species [8]. Ref. [9] demonstrated a
non-invasive portable spectrophotometer for in-field plant phenotyping, using data mining approaches
for calibration development in the wavelength range 1600–2400 nm.

Related to plant identification, weed/crop discrimination is another potentially useful function.
Ref. [10] used Vis-NIR (visible and near-infrared wavelength ranges) for discriminating between crop
(tomato) and weed species. They found that NIR wavelengths gave good discrimination, as did
hyperspectral visible-only data, but that broadband colour-only models were not as effective. Ref. [11]
also explored the use of NIR spectroscopy for automated weed detection, with a view to targeted
herbicide application. They found that the crop soybean could be distinguished from two weed species.

Disease detection and crop chemical composition are high on the list of in-field assessment goals.
Ref. [12] demonstrated the effectiveness of NIR for assessment of seed quality for a number of grain
crops. NIR spectroscopy of grains can be used to detect specific diseases [13] and estimate the protein
content of wheat kernels [14].

Ref. [15] compared red-edge inflection point and chlorophyll concentration in canola and found a
useful level of estimation accuracy. Ref. [16] used NIR to estimate the nutrient content of plant leaves
and found varying degrees of accuracy: N could be estimated well; P, Fe and Mn were estimated
moderately well; and K, Zn and Cu were poorly estimated.

In addition to nutrient content, crop quality is an important factor. Estimation of important taste-
and storage-related mango fruit properties can be carried out using NIR in the wavelength range
1200–2200 nm [17]. This work also highlighted the importance of appropriate preprocessing of the
spectral data to optimise property estimation accuracy. Ref. [18] showed that NIR could be used for
grading the quality of cotton leaves automatically.

Nitrogen status is an important indicator of crop health, and when nitrogen supply problems
develop, they need to be addressed rapidly. Estimation of N uptake in cereal crops can also provide a
source of information for calculating variable fertiliser application rates within fields. Refs. [19,20] used
NIR to estimate total N in above-ground biomass of cereal crops and showed that, while within-field
spectroscopy calibrations produced good results, more general model calibrations across multiple
fields or at larger spatial scales were problematic.

Ref. [21] identified the wavelength ranges useful for estimating nitrogen status in switchgrass
and sorghum using a handheld spectrophotometer. They found that specific wavelength ranges in the
visible and red-edge could be used for this, and argued further that spectroscopy was a viable tool in
evaluating the biophysical and biochemical characteristics of energy crops.

In addition to the crops themselves, assessment of soil composition provides important
information for management decision-making. Ref. [22] showed that different wavelength ranges
can contribute information on soil total carbon estimates, and Ref. [23] demonstrated that visible
wavelength spectroscopy (350–700 nm) could be used to estimate N, P and K in paddy soils, although
they also showed that NIR was more effective for estimating N and K. This differs from the work of [16]
mentioned above, which found that K was poorly estimated in plant leaves using NIR. This difference
in calibration performance between plant and soil for certain characteristics is difficult to explain
without a detailed comparison of the two approaches used, and highlights the fact that variation in
materials and methodologies can make large differences in estimation accuracy.
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Ref. [24] demonstrated a system for real-time estimation of soil properties with Vis-NIR and found
a range of calibration accuracy from moderate to good. Ref. [25] evaluated the visible (350–700 nm)
and NIR (700–2500 nm) wavelength ranges for estimation of soil properties in paddy soils. They found
that, for most properties, NIR produced better estimation accuracy, but visible wavelengths produced
better estimation for soil electrical conductivity and available P.

Ref. [26] compared Vis-NIR and Fourier Transform NIR (FT-NIR) spectrometry for estimation of
a number of soil attributes including pH, N, P, K and organic matter content. They showed that pH
and organic matter could be estimated effectively using Vis-NIR, but not N, P or K, and also found
that the preprocessing of the data made a strong difference in the effectiveness of the system. Ref. [27]
described a tractor-driven system for real-time acquisition of Vis-NIR soil spectroscopy. They described
the design and operation of the system, and demonstrated an error rate of 1.22 g·kg−1 of soil organic
carbon estimation.

Physical attributes of soil can be rapidly assessed using mid-infrared spectroscopy (MIRS),
as demonstrated by [28] who applied Partial Least Square (PLS) regression after first-order derivation
and smoothing. The attributes assessed included liquid limit, air-dried moisture content and cation
exchange capacity, all of which are also useful for agricultural purposes. Ref. [29] also demonstrated
Vis-NIR based approaches for soil organic matter content estimation with PLS.

As mentioned above, model calibration is an important factor in the performance of a
hyperspectral crop/soil sensing system. Many different approaches exist, with the two most
common possibly being PLS and neural networks. Ref. [30] used Vis-NIR and neural networks
to develop a calibration capable of discriminating between soybean plants and weeds, while
identification of nitrogen deficiency using a combination of NIR and neural networks can be carried
out successfully [31].

Another major factor affecting model accuracy is the preprocessing of the spectra. Ref. [32]
reviewed the use of spectroscopy for assessment of soil fertility indicators, and found that the use of
appropriate preprocessing approaches was linked to calibration performance. They also showed
that neural networks are a useful approach in this area. Ref. [33] carried out a comparison of
different preprocessing and calibration approaches for estimating soil carbon using NIR, and found
that while preprocessing did not cause an improvement, the integration of topographic parameters
did increase accuracy. However, Ref. [34] evaluated a marketed Vis-NIR spectrophotometer in a
series of comparisons for estimating chlorophyll content in soybean. They showed that the device
could produce useful results, and that the accuracy of these results depended on how the spectra
were preprocessed prior to model calibration. Any new method or technology should ensure that
performance is optimised through appropriate calibration approach selection. Often, this is a process of
trial and error, as it is practically impossible to determine beforehand which calibration or preprocessing
approach will work best for a specific sensor/application combination.

In-field sensing also comes with the issue of sample lighting, as without additional equipment
the user has to rely on sunlight for illumination. Ref. [35] used two wavelengths (610 and 1220 nm) to
estimate nitrogen and chlorophyll content in crops, and also included a system for eliminating the
effects of variable solar radiation. This can be an issue when carrying out reflectance spectroscopy in
the field and using natural light as the source of illumination. An example of work on eliminating
unwanted effects from natural light for visible-wavelength monitoring in the field is given in [36].

Much of the work referenced above used NIR or MIR, sometimes in combination with
visible-range wavelengths. Sensors in the near- and mid-infrared are more expensive than visible-range
sensors, implying greater equipment costs. While we accept that these wavelength ranges provide
important information related to plant and soil properties, our intention here is to explore the potential
of a device that operates only in the visible range. The rationale for this is to determine whether
the resulting device, with appropriate data preprocessing, can still provide useful information while
doing so cheaply and rapidly and with a minimum of support equipment (i.e., handheld and with
no artificial lighting). Existing examples of research using visible light alone (e.g., [37,38]) indicate
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that, certainly for soil, estimates for certain variables could be achieved and that colour information
captured using digital cameras can be of sufficiently good quality to achieve this.

2. Materials and Methods

2.1. PHYLIS

The hyperspectral imaging system used in this work is a device developed and built at the James
Hutton Institute. We have named it PHYLIS (Portable Hyperspectral Low-cost Imaging System).
PHYLIS is a prototype device and the first version was constructed almost entirely from spare parts
available in the Institute workshops. Later versions have been adapted slightly and the overall design
improved, but the fundamental operation is the same. Figure 1 shows the components of PHYLIS with
the light cover removed.
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Figure 1. Photographs of the prototype sensor PHYLIS (Portable Hyperspectral Low-cost Imaging
System): (a) PHYLIS with the optical equipment enclosed, as it is used in the field; (b) PHYLIS with
the lid removed, showing the optical components.

Light enters the device through a cylindrical lens and is collimated before falling onto a diffraction
grating. This diffracts the light onto a relatively simple design of mirrors and lenses and produces a
spectrum of visible wavelengths that is captured by a small, cheap digital camera (Vivitar (Edison, NJ,
USA) Vivicam F128, 3 megapixels, approximately 20 Euros,). A control wheel mounted on the top of
the box adjusts a slit aperture for light entering the device, controlling the level of light intensity that is
taken in the photograph without altering the shape of the spectrum.

The captured image contains the spectra from the field of view of the device, which is
approximately 2◦ vertically and 0.5◦ horizontally. The whole device is mounted on a wooden board
that can be fixed to a camera tripod, although, throughout this work, all spectra were captured when
the PHYLIS was handheld. Figure 2 gives an example of the images captured by the digital camera.

The position of each column is therefore calculated along an arbitrarily-chosen scale of 1000, with
1 being the left-hand side of the bounding box and 1000 being the right-hand side. In practice, the
number of columns in the bounding box is almost always between 700 and 800 pixels, resulting in
small gaps, one character wide, in the data. These gaps are filled by taking the mean intensity values
of neighbouring values and inserting them into the gaps. See Figure 3 for a schematic explaining
this process.
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After the images have been captured, they are downloaded directly from the camera using a USB
cable and processed using bespoke software developed using Microsoft Visual Studio 2010 (Microsoft,
Redmond, WA, USA). This can be done in the field using a laptop, although it is easier in an office
environment given the current “prototype” nature of the system. The software extracts the pixel
intensity values (RGB—red, green, blue values in the range 0–255). It uses these intensity values to
identify the circular area enclosing the spectrum (see Figure 2). Due to the design of PHYLIS, the
spectra are always in precisely the same region in this circular area, but the circle itself can be offset
slightly and vary slightly in size within the image. This is because the camera itself occasionally needs
to be moved to replace batteries, and therefore is not always replaced in exactly the same position.

Following identification of the region of interest within the image, a bounding box is placed
around the region and the mean total pixel intensity (sum of RGB values) determined for each column
of pixels within this box. It is assumed that this mean intensity represents the reflectance at individual
wavelengths. The bounding box length corresponds to the same spectral range in each image, but
does not have the same number of columns every time. This is for the same reason as the variable
position and size of the circular area in each photograph. Based on evaluation using light sources with
known spectral characteristics, we have calculated that the lower and upper wavelength limits of the
bounding box are 390 and 700 nm, respectively.

2.2. Vegetable Garden Samples

In late June 2016, samples of different fruit and vegetable plants were imaged under natural
lighting conditions at a community garden plot in Aberdeen. This imaging was carried out in one
two-hour period, during which light levels were consistently high and mildly overcast. Leaves of four
examples of twelve crops were imaged using PHYLIS, with two samples per plant taken from different
leaves (and, in most cases, different plants). Each crop type was noted and included the following:

• Strawberry
• Rocket (rucola)
• Pea
• Onion
• Garlic
• Broad bean (fava bean)
• Broccoli
• Early potato
• Maincrop potato
• Tomato
• Courgette
• Chilli

Analysis of the spectra from the vegetable plot was made to determine if there were obvious
differences between spectra due to crop type, and whether the two spectra from each crop were more
similar than spectra from different crops. Two spectra from each of twelve crops is an insufficient data
set to carry out full statistical analysis, and so comparison was made using dendrograms developed
with distance measures between crop spectra. An investigation of different preprocessing methods
was also included, with each set of preprocessed spectra used to produce dendrograms for comparison.
The following commonly-used spectral preprocessing methods were applied: (1) none; (2) first-order
derivative; (3) second-order derivative; and (4) Savitsky–Golay first-order smoothing.

Each of the above preprocessing options was carried out alone, and also followed by moving
window subtraction (moving window radius of 20). All preprocessing steps were followed by
normalisation of the resulting values to an absolute maximum of 1.
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2.3. Light Level Analysis

At the time of spectral sampling in the vegetable plot, leaf samples from six crops were also
taken (broad bean, pea, early potato, maincrop potato, strawberry and tomato). These were imaged
using PHYLIS under controlled lighting conditions (tungsten bulb), with the lighting control wheel
on PHYLIS set to six different light levels, with the same approximately equally-spaced levels used
for each crop set between “maximum light input” and “zero light input”. Spectra were captured at
each light level for each crop, and the same statistical evaluations carried out as listed above, using the
preprocessing option that produced the best results for the spectra captured in-field.

2.4. Agricultural Crop Sampling

The James Hutton Institute’s Centre for Sustainable Cropping (CSC) at Balruddery was used to
capture a set of spectra under natural light conditions. The CSC is a long-term experimental platform
comprising a 42 ha block of six fields, established in 2009 to integrate cross-disciplinary research
on sustainability in arable ecosystems. The effects of the sustainable versus conventional cropping
systems are tested using a split-field design over a six course rotation (potato, winter wheat, field beans,
spring barley, winter oilseed rape and winter barley). The six fields are divided into two, separated by
a 6 m beetle bank buffer strip, and the cropping system treatments are randomly allocated to each half.

Conventional management follows standard commercial practice for each crop for the region.
Sustainable management includes a range of practices aiming to maintain reasonable yields with
less agrochemical inputs, resulting in enhanced biodiversity and reduced environmental pollution.
These include minimum tillage to improve soil physical structure and reduce disturbance, compost
addition and straw incorporation to enhance soil carbon content, reduce mineral fertiliser to be replaced
with renewable sources of plant nutrients and atmospheric nitrogen fixation by legumes, cover crops
to retain nutrients and reduce erosion, and lower rates of pest control products, compensated for by
Integrated Pest Management strategies.

Within each treatment, five different cultivars of each crop type are sown in 18 m wide strips
along the length of the field to test for a variety of specific responses to treatment. Within each strip,
five permanent GPS sample locations are used to monitor a suite of system indicators throughout
each growing season [39]. For this study, four of the six crops available (faba beans, potatoes, spring
barley and winter wheat) were imaged using PHYLIS during July and August 2016. Two spectra were
captured at three points in two of the variety strips for each half field, where soil samples had been
collected in March of the same year. This provided a total of 96 spectra, with variation in crop type,
cropping system (sustainable/conventional) and crop variety.

The spectra were preprocessed using the methods described above and a neural network (NN)
model trained with the resulting data. Neural networks can be considered either as analogous to
biological learning systems or as arrays of multiple parallel simultaneous relationships between model
input and output variables; essentially, they are networks of connections between inputs, hidden
layers of nodes and outputs with adjustable weightings. These weightings are altered in response to
the disagreement between the model output and the “target” output over several thousand iterations
of exposure to the model training data, with the weight adjustment being directed by one of many
possible methods.

In this case, the NN was trained to discriminate between crops and cropping systems, using the
commonly-applied backpropagation training algorithm. The model therefore had six outputs, one for
each crop type and two for the different cropping systems (sustainable and conventional). The NN
had two hidden layers each of 20 nodes and a training rate of 0.05. The training was carried out using
10-fold cross-validation, with the data split randomly between ten approximately equally-sized subsets.
Each “fold” involved training one neural network model with nine of the ten subsets, and using the
tenth for validation. Each subset was used as validation for one of the ten models. In addition, we
ensured that the two spectra from each sample location were kept together in the same data subset.
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This was done to avoid artificially high validation scores that could be achieved by testing a model
using a data point that was “twinned” with another in the training set.

Evaluation of the performance of the models was carried out using a confusion matrix, giving the
number of times each crop type was identified as each of the possible types. Identification as one crop
type or another was achieved using the “winner-takes-all” method of identifying the NN output node
with the greatest output value, with each output node associated with one crop type.

2.5. Linkage to Agricultural Soil

Soil samples from each of the GPS locations at the CSC were analysed for eighteen elemental and
chemical properties (see Table 3) to test for an association with crop spectral characteristics. Significant
correlations between soil chemistry and crop spectral characteristics could provide a useful tool for
identifying plant nutrient deficiencies in soils without the need for expensive soil testing.

A neural network model was applied similarly to that for the crop identification above. However,
in this case, the outputs were not crop type, but the eighteen soil properties. Inputs to the model came
from the preprocessed spectral data as before, with separate models for each preprocessing. There was
insufficient data to train separately on each crop type, and so each NN model was “blind” to the crop
that is used in each case. The 10-fold cross-validation approach was used as above, with identical
parameterisation of the NN models.

Statistical evaluation of the results was carried out by determining the r-squared value of the
linear regression between target and actual output values for each output variable, and the RMSE
(Root Mean Squared Error) of the target vs. actual output values.

The two different data interpretation approaches used (dendrograms and neural network models)
were selected based on the number of data points available in each case. It was felt that applying
the neural network model to discrimination of crop types from the vegetable plot data would not
have been scientifically robust, and so a dendrogram approach was applied. For the estimation of soil
properties, sufficient data points were available to apply the 10-fold cross-validation approach to the
estimation of continuous variables.

3. Results

3.1. Vegetable Garden Samples

Figure 4 shows the dendrogram produced from the summed Euclidean distance measures between
individual spectra when no preprocessing was used. This was found to be the most meaningful option,
as every other preprocessing option explored produced dendrograms that showed less clustering
between spectra from the same crops, and a more complex dendrogram structure. Crop-specific
colours have been added to Figure 4 to aid in identifying crop types.

The spectra captured for each crop tend to cluster together, meaning that they are more similar
to each other than to other crop types (Figure 4). The clustering in Figure 4 also shows that certain
crops are more spectrally similar to one another than they are to others. The most obvious example
is the visible clustering of onions, peas and garlic. The use of Euclidean distance measures between
individual spectra is only one way of measuring difference and is somewhat of a “blunt instrument”
in discriminating between crops (as would be other distance measures such as Jaccard or Ecological,
in summarising differences from 1000 pairs of values in two spectra down to a single metric). However,
it does provide evidence that within-crop spectral variation is less than between-crop variation for a
large number of fruit and vegetable crop plants.
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3.2. Variable Light Levels

Figure 5 shows a dendrogram for spectra captured under different illumination levels for broad
bean, pea, early potato, maincrop potato, strawberry and tomato leaves. This shows that while the
clustering is not perfect for each crop, spectral variation for individual crops is less than that between
crops. Broad bean spectra are relatively scattered across the dendrogram but are closely “related”
in two different locations. Pea is poorly related here with only one “close” pairing. Early potato
and maincrop potato are not individually discriminated; however, taken as one group of spectra,
there are several examples in close proximity—admittedly, there are also several spread out as well.
Three of the strawberry spectra are clustered closely (these are the brightest three) while the three
“darker” strawberry spectra are scattered. Tomato spectra are well clustered, with five out of the six
being closely clustered. This provides evidence that even at different light levels, some crops remain
spectrally similar. However, it also shows that the identification of some crops may be sensitive to
lighting conditions.

Evaluation of the dendrograms produced using different preprocessing options for the variable
light level spectra gave a similar result to that for the in-field vegetable garden spectra: simple
normalisation with no additional preprocessing gave the most meaningful spectral separability.
The dendrograms for other preprocessing options had much more ‘random’ structures with no obvious
clustering of crop spectra.
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3.3. Agricultural Crop Samples

The results of the neural network model trained to discriminate between four crop types and
two cropping systems are shown in Tables 1 and 2. These tables give the confusion matrices for the
categories and show that (a) beans, potatoes and grain crops are distinguishable as classes, but the
grain crop classes are not (total accuracy of 67% for a four-class system, Kohen’s kappa of 0.56), and
that (b) the two cropping systems are partially distinguishable using the crop spectra, but not very
strongly distinguishable (total accuracy of 60% for a two-class system, Kohen’s kappa of 0.21).

Table 1. Confusion matrix for neural network model trained to discriminate four crop types.

Beans Potatoes Barley Wheat User’s Accuracy Total

Beans 20 1 2 1 0.83 24
Potatoes 1 22 2 1 0.85 26
Barley 0 0 11 11 0.50 22
Wheat 3 1 9 11 0.46 24

Producer’s Accuracy 0.83 0.92 0.46 0.46
Total 24 24 24 24

Table 2. Confusion matrix for neural network model trained to discriminate two cropping systems.

Sustainable Cropping Conventional Cropping User’s Accuracy Total

Sustainable cropping 30 20 0.60 50
Conventional cropping 18 28 0.61 46
Producer’s Accuracy 0.62 0.58

Total 48 48
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3.4. Agricultural Soil Estimation

Table 3 gives the evaluation of the calibration used to estimate soil properties from crop spectra.
The model performance varied greatly between properties, with some (e.g., NO3, available N, Mn)
being well estimated with an r-squared value of greater than 0.5, and several others (e.g., pH, K, Ca, B,
Zn, Mo, Na, CEC and lime requirement) being poorly estimated. Others including P, Mg, S, Cu, Fe
and NH3 were estimated moderately well. This gives an indication of which soil parameters might be
amenable to assessment using this approach, in terms of identifying nutrient deficiencies in soil that
are “reflected” in crop spectral characteristics.

Table 3. Performance of neural network model estimating soil properties from crop spectra at
Balruddery agricultural site. RMSE, Root Mean Squared Error.

Soil Property Minimum Maximum Mean R-Squared RMSE

pH 5.5 6.4 6.01 0.15 0.18
K (ppm) 29 71 43.8 0.36 5.8
P (ppm) 103 459 235 0.21 55

Mg (ppm) 113 203 154 0.49 11
Ca (ppm) 1385 2142 1727 0.17 120
S (ppm) 5 17 9.17 0.40 1.72

Mn (ppm) 23 61 41.5 0.55 5.1
Cu (ppm) 7.1 14.5 9.89 0.41 1.35
B (ppm) 0.81 1.27 1 0.12 0.11

Zn (ppm) 2 10.7 4.55 0.18 1.3
Mo (ppm) 0.01 0.12 0.05 0.16 0.03
Fe (ppm) 509 981 762 0.44 71
Na (ppm) 21 80 31 0.11 10.6

CEC (meq/100 g) 11.8 16.2 13.6 0.20 0.77
Lime required (tons/ha) 3 9 5.25 0.09 1.9

NH3 (ppm) 1.9 122 8.03 0.46 14.4
NO3 (ppm) 10.8 117.3 45.8 0.71 10.4

Available N (kg/ha) 39 543 162 0.67 61

4. Discussion and Conclusions

We have demonstrated the ability of a low-cost and relatively technologically unsophisticated
system to produce visible-range spectra from crops in field conditions. These spectra have been shown
to be of sufficient quality to allow crop discrimination and the evaluation of soil nutrient conditions
to a certain extent. The accuracy rates achieved (r2 values of 0.55 for Mn, 0.71 for NO3, 0.67 for
Available N) are not earth-shatteringly good; however, they do demonstrate an ability to obtain soil
nutrient information from crop spectra. Further work is required in improving the PHYLIS system
design and ease of use, and in developing spectral libraries that allow crop and soil properties and
characteristics to be investigated (particularly by capturing spectra directly from the soil and relating
these to soil composition information).

For a wide range of crops, we have shown that variation of within-crop spectra, as captured
with PHYLIS, is less than between-crop variation. We have also shown that within the preprocessing
options explored here, the best preprocessing appears to be no preprocessing at all; this is an interesting
and unexpected result, as we had anticipated that existing methods of highlighting important structure
within the spectra would improve the system performance.

Another important observation relates to illumination intensity. Adjusting the amount of light
entering the system is important for system performance, although the ability to discriminate between
crops appears to be crop-specific. However, as it is difficult to know which crops will be harder to
discriminate when the illumination levels are non-optimal, this indicates that when using a system
such as PHYLIS, care should be taken to achieve illumination levels that avoid either overexposure
or underexposure. Both of these situations result in a loss of discrimination ability and result in flat
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intensity curves. Therefore, it is important to achieve proper use of the illumination control on the
system to produce a moderated light intensity for the camera capturing the spectral image.

Discrimination of crop types using PHYLIS-derived spectra indicates a certain level of potential.
We achieved the ability to discriminate between broad crop types (beans, potatoes and grains) but
were unable to narrow the specificity to allow discrimination between grain types. This indicates that
the data from PHYLIS (and possibly, therefore, visible-range spectra in general) can allow broad crop
or vegetation discrimination but not species- or variety-level discrimination. It also appears that data
from PHYLIS cannot be used to discriminate between cropping strategies within individual crop types.
The effects of different management options on soil and crop condition are strong and can be measured
in a number of ways such as soil organic matter content and structure, or crop yield and nutrient
composition; the fact that we have not successfully discriminated the management types in sensing
of the crops implies that not all of these changes are visible to the sensor. There is, therefore, some
likely use of a PHYLIS-like system in an agricultural context, but it is not unlimited in its potential.
Future work will prioritise investigating the ability of the system to discriminate between a wider
range of vegetation types, and also between species within broad land cover categories (e.g., types of
broadleafed trees or grassland species).

For the estimation of soil properties, the story is the same, at least when using spectra from the
crop: some properties can be estimated quite well, while others cannot. We do not yet know if this is
true of spectra captured directly from the soil, but we suspect that it will be the case. Of particular
interest is the demonstrable ability to use these spectra to evaluate soil nitrogen status and that of
a number of other nutrients directly from observation of the crop. There are a number of potential
applications to this, including the detection of nutrient deficiencies in agricultural systems and the
application of this information for precision agriculture.

What we have demonstrated here is a prototype for rapid, in-field assessment of crop condition
and nutrient status. Further work is required to fully realise the potential of this system, with
the main barrier at the moment being the need to download the spectra from the system camera
and process it separately. Future work will focus on (1) development of crop and soil spectral
libraries; (2) improvements to the overall design of PHYLIS; (3) development of an integrated
data capture-process-visualisation system to improve speed and performance; and (4) evaluation
of the data from PHYLIS in comparison to data from a commercial spectrometer, using the same
wavelength ranges.

One of the design changes that we will be exploring is the removal of the infrared filter from the
camera that we have used, in order to explore whether it is possible to extend the wavelength range of
the device. The infrared filter in digital cameras is intended to limit the wavelength range of light that
falls on the camera sensor, which may be sensitive at wavelengths up to (or even beyond) 1000 nm.
Removing the filter could potentially double the wavelength range of the system.
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