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Abstract: In this paper, a complete and rigorous mathematical model for secondary surveillance
radar systematic errors (biases) is developed. The model takes into account the physical effects
systematically affecting the measurement processes. The azimuth biases are calculated from the
physical error of the antenna calibration and the errors of the angle determination dispositive.
Distance bias is calculated from the delay of the signal produced by the refractivity index of the
atmosphere, and from clock errors, while the altitude bias is calculated taking into account the
atmosphere conditions (pressure and temperature). It will be shown, using simulated and real data,
that adapting a classical bias estimation process to use the complete parametrized model results in
improved accuracy in the bias estimation.
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1. Introduction

Nowadays radars are the basic element in Air Traffic Control (ATC) networks. Modern sensors as
Wide Area Multilateration (WAM) [1] and Automatic Dependent Surveillance-Broadcast (ADS-B) [2]
have higher performance than radars with lower cost, so in the future it’s expected they will partially
take the place of radars. In any case, radars will still be used as a backup network for many years.
The type of radar most used in ATC sensor network is the Secondary Surveillance Radar (SSR),
being Mode S radar an enhanced version of this system [3]. SSR is a rotating 2D radar sending an
interrogation though an antenna with high directivity in azimuth and low directivity in elevation
(2D antenna). Afterwards the aircraft transponder replies with an answer codifying barometric altitude
(Mode C) and identification (Mode S and/or Mode A) data. SSR radars estimate the position of the
aircraft in polar coordinates, using the distance, the azimuth (both measured by the radar) and the
altitude (measured by an airborne barometric altimeter).

To enable surveillance of wide areas radars with overlapped coverages are deployed. Therefore,
aircraft measures (plots) from different sensors are sent to a control center where the data from all
sensors is fused in order to get a unique trajectory estimation (track) for each aircraft. All the measures
are transformed from radar polar local coordinates to a common coordinated system, usually Cartesian
coordinates projected over the stereographic plane [4]. To make this data fusion process stable and
accurate, the systematic errors affecting the measures from each radar must be corrected before the
change of coordinates. If this correction isn’t applied the measures of the same aircraft from different
sensors are misaligned and the track could be either very unstable (apparent zig-zag maneuvers
induced by measurements misalignment), or in extreme cases it could even be split into several tracks
(i.e., one per sensor).

Radar data fusion systems usually have an algorithm that estimates the misalignment error using
the measures from the current aircraft in the airspace (opportunity traffic). These algorithms are usually
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based in the least squares (LS) method (or similar approaches, such as WLS, or MSE estimators [5])
and have the need of a parametrized mathematical model that links the systematic errors in azimuth,
distance and altitude with the sensor physical non-idealities.

In the abundant literature about biases estimation methods in ATC networks such as [6–8],
the mathematical bias models used are simple (modeling just a range and azimuth offset and a range
bias term proportional to range) because the objective of the papers was showing the estimation
methods. Recently in [9] a novel registration algorithm has been presented where the track state
and sensor biases are estimated simultaneously modeling the sensors with range and azimuth offset.
Other related examples can be found in [10,11]. In real applications, these models are too simple,
resulting in reduced performance when used with real data. At the same time, the development
of mathematical models for biases is a classic topic for radio electric signals. For instance, in [12]
a model is developed for measurement errors in azimuth for antennas in Deep Space Networks.
Meanwhile, [13–17] it’s developed an azimuth bias model for 3D antennas. Due to the dispersion of
the literature about the systematic error modelling, it is apparent quite often both in the literature
and in real systems there is much effort on improving estimation processes but little effort is given to
rigorous modelling of the error sources.

The objective of this paper is to derive a complete systematic error model for ATC radars
enabling an important improvement of the bias estimation processes. In Section 2 we will introduce a
measurement model for azimuth, distance and altitude measurements. Then, in Sections 3–5, we will
derive the relation between the measurement error and the measurement biases terms. Section 6
describes a simple bias estimation process (based on opportunity traffic) to be used to show the
improvement in estimation due to improved error modelling. Then, Section 7 includes simulation and
real data results showing the aforementioned improvement. In the results it is shown the improvement
of the alignment that can be obtained using a complete model in comparison with a simple model.
Finally, Section 8 concludes the paper and gives some clues about future research.

2. Measurement Model

Radars used in ATC typically use a two dimensional rotating antenna and have only the capability
to measure aircraft range and azimuth. The azimuth of the target is the angle of the antenna boresight
while the target altitude is measured by the aircraft navigation system and can be communicated to
radar through a data link. Primary Surveillance Radars (PSR) only can determine the range and the
azimuth of the target due to the lack of data link capability. Nowadays in ATC systems primary radars
are used as backup system to secondary radar network. SSR is based in the same concept that PSR
but in this case, the SSR has data link capability. SSR sends an interrogation message and the aircraft
responds with its Mode A/Mode S (identifying code) or mode C (barometric altitude).

The azimuth and the range of the target are determined respectively with antenna boresight
(usually corrected using monopulse [3]) and the time lapse between the radar interrogation and
its response. Range and azimuth are typically referenced to a local Cartesian coordinated system:
y-axis pointing to north, x-axis pointing to East and z-axis pointing to up (ENU system). Azimuth
reference has its origin in the y-axis and it grows in clockwise. Barometric altitude is measured by an
airborne barometric altimeter with reference at mean sea level. The relation between radar coordinates
(ρm, θm, hm) and local Cartesian coordinates (xm, ym) is:

xm = ρm sin(θm) cos(ϕm)

ym = ρm cos(θm) cos(ϕm)
(1)

where ρm, θm, hm are the range, azimuth and altitude of the measurement and ϕm is the target elevation
with respect to i-th sensor horizontal plane, which can be calculated as:

ϕm = arcsin

(
2R(hm − hi) + h2

m − h2
i − ρ2

m
2ρm(R + hi)

)
(2)
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being hi the geometric altitude of the i-th sensor with reference at mean sea level. R is the local
Earth radius at the radar position, calculated as described in [18]. Local Cartesian coordinates will be
used as middle step in the conversion between radar measures and common tracking coordinates for
all sensors.

The radar measurement model can be summarized as:

ρm = ρ + nρ + ∆ρ

θm = θ + nθ + ∆θ

hm = h + nh + ∆h

(3)

where nρ, nθ and nh are the noise measurement errors for range, azimuth and altitude respectively,
∆ρ, ∆θ and ∆h are systematic error terms due to bad system calibration, and ρ, θ and h are the ideal
range, azimuth and altitude of the target. Noise terms are modelled typically as uncorrelated additive
white noises (usually considered Gaussian distributed), while systematic error terms can be considered
constants or slow time variant (bias terms). Bias terms of range, azimuth and altitude depend on
target position and will be deduced in Sections 3–5 for SSR sensors. They are composed by several
environmental and equipment perturbations that are common to all the measurements of each sensor.
The parameters of the mathematical model may change with time, due to variable weather conditions
and hardware aging.

In surveillance data fusion systems the measures obtained from different kind of sensor are fused
in order to improve the information update ratio and the accuracy of the aircraft trajectory estimation.
At the moment of the data fusion all measurement must be expressed in a common coordinated
reference system. There are several coordinated systems that can be used in ATC. For small scenarios,
flat Earth model can be assumed, therefore Cartesian coordinates are precise enough to track the
trajectories with several sensors. When the scenario is larger and sensors are widely separated,
the Earth curvature must be considered and a different coordinate system must be used. A typical
solution is to use stereographic projection to project all measures expressed in local Cartesian reference
systems to the same plane [4]. Afterwards, the multisensor tracking process will be performed in the
stereographic reference system for horizontal track. Aircraft barometric altitude is usually tracked
separately in ATC applications.

3. Azimuth Bias

Azimuth bias can be modelled as the superposition of several terms that can be separated in
three different groups. The first one is the erroneous orientation of the antenna boresight due to
misalignments between the antenna and the rotation axis. The second one is the non-orthogonality
between the rotation axis and the Earth surface. And the last one is the calibration error of the
dispositive of angle determination (azimuth encoder). Some of these terms will have the same effect in
the measures and they cannot be distinguished in the estimation process using measures from radar.
For example, the azimuth offset of the antenna, the azimuth offset of the rotation axis and the azimuth
offset of the encoder will have equivalent effects and only one of them will be considered. In this case,
the model adds all the effects in a single parameter.

In other cases, the superposition of these terms will depend on aircraft position. Antenna skew
and rotation axis skew will be distinguishable if the aircraft are distributed in azimuth. For these two
bias terms both the elevation and azimuth diversity of the aircraft are needed in order to estimate them.
Generally, the aircraft will be distributed in the airspace (position and altitude) but sometimes there
will be cases where all the aircraft will be concentrated in a small rank of azimuth, altitude or range.
In these cases, the bias estimation algorithms will not have the capability to separate the different
azimuth and bias components (there would be an observability problem [15]).
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3.1. Antenna Deviation

The first factor that affects the azimuth bias is the deviation between the vertical axis of the
antenna reference and the reference of the rotation axis. This deviation will be defined with three
parameters describing the rotation in the three axes of the Cartesian coordinate system. In order to
determine the antenna deviation, the coordinated system is defined as: y-axis, parallel to the ideal
antenna boresight; z-axis, orthogonal to the y-axis, resulting that both axes compose the ideal plane of
the 2D antenna pattern (z-axis is the ideal antenna rotation axis); the x-axis, orthogonal to the y-axis
and z-axis positive to the right.

In order to derive the model, the biased antenna coordinated system (x′, y′, z′) is calculated.
The axes of the coordinated system (x, y, z) are rotated to get the new system (x′, y′, z′) and the
measured azimuth (θm) is calculated in the new system. Under the assumption that the deviation
angles of the antenna axes are small (below 1◦), the order of the rotation around each axis has a
negligible influence in the model. The three rotation angles (Figure 1) correspond to the following bias
parameters components:

• Azimuth offset (θ0): it is generated with the rotation of the antenna in the horizontal plane.
This offset is constant for all the targets of the sensor. This rotation is defined positive in
counter-clockwise direction.

• Antenna squint (sant): it is the bias produced due to the rotation in the orthogonal plane to
the antenna boresight. This component produces an azimuth bias dependent on the target
elevation (angle of line of sight respect to horizontal plane). This rotation is defined positive in
counter-clockwise direction.

• Antenna tilt (tant): produced due to the rotation of the plane of the 2D antenna pattern around
the x-axis. As radars used in ATC applications do not measure the elevation, this bias has not
consequences in the first order terms of the azimuth bias. This rotation is defined positive in
clockwise direction.
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The rotation matrix for each one of the axes are:

Rz(θ0) =

 cos(θ0) sin(θ0) 0
− sin(θ0) cos(θ0) 0

0 0 1

 (4)

Rx(tant) =

 1 0 0
0 cos(tant) − sin(tant)

0 sin(tant) cos(tant)

 (5)
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Ry(sant) =

 cos(sant) 0 − sin(sant)

0 1 0
sin(sant) 0 cos(sant)

 (6)

Applying these rotations, the resultant coordinate system is: x′

y′

z′

 = Rz(θ0) · Rx(tant) · Ry(sant) ·

 x
y
z

 (7)

Due to the convention in geographical systems of the azimuth with the origin in the y-axis,
positive in clockwise, the measured azimuth (θm,ant) is:

θm,ant = arctan
(

x′

y′

)
(8)

These calculations are made under two assumptions: the error is only caused by the deviations
of the antenna and this antenna can only acquire the targets that are in the 2D antenna main lobe.
A multidimensional Taylor series on the bias variables θ0, sant and tant is made to derive the following
linearized approximation:

θm,ant ≈ θ + θ0 − sant tan(ϕ) cos(θ) + tant tan(ϕ) sin(θ)

+

(
1
2

sin(θ) cos(θ)− sin(θ) cos(θ)
cos2(ϕ)

)
s2

ant −
(

1
2

sin(θ) cos(θ)− sin(θ) cos(θ)
cos2(ϕ)

)
t2
ant

+

(
cos2(θ)− 2 cos2(θ)

cos2(ϕ)
+

1
cos2(ϕ)

)
tantsant + · · ·

(9)

where ϕ is the ideal elevation of the aircraft. The variable θ may be particularized to zero in this case
as the antenna only measures the aircraft that are into the antenna main lobe (θ ≈ 0). Assuming
that θ0, sant and tant are small values then the higher order terms may be assumed to be negligible,
resulting in:

θm,ant ≈ θ0 − sant tan(ϕ) (10)

The previous measure just contains the projection of the antenna deviation parameters in the
azimuth component (θ ≈ 0; noise and other bias terms are neglected for this calculation), resulting in
the following additive azimuth bias term:

∆θant = θ0 − sant tan(ϕ) (11)

3.2. Axis Skew

The axis skew is the inclination of the rotation axis. It causes an effect similar to the antenna
deviation but in this case the bias also depends on the azimuth. For this model we use the local
Cartesian coordinated system in the radar position: the y-axis pointing to the north and the x-axis
pointing to the east both in the Earth horizontal plane. As in the previous subsection the biases of the
azimuth can be calculated with rotations of the system axis as is represented in Figure 2.

In order to be coherent with the names of the rotations, the rotation in y-axis will be named axis
squint and the rotation in x-axis will be named axis tilt. In this case, the tilt gives errors on the measures
because it is the rotation in the x-axis and not in the orthogonal plane to the antenna boresight.

In this case the rotation matrix are:

Rx(taxis) =

 1 0 0
0 cos(taxis) − sin(taxis)

0 sin(taxis) cos(taxis)

 (12)
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Ry(saxis) =

 cos(saxis) 0 − sin(saxis)

0 1 0
sin(saxis) 0 cos(saxis)

 (13)
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The new coordinates system (x′, y′, z′) is: x′

y′

z′

 = Rx(taxis) · Ry(saxis) ·

 x
y
z

 (14)

The measured azimuth is calculated again (θm,axis = arctan
(

x′
y′

)
) and the result is approximated

linearizing with a multidimensional Taylor series on the bias variables sant and tant. In this case the
azimuth is not particularized to zero (θ ≈ 0) because the reference axes are fixed to north and the ideal
measurement can have any value of azimuth. The linear approximation, rejecting higher order terms
in Taylor series is:

θm,axis ≈ θ + taxis tan(ϕ) sin(θ)− saxis tan(ϕ) cos(θ) (15)

Therefore, the azimuth bias due to the axis skew is:

∆θaxis = θm,axis − θ ≈ taxis tan(ϕ) sin(θ)− saxis tan(ϕ) cos(θ) (16)

An alternative equivalent model to the one in (16) can be derived as follows. Under the assumption
that the inclination of the axis is small, the spherical triangles with components taxis and saxis can
be approximated by the right triangle of Figure 3, expressed in terms of βaxis and αaxis where βaxis
represents the total skew and αaxis the direction where the axis is skewed. The new relation is:

saxis = βaxis sin(αaxis)

taxis = βaxis cos(αaxis)
(17)

Substituting (17) in (16) the final model could be written, after some minor algebra, as:

∆θaxis = βaxis sin(θ − αaxis) tan(ϕ) (18)
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The azimuth offset due to this effect at the direction of the skew is zero, and it follows a sinusoidal
law with azimuth. The model with saxis and taxis parameters in (16) is equivalent to the model with
βaxis and αaxis parameters in (18). The former model (16) results generally in better stability when used
for the development for bias estimation algorithms.
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3.3. Optical Encoder

In modern radars the azimuth of the antenna boresight is determined with an optical encoder that
is allocated in the rotating radar shaft. In the installation of this encoder, small calibration errors can be
made and these are transformed in azimuth biases. One of the errors is the misalignment between
azimuth reference of the encoder and the axis, this is an azimuth offset. This error is the same kind that
the azimuth offset of the antenna and the azimuth offset of the rotating axis, described in Section 3.1.

Other error to be considered is the eccentricity bias. Usually this is the encoder error with the
biggest impact in the measures [19]. In the installation, the rotation axis (O) is not exactly placed in the
geometric center (O’) of the encoder.

The resultant geometry is shown in the Figure 4, supposing that the difference of the centers is in
the azimuth θ = 0. Resolving the triangle shown in Figure 5 and making a deduction similar to [20,21]
we have the following relation:

A = ∆R sin(θ)
A = R sin(α)

}
=> sin(α) =

∆R
R

sin(θ) (19)

where, ∆R is the eccentricity offset, R is radius of the encoder and θ and α are angles of the triangle
shown in Figure 5.

Using the relation between sine and cosine for α (cos(α) =
√

1− sin2(α)) we also have the
following relation:

cos(α) =

√
1−

(
∆R
R

)2
sin2(θ) =

1
R

√
1− ∆R2 sin2(θ) (20)
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On the other hand, from Figure 5 we can also see:

r = R cos(α)− ∆R cos(θ)r = −∆R cos θ +
√

R2 − ∆R2 sin2(θ) (21)

Finally:
h = R sin(θm)

h = r sin(θ)

}
=> θm = arcsin

( r
R

sin(θ)
)

(22)

The measured azimuth is also linearized with a Taylor series on the bias variable ∆R in order to

get an approximation to model. Assuming that ∆R
R � 1 the approximation of

(
∆R
R

)2
= 0 can be made.

With these simplifications, the azimuth measurement can be approximated as:

θm ≈ θ − ∆R
R

sin(θ) (23)

The second error produced by the optical encoder is due to the swash between the encoder and
the horizontal plane. A small swash of the encoder produces that the projection of the circumference is
an ellipse and the determination of the azimuth has errors when this azimuth does not point to the
ellipse axis.

In Figure 6a a schematic model of the optical encoder is represented. The circle line on the
x-y’ plane represents the mechanical encoder and the dotted line on the x-y plane represents the
projection of the rotated mechanical encoder circumference on the horizontal plane. The ideal azimuth
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is represented on the horizontal plane but the measured azimuth is obtained by the rotated encoder.
In Figure 6b both mechanical encoder circumference and its projection on the horizontal plane are
represented in the same plane in order to represent the 3D projection in a 2D figure to see the difference
between the real azimuth and the measured azimuth. Following the methods used in [18] to convert
geocentric latitude in reduced latitude we can obtain the relation between θm and θ. Using the
next variables:

x = r sin(θm)

ym = r cos(θm)

y = ym cos(senc)

(24)

and solving the triangle for θ:

θ = atan
(

x
y

)
= atan

(
tan(θm)

cos(senc)

)
(25)

and then θm can be calculated as:

θm = atan(cos(senc) tan(θ)) = atan
(

cos(senc)
x
y

)
(26)
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A Taylor series of order 2 on the bias variable senc is made to get an approximation of the measure:

θm ≈ θ − 1
2

cos(θ) sin(θ)s2
enc = θ − s2

enc
4

sin(2θ) (27)

In this Taylor series, the first order term is zero and the second order term is considered. As this
term is raised to second power, with small values of senc the value of the bias will be negligible. In both
terms related with the encoder the error has been calculated supposing that the difference of the centers
and the swash are in the azimuth θ = 0. Supposing that in reality the azimuth of the difference of
centers is αecc and the azimuth of the swash is αenc the resultant encoder bias, comprising both the
effects described in (23) and (27), is:

∆θenc = −
s2

enc
4

sin(2θ − 2αenc)−
∆R
R

sin(θ − αecc) (28)
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An equivalent model can be derived by using trigonometric relations, in order to express all the
biases with a linear structure similar to the one in Equation (16):

∆θenc = senc,s sin(2θ) + senc,c cos(2θ) + ∆Ry sin(θ)− ∆Rx cos(θ) (29)

where:

senc,s =
s2

enc sin2(αenc)− s2
enc cos2(αenc)

4
senc,c = s2

enc cos(αenc) sin(αenc)

(30)

and ∆Ry and ∆Rx are the terms of the center deviation in the y-axis and in the x-axis.

3.4. Azimuth Bias Composition

The global azimuth bias model is a composition of the three bias elements previously discussed.
Neglecting noise effects, in a radar, the measured azimuth of the antenna is the azimuth where the
rotation axis is pointing plus the antenna bias. The azimuth of the rotation axis is the azimuth indicated
by the encoder plus the axis bias. Finally, the azimuth indicated by the encoder is the ideal azimuth
plus the encoder bias. With this:

θenc = θ + ∆θenc

θaxis = θenc + ∆θaxis

θm = θant = θaxis + ∆θant

(31)

and then:
θm = θ + ∆θ = θ + ∆θant + ∆θaxis + ∆θenc (32)

With this, the complete model for azimuth bias is:

∆θ = ∆θant + ∆θaxis + ∆θenc

= θ0 − sant tan(ϕ) + βaxis sin(θ − αaxis) tan(ϕ)− 1
4

sin(2θ − 2αenc)s2
enc −

∆R
R

sin(θ − αexc)
(33)

This model should not be used in general in the bias estimation algorithms due to instability
problems due to lack of linearity of some of part of the model, although its physical meaning is clear.
The alternative equivalent model (preferred for bias estimation due to its linearity with respect to bias
parameters) should be obtained composing (11), (16), (29) and (32), resulting:

∆θ = θ0 − sant tan(ϕ) + [taxis sin(θ)− saxis cos(θ)] tan(ϕ) + senc,s sin(2θ)

+senc,c cos(2θ) + ∆Ry sin(θ)− ∆Rx cos(θ)
(34)

4. Range Bias

Range biases are again due to several factors. The main factors that compose the biases are:

• Transponder delay: every aircraft has a different transponder delay (typically between −75 m
and 75 m, usually assumed to be uniformly distributed). This aircraft dependent bias must be
estimated for each aircraft in the tracking phase. The range model developed in this paper is
for biases due to sensor and environment. As the estimation will be made with many targets,
the mean of the delays of all the aircraft tends to be near zero. For more details on this bias term
and methods to estimate it, see [8].

• Temporal reference error: radars measure the difference of time between the interrogation and
the arrival of the response. Usually there is a small constant error in the reference time and it
produces a constant error (ρ0) in the range estimation.
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• Clock error: A small error in the clock calibration may produce a linear term in the range
estimation [22]. In modern radar this term can be considered negligible due to the precision of
the clocks.

• Propagation error: The conversion between time and distance is made using the speed of light
in the ISA (International Standard Atmosphere) at mean sea level. However, the speed of light
changes along the propagation path due to the change in the refraction index with altitude and
weather conditions. Any change in the real speed of light will produce a range bias term (∆ρprop).

Considering the range biases terms previously explained, the range bias (∆ρ, as defined (3)) results:

∆ρ = ρ0 + ∆ρprop (35)

In cases when the clock has a bad calibration, the bias has additionally a linear term dependent
on the clock error, and parameterized through a range gain factor (αclk), being the complete model:

∆ρ = ρ0 + αclk ρ + ∆ρprop (36)

Next, we will focus on the propagation term.

4.1. Propagation Error

The index of refraction of the atmosphere changes with the altitude and this affects to the local
speed of light. As the conversion between time and range is made with a constant speed of light,
the determination of the position of the aircraft from the radar generally has biases (due to change of
speed of light with altitude and weather conditions).

As the bias is produced by accumulated error in the speed of light along the propagation path,
the range bias will be a function of the target range. In order to model the relation between the ideal
range and the bias we will use a spherically stratified atmosphere. The exponential model of the
refractivity [23] is used because it models the typical atmosphere variations in the rank of altitude
used in ATC applications:

N(h) = Nsexp
(
− h

H

)
(37)

where N(h) is the refractivity at a given altitude (h) over mean sea level, H is a reference altitude
(equal to 6950 m), and N(0) = Ns (with typical values between 300 and 350). The relation between the
refractivity and the index of refraction (n(h)) is:

n(h) = 1 + N(h)× 10−6 (38)

The model in Equation (37) can be used also redefining altitude (h) to be referred to radar altitude,
which just results in a change of the Ns constant, to be now the refractivity at the radar altitude over
mean sea level. This will be the altitude reference and refractivity model to be used for the rest of
this section.

The height gradient of the index of refraction bends the ray, resulting in a slightly increased
distance from that of the straight line used to model propagation on free space. Specifically, as it is
deduced in [24] using a ray tracing procedure with the Snell’s law for spherically stratified media [25],
the geometrical distance of the bent ray path may be calculated as:

s(ht, ϕ0t) =
∫ ht

0

dh√
1−

{
n0 cos(ϕ0t)

[
n(h)

1+ h
Re

]} (39)

where ϕ0t is the elevation ray angle observed by the radar, ht is the target altitude relative to the radar,
n0 is the index of refraction at radar altitude, and Re is the Earth radius plus radar height.
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Additionally, the speed of light varies as it traverses different heights with different associated
index of refraction. The effective distance (measured distance assuming constant speed of light,
is affected by the propagation error), and can be calculated as proposed in [24]:

r(ht, ϕ0t) =
∫ ht

0

n(h)dh√
1−

{
n0 cos(ϕ0t)

[
n(h)

1+ h
Re

]} (40)

In the following we will work with the approximation that the geometrical distance between the
target and radar is almost equal to a straight-line (free-space) path length [24] (ρ ≈ s(ht, ϕ0t)). Then,
the range bias due to propagation can be calculated as:

∆ρ(ht, ϕ0t) = r(ht, ϕ0t)− s(ht, ϕ0t) (41)

Both distances (geometrical distance and effective distances), and their difference, can be
numerically estimated for different values of ht and ϕ0t. With these pairs we can get a table of range
biases (∆ρ) and geometrical distances (s). In these estimations we work with the approximation that
the geometrical distance between the target and radar is equal to the ray path length [24]. Without this
approximation the estimations are similar, but at distances lower than 20 Km the results of the biases
are different. But in these places the total bias is very low (between 2 m and 6 m, depending on the
altitude) and the approximation does not introduce significant error. The resultant range error is
represented in the Figure 7, where each line represents the range error for a different altitude (ht) as
a function of slant range.
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As it is seen [26] two relevant characteristics can be observed. The first one is that the range error
depends on the altitude of the aircraft. The second one is that a second-grade polynomial seems to be
good enough to approximate the range error dependency with the slant range for every altitude [27].
Considering only this polynomial, the range error can be expressed as:

∆ρ(ρ, h) = β1(h)ρ + β2(h)ρ2 (42)

where β1(h) and β2(h) are polynomial coefficients, different for each altitude.
This model does not allow to make a good estimation of the parameters with opportunity traffic,

because the number of aircraft in each altitude layer is reduced. We must find a model which allows
the simultaneous use of aircraft measures at all altitudes in the estimation process.
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A key idea in the derivation of such model is to search for decoupled range and altitude
dependencies in ∆ρ(ρ, h):

∆ρ(ρ, h) = f (ρ) · g(h) (43)

To do so, the quotient between a parabola in an altitude and the parabola at an arbitrary reference
altitude (hr = 14,000 m in the following) for the same slant range is made:

g(ρ, h) =
∆ρ(ρ, h)
∆ρ(ρ, hr)

(44)

This quotient is shown as a function of the slant range in Figure 8 and can be observed that for
each altitude it is almost constant. The right end of the horizontal lines in this figure corresponds to
the radio-wave propagation horizon. This result demonstrates that the range bias at a specific altitude
is the range bias at the reference altitude multiplied by a constant, supporting Equation (43), as the
dependency of g(ρ, h) with the slant-range is negligible (i.e., it could be substituted by g(h)), and f (ρ)·
would be directly ∆ρ(ρ, hr), a function not depending of h. From those ideas, we have that:

f (ρ) = β1(hr)ρ + β2(hr)ρ
2 = α1ρ + α2ρ2 (45)
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In order to derive g(h) we have represented in the Figure 9 the quotient between the range bias at
an altitude and the bias at a reference altitude as a function of altitude. In this figure, it can be seen
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that a linear model is a good approximation. A second order polynomial would be an almost exact
approximation but it implies the addition of another parameter that would make the convergence of
the bias estimation processes slower with reduced accuracy gains.

Then g(h) can be modelled with a linear function normalized to reference altitude (hr):

g(h) =
∆ρ(ρ, h)
∆ρ(ρ, hr)

≈ 1 + α3

(
1− h

hr

)
(46)

Finally, the contribution of the tropospheric propagation to the range bias can be modelled,
combining Equations (43), (45) and (46):

∆ρprop =
(

α1ρ + α2ρ2
)[

1 + α3

(
1− h

hr

)]
(47)

4.2. Range Error Composition

The final range bias is the addition on the one hand of the propagation bias due to the atmosphere
and on the other hand to the constant bias produced by the transponder delay and the error of
reference time:

∆ρ = ∆ρ0 +
(

α1ρ + α2ρ2
)[

1 + α3

(
1− ht

hr

)]
(48)

5. Altitude Bias

Civil surveillance radars used in ATC do not measure elevation of the targets. The reply of
the aircraft transponder to the SSR interrogation codifies the altitude of the aircraft in the message
(Mode C), completing the 3D position determination by the radar sensor. Aircraft altitudes may be of
two different types:

• Geometric altitude: it is the Euclidean distance between the mean sea level (MSL) and the position
of the aircraft.

• Barometric altitude: this altitude is calculated from the air pressure of the atmosphere at aircraft
location. The conversion between pressure and altitude is made assuming International Standard
Atmosphere (ISA) model (temperature 288.15 K and pressure 101,325 Pa, at MSL) [28]. Barometric
altitude is the same that geometric altitude only when the atmospheric conditions are the
ISA conditions.

Barometric altitude is used in ATC systems, because all aircraft must always measure the pressure
to fly and its flight performance depends critically on this pressure, barometers are easy to be calibrated
and vertical separation can be done easily using this magnitude. On board certified sensors for
geometric altitude usable in all phases of flight (such as GPS) have only recently become widely
available, and this information is not always available in the ground. All the surveillance systems
send barometric altitude but only some of them can send the geometric altitude. Using the barometric
altitude usually implies systematic errors in altitude determination that are almost equal for every
aircraft and those depends on the pressure and temperature.

This altitude bias term, when the polar measure is transformed to the horizontal plane, introduces
a systematic error in the 2D position. The projection of this bias will be negligible when the elevation
of the aircraft is close to zero, but it will be an important factor when the aircraft is near to the sensor
and the elevation is big. This situation is typical in some air traffic control systems, as that of a radar
close to an airport with several others far away of that airport. Then the horizontal projection of the
measures from the near radar are heavily distorted due to the systematic altitude errors.

The projection in the horizontal plane is implemented using the target elevation, as calculated
in Equation (2). This equation is equivalent to search the cross point between the circle defined with
radius ρ and the line defining the constant measured altitude. This is shown the Figure 10, where ρ is
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the measured range, h and hm are the ideal and measured altitude respectively. ρp is the projected range
calculated with the ideal altitude and ρmp is the projected range calculated with the measured altitude.
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In [28] a model of the atmosphere for its use in Air Traffic Management (ATM) trajectory prediction,
based on ISA model, is defined. The ranges of altitudes of civil aircraft cover the troposphere and
the lower stratosphere. The tropopause is the boundary between both layers. Hence there are two
different models for different altitudes. In this model, the tropopause is allocated where the barometric
altitude is 11,000 m. Below the tropopause the atmospheric model of barometric altitude is a non-linear
function that depends on the temperature and the pressure at MSL. Above the tropopause, the model
is a linear function because the gradient of temperature is zero.

In the model, the barometric altitude (hp) is the measured altitude and the geometric altitude (hg)
will be the ideal altitude. The difference between both altitudes will be considered the altitude bias.
The model proposed in [28] is:

Below tropopause:

hg = hp − ∆HP +
∆T
βt

ln
(

T0 + βthp

T0 + βt∆Hp

)
(49)

Above tropopause:

hg = hg,trop +
T0 + ∆T + βthp,trop

T0 + βthp,trop

(
hp − hp,trop

)
(50)

where ∆HP is the barometric altitude offset with respect to ISA (which depends on the difference
between current pressure and standard pressure at mean sea level), ∆T is the difference between
current temperature and standard temperature at mean sea level, T0 is the temperature of the standard
atmosphere at mean sea level, βt is the temperature gradient and hg,trop is the geometric altitude
where the barometric altitude is hp,trop = 11,000 m (which should be calculated with Equation (49) to
guarantee geometric height continuity).

To reduce the impact of altitude biases in measurement projection in the horizontal plane ∆T and
∆Hp must be estimated and corrected. Next we will derive a parametric model for these terms. Note
the altitude bias effect is important when the elevation of the aircraft is big (high altitude and short
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range). We will next fit and show the consistency of a linear model between the geometric altitude and
the barometric altitude based on the previously presented model, resulting in:

Below tropopause: we may approximate linearly ln(1 + x) ≈ x when x ≈ 0. Using this
approximation in ln

(
1 + T0+βthp

T0+βt∆Hp
− 1
)

from (49) we can derive:

hg = hp − ∆HP +
∆T
βt

(
T0 + βthp − T0 + βt∆Hp

T0 + βt∆Hp

)
(51)

After some algebra we have:

hg =
(
hp − ∆HP

)(
1 +

∆T
T0 + βt∆Hp

)
(52)

and then we can solve for hp, resulting:

hp =
hg

1 + ∆T
T0+βt∆Hp

+ ∆HP (53)

Above tropopause: Regrouping the terms in Equation (50), and approximating hg,trop using (52),
the following relation is obtained:

hg = hg,trop +

(
1 +

∆T
T0 + βthp,trop

)(
hp − hp,trop

)
(54)

where:

hg,trop =
(
hp,trop − ∆Hp

)(
1 +

∆T
T0 + βt∆Hp

)
(55)

Then, we can solve again for hp, resulting:

hp =
hg − hg,trop

1 + ∆T
T0+βthp,trop

+ hp,trop (56)

In this section hg is always the ideal geometric altitude (called h in Equation (3)) and hp is the
barometric altitude (measured by the barometer, called hm in Equation (3), assuming negligible altitude
noise). Changing the notation to that of Equation (3) the resultant model is:

Below tropopause:

hm =
h

1 + ∆T
T0+βt∆Hp

+ ∆Hp (57)

Above tropopause:

hm =
h− hg,trop

1 + ∆T
T0+βthp,trop

+ hp,trop (58)

In both cases, the model has an offset height and a height gain. In Figure 11 the bias associated
to the more exact EUROCONTROL model [28] in Equations (49) and (50), and the linearized model
are represented (in Equations (57) and (58)) vs. the geometric altitude (h). Those two models use
the same values for the parameters ∆Hp = 300 m and ∆T = 15◦, and the linearization has very
low error at low altitudes but at high altitudes the errors between both models can be around
100 m. Meanwhile, the black line (labelled expected estimation) represents a least squares regression
of the EUROCONTROL model using the model in Equations (57) and (58) with parameters ∆Hp

and ∆T. The optimal values of the estimated values, assuming uniform distribution of heights,
are ∆Hp= 298.72 m and ∆T = 17.06 ◦C. Although those are not the actual values used for the
EUROCONTROL model, the simplified model is able to adjust quite finely to it, and therefore seems a
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promising model for altitude bias error estimation. If should be noted the purpose of this model is not
obtaining a very accurate estimate of ∆Hp and ∆T, but to be able to approximate correctly the altitude
bias relation with geometric height.
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6. Bias Estimation with Opportunity Traffic

As the bias error varies slowly with time, the error model parameters must be estimated
dynamically. In a radar network the main real time information source are the measures taken
from the opportunity traffic and they are used for bias estimation. With the measures of a single radar
the biases cannot be determined because there is not a reference in order to get the projection of the
biases over the horizontal measurement plane. The projection of the biases depends on the position of
the aircraft and the radar.

In this section, we will describe a method for the estimation of the bias parameters of a pair
of radars with overlapped coverage. The purpose of the described method is not to describe an
optimal/scalable process implementable in a real sensor network with more than two radars, but to
analyze in the results section the adequacy of the proposed bias models and their effectiveness to
remove systematic errors. More advanced methods may be found in the literature [6–9,13–17], and the
application/extension of some of them will be part of our future research.

From the previous sections, bias model parameters of the i-th radar can be arranged in
a 12D vector:

bi = [∆θ0 sant taxis saxis ∆Rx ∆Ry senc,s senc,c ∆ρ0 α1 α2 α3]
′ (59)

On the other side, altitude bias terms due to the atmosphere conditions are common to every
radar and they are included in other bias vector:

batm =
[
∆Hp ∆T

]′ (60)

In our simple example method biases will be estimated with the difference of measurements
(pseudomeasurements) of the same aircraft taken by different sensors at the same time.
This pseudomeasurements will be obtained in the common plane subtracting the horizontal projection
of the same aircraft measures. As in real scenarios the measurements of the radars are not synchronized
the measurements of one of the sensors need to be interpolated to the time of the other radar, following
a process as proposed in [7]. This interpolation is made between two measures from the same
radar to the measure time from the other radar (between the times from the other two measures).
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Assuming that biases are small the projection of the bias terms may be approximated with a linearized
function. With this linearization the measurement model for each of the plots projected in stereographic
coordinates can be expressed as:

Xm,i =

(
xm,i
ym,i

)
=

(
x
y

)
+ Hbibi + Hb,atmbatm (61)

where (x,y) is the ideal horizontal position of the aircraft and (xm,i, ym,i) is the measured positon of the
aircraft by the i-th radar while Hbi and Hb,atm are the bias projection matrices.

The projection matrices (Hbi and Hb,atm) are a composition of the linearized change of coordinates
from Equation (1), the linearization of the projection to the stereographic plane, and the linearization
of the bias models for each of the bias components, so Hbi and Hbi,atm may be expressed as:

Hbi =



dx
d∆θ0

dy
d∆θ0

dx
dsant

dy
dsant

dx
dtaxis

dy
dtaxis

dx
dsaxis

dy
dsaxis

dx
d∆Rx

dy
d∆Rx

dx
d∆Ry

dy
d∆Ry

dx
dsenc,s

dy
dsenc,s

dx
dsenc,c

dy
dsenc,c

dx
d∆ρ0

dy
d∆ρ0

dx
dα1

dy
d∆α1

dx
dα2

dy
d∆α2

dx
dα3

dy
d∆α3



Hbi,atm =

[
dx

d∆HP

dy
d∆HP

dx
d∆T

dy
d∆T

]
(62)

6.1. Biases Values Initialization

The initial values of the biases will be estimated using a LSE method using a small number of
measurement (for example the measurements received in an antenna scan period). As it is proposed
in [6] a pseudomeasurement (Xb) of the bias vector will be constructed and the (64) will be solved
with the LSE method.

Xb = Xm,1 − X̂m,2 (63)

Xb = Hb b + w (64)

where Xm,1 is a measure from the radar 1, X̂m,2 is the interpolation from two measures from the radar
2 to the same time of Xm,1, w is the measurement white Gaussian noise projected to stereographic
plane and:

Hb,i = [Hb1, −Hb2, Hb1,atm − Hb2,atm] (65)

b =

 b1

b2

batm

 (66)

where Hb,i is the projection matrix of the i-th measurement. The biases are estimated using the
pseudoinverse matrix [5]:

b0 =
[

H′R−1H
]−1

H′R−1Xb (67)
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where:

H =



Hb,1
...

Hb,i
...

Hb,n


R = diag(R1 . . . Rn) (68)

Ri is the noise covariance matrix of each pseudomeasurement (it is the addition of the
noise covariance matrix from Xm,1 and X̂m,2 of the i-th measurement) and n is the number of
pseudomeasurements used in the initialization. The initial covariance matrix (P0) used in the next
section is calculated with the projection of the noise over the biases [5].

P0 = (H′R−1H)
−1

(69)

6.2. Recursive Bias Estimation

After initialization, the values of the biases are estimated recursively with an Extended Kalman
Filter. Biases are considered constant, so the prediction matrix (Φ) is the identity matrix. Sub-index k
indicates the temporal index of the state and the diacritic circumflex indicates that it is a predicted
state. The predicted state and its covariance matrix at the time of the current pseudomeasurement are:

b̂k = Φbk−1

P̂k = Pk−1ΦP′k−1 + Qk−1
(70)

In simulated data where the biases are constant, the noise plant covariance matrix can be set to
zero, but in real scenarios the biases will be quasi-constant and the Q matrix must be set with small
values of covariance. After that the residual and its covariance matrix must be estimated:

Xb,k = Xm,1 − Xm,2

rk = Xb,k − Hb,k b̂k

Sk = Hb P̂k H′b + Rk

(71)

With these previous values, the filter gain is calculated and son the updated state so the updated
covariance of the filter are calculated:

Kk = P̂k H′b,kS−1
k

bk = b̂k + Kkrk

Pk = (I − Kk Hb,k) P̂k

(72)

6.3. Bias Observability Discussion

Ideally the observability of the bias parameters in the scenario can be tested with the matrix[
H′R−1H

]
where H and R is composed by all the Hb,k and Rk as in Equation (68). The bias parameters

will be observable if this matrix is a positive definite matrix [15]. In the initialization phase this matrix
is composed in order to calculate Equation (67). In the recursive bias estimation phase this matrix is
never calculated but the observability can be tested composing this matrix with all the measurements.
The dimensions of the resultant matrix becomes in an unaffordable computational load. The objective
of this discussion is show the geometrical requirements (presented in the next paragraphs) that a radar
scenario should have for the stability of the estimation algorithms. For a more rigorous mathematical
analysis of the observability in radar registration the modified Fischer Information Matrix can be
studied [29].
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In the best case the targets have diversity in range, azimuth and altitude and the biases are
perfectly determined. In many real cases the opportunity traffic is not uniformly distributed in the
airspace as most of the aircraft are in the upper flight levels. LSE method tries to minimize the global
errors for all the tracks. If most of the tracks are concentrated in the same zone, the method will
estimate the bias model parameters to get the better approximation of the corrections for these tracks,
but the estimated parameters could lead to a bad bias correction for the aircraft in areas with lower
density traffic.

Another issue about the bias observability is the variability of the measurement values. If the
sensors are widely separated in space, tracks with common coverage are concentrated in a small range
of azimuth values. For example, in the azimuth bias model presented in Section 3, we may observe
that the effect of the antenna squint and the axis squint are similar. The single difference between
them is that axis squint depends on the azimuth of the target. If every target has similar azimuth,
the effects of both bias terms are difficult to separate and their estimation is highly correlated. In this
case, the position measures biases are well corrected for the tracks used in the estimation (inside
common sensor coverage). But for other tracks with azimuth far from common coverage, there could
be position errors because the azimuth bias dependence is not well estimated.

7. Results

In this section we will include results to show the performance improvement due to the use of our
improved bias models both using simulated data (in Section 7.1) and real data (in Section 7.2). Also,
the consistency of the estimator using this model will be assessed.

The evaluation of the results will be made evaluating the Root Mean Square (RMS) value of the
difference between the positions of the measurements from different radars at the same time for the
same target:

errorRMS =

√√√√ 1
N

N

∑
i=1

(
(xi,1 − xi,2)

2 + (yi,1 − yi,2)
2
)

(73)

where (xi,1, yi,1) and (xi,2, yi,2) are the i-th measures from first and second radar for the same target
at the same time. This method is used because the evaluation of this model done principally with
real data.

Another way to test the results for real data is to have access to ADS-B o WAM data that can
be supposed unbiased compared with radar measurements. As the only available information is
the measurements of the aircraft, only the errors of the corrected plots can be evaluated, but it is
almost impossible know the real value of the biases. In route tracking in ATC it is more important the
alignment between plot than the accuracy in position of the measurement.

For simulated data the value of the biases is known and the results are presented in convergence
graphics (as a function of the number of samples used in the simulation).

7.1. Simulated Scenario Results

In order to test the observability of the different biases modelled in previous sections,
the estimation method will be tested with a simulated scenario. In this scenario there are two radars in
position (0, 0) and (50, 0) (in NM). The scenario has 1000 point uniformly distributed in a square area
with a side of 400 NM centered at (0, 0). The maximum altitude of these points is 15,000 m.

In this case the simulated measurements are synchronized and the noise of the measurements are
white Gaussian noise with zero mean with standard deviation of 75 m in range and 0.05◦ in azimuth.
This test is made using Cartesian coordinates with the flat Earth model.

The measures obtained by the radars are biased using the previously developed models with
all the parameters. The evaluation of the results is made using the RMS error in position of all the
corrected measurement in Equation (73). As the ideal position of the points is known, the error will be
calculated between the corrected measurement and the ideal position.
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In this simulated scenario, the RMS error of the measured plots is 434.72 m and the RMS error of
the corrected plots is 126.13 m. As in the simulated data the ideal position of the aircraft is known,
we can measure the errors produced only by the noise. In this case, the RMS error produced just by
the noise is 120.08 m. As the RMS error of the corrected plots is almost the RMS error produced by
the noise of the measurements, it is proved the observability of the model when the plots are well
distributed. With a bigger number of samples, the RMS error of the estimation is nearer to the RMS
error produced by the noise.

In the previous simulated scenario the bias parameter used in the generation of the simulated
position are shown in Table 1. The next paragraphs will show the estimation of some parameters using
different models but always generating the simulated plots with the complete model.

Table 1. Values of the biases used in the simulation for the radar 1.

Parameters RMS Error

∆ρ0 100 m
α1 10−3 m/m
α2 10−9 m/m2

α3 1.15
θ0 0.04◦

sant 0.5◦

βaxis 0.4◦

αaxis 45◦

βenc 0.5◦

αenc 90◦

∆R/R 5 × 10−4

αexc 45◦

∆Hp −500 m
∆T 15 ◦C
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Figure 12. Estimated bias values for Radar 1 using only the basic model (∆ρ0, α1 and θ0). (a) Range
offset; (b) Azimuth offset; (c) Range gain; (d) Temperature bias.



Sensors 2017, 17, 2171 22 of 28

Sensors 2017, 17, 2171 21 of 28 

 

Figure 12. Estimated bias values for Radar 1 using only the basic model (∆ ,  and ). (a) Range 
offset; (b) Azimuth offset; (c) Range gain; (d) Temperature bias. 

In the evaluation of the simulated data, the complete model with the values indicated in Table 1 
has been used in the generation of the plots, but different bias models with more or less parameters 
have been used in the estimation. The next figures shows the mean estimated value of the biases with 
a blue line and the mean plus/minus the standard deviation of the estimation with a dotted red line. 

The basic model used classically in the bias estimation literature uses only ∆ ,  and . The 
obtained results are shown in Figure 12. The temperature bias isn´t estimated with this model and in 
the figure corresponding to this bias the value and the deviation is zero. With a more complex model 
where the parameters used in the estimation are ∆ , , , ,  and  the estimated 
values are shown in Figure 13. 

(a) (b) 

(c) (d) 

Figure 13. Estimated bias values for Radar 1 using only the model with the parameters ∆ , , 
, ,  and . (a) Range offset; (b) Azimuth offset; (c) Range gain; (d) Temperature bias. 

Estimating different parameters than in the previous simulation (∆ , , , ,  ∆R/R 
and ) the results are slightly different as it can be seen in Figure 14. In these three simulations it 
can be seen that the range and azimuth estimations are different from the real values. This is due to 
the fact that there are parameters that affect range and azimuth that aren´t included in the estimation 
model and the included parameters values compensate the effect of the not included parameters. 

Figure 13. Estimated bias values for Radar 1 using only the model with the parameters ∆ρ0, α1, θ0,sant,
βaxis and αaxis. (a) Range offset; (b) Azimuth offset; (c) Range gain; (d) Temperature bias.

In the evaluation of the simulated data, the complete model with the values indicated in Table 1
has been used in the generation of the plots, but different bias models with more or less parameters
have been used in the estimation. The next figures shows the mean estimated value of the biases with
a blue line and the mean plus/minus the standard deviation of the estimation with a dotted red line.

The basic model used classically in the bias estimation literature uses only ∆ρ0, α1 and θ0.
The obtained results are shown in Figure 12. The temperature bias isn´t estimated with this model
and in the figure corresponding to this bias the value and the deviation is zero. With a more complex
model where the parameters used in the estimation are ∆ρ0, α1, θ0, sant, βaxis and αaxis the estimated
values are shown in Figure 13.

Estimating different parameters than in the previous simulation (∆ρ0, α1, θ0, βenc, αenc ∆R/R and
αexc) the results are slightly different as it can be seen in Figure 14. In these three simulations it can be
seen that the range and azimuth estimations are different from the real values. This is due to the fact
that there are parameters that affect range and azimuth that aren´t included in the estimation model
and the included parameters values compensate the effect of the not included parameters.

Finally Figure 15 shows the estimated values for the complete model used in the generation.
In this case all the parameters are estimated and the result are near to the real values (shown with
a black dotted line).
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7.2. Real Data Results

The models have been tested with data from two real radars. The maximum range of both radars
is bigger than 150 NM and the separation between both radars is 52 NM. This configuration gives
enough common coverage and avoids observability problems due to the sensor separation. Radar
measurements have been transformed to local Cartesian coordinates and projected to a common
stereographic plane. The center of the stereographic projection (point (0, 0) in Figure 12) is far away
from the radars in order to evaluate if the models work with the rotation, translation and scaling
produced by the stereographic projection.

The real scenario has 227 aircraft distributed in the airspace in different flight phases. As it can be
seen in Figure 16 tracks are not uniformly distributed in the airspace. The major part of the measures
is concentrated in the bottom-left corner of the common radar coverage. As the algorithm minimizes
the mean square error the measurement of this corner will be better aligned than the measurements
from other parts of the scenario, as described in Section 6.3.
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As the biases values are not known, the performance of the model will be evaluated estimating
the RMS value of the deviation in measured position of the same track at the same time from two
different radars (73). The evaluation will compare the deviation of the positions for all the measures
in the common coverage. The RMS error of the measurement noise of the radar is 160.95 m for the
first radar and 88.92 m for the second radar. The RMS value of the difference of uncorrected measured
positions is 532.45 m.

7.3. Basic Model

In [6,7] a simplified bias model is used for range and azimuth without bias in altitude. The biases
used in this estimation are the range offset (∆ρ0), the range gain (α1) and the azimuth offset (∆θ0).
With these three parameters the majority of the error produced by the biases is corrected. With these
models, the deviation of the bias errors σb is reduced up to 286.60 m obtained with Equation (73).
In Figure 17a,b two illustrative trajectories are represented. The asterisks mark the measured position
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and the circles mark the corrected position. Both trajectories are allocated in the bottom left corner
of the scenario and the raw plots of radar 2 are displaced in azimuth in counter-clockwise direction.
The algorithm corrects the plots and displaces the plots towards the correct azimuth. In Figure 17c
several trajectories placed in top-right corner (low density traffic area) are represented. Raw plots
are aligned and the corrected plots are displaced clockwise. In this scenario is easy to see that the
simple model is not good enough to estimate and align the plots of the radars for the whole radar
coverage. In this scenario, the trajectories of the Figure 17a,b are separated almost 180◦ in azimuth
from trajectories of the Figure 17c. The azimuth dependence of the biases is clearly shown in these
figures. This dependence is included in the complete azimuth bias model of Equation (34).
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Figure 17. (a) Straight trajectory; (b) Take off trajectory corrected with basic model; (c) Several
trajectories allocated at the upper-right corner of the scenario corrected with the basic model.

7.4. Complete Model

Next, we will show the results with variations of the complete model developed in this paper.
Several configurations of the model have been used with the objective to test the final correction
contribution of each parameter of the model. In Table 2 the error deviation due to the biases is
expressed for different configurations of the models (in the first column the bias parameters used in
each configuration are indicated). The first row is the basic model from the previous section. Second
row estimates the biases due to the deviation of the antenna and the rotation axis. Third row estimates
the biases produced by the encoder. Finally the fourth row estimates all the biases presented in
the model.
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Table 2. Bias error deviation for different configuration of the model parameters.

Parameters RMS Error

Without correction 532.45 m
[∆ρ, α1, ∆θ] (basic model) 286.60 m
[∆ρ, α1, ∆θ, sant, βaxis, αaxis] 260.65 m

[∆ρ, α1, ∆θ, senc, αenc, ∆R/R, αecc] 248.22 m
[∆ρ, α1, α2, α3, sant, saxis, taxis, ∆θ, senc, αenc, ∆R/R, αecc, ∆HP, ∆T] 242.19 m

The encoder eccentricity seems to be a very important parameter in the bias estimation.
For example if the encoder has a diameter of 25 cm and an error in the rotation center of 0.25 mm
produces a maximum bias of 200 m at a range of 200 km. As could be expected, the estimation with
all the parameters is the best one and in the Figure 18 (equivalent to Figure 17) the corrected tracks
are shown. In this case, as the complete model has azimuth dependent biases, every track in every
azimuth is better corrected in comparison with the simple model. But even reduced parameters bias
models result in relevant accuracy gains with respect to the usual basic model.
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The algorithm determines bias parameters for both radars to minimize the mean squared error
between the ideal position and the corrected position. As consequence of results we should conclude
that (locally in the in the shown areas) the radar 1 is better aligned to ideal position than radar 2,
although measures from both radars are corrected.

8. Conclusions

A complete model for radar biases in ATC has been developed in the paper considering both
mechanical errors in the radar installation and errors in the physical propagation and atmospheric
parameters. Typically only a basic bias model is considered in bias estimation and correction. As has
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been demonstrated with our results, with these simplified model parameters the major part of the
errors can be corrected. In real scenarios the errors of the measures cannot be approximated only
with the basic bias model. In online applications where the execution time is an important feature,
the simple model reduces the major part of the errors. In offline applications (such as [30]) where
the accuracy of the estimations is more relevant than the execution time, the number of estimated
parameters can be increased reducing the final bias error. As the number of parameters is increased,
the degrees of freedom to interpolate generic bias patterns is increased too.

The bias estimation methods in general minimize the MSE and are better adjusted where the
traffic density is bigger. With the basic model the biases are only adjusted to these higher density
areas, leaving lower traffic density with badly corrected measures. With the complete biases model
there are more degrees of freedom and the estimations will be better adjusted for areas where there is
lower density.

Analyzing the results using different bias configurations (estimation with different bias
parameters) it can be observed that the basic biases will correct the major part of the systematic
errors. The encoder eccentricity has a significant effect on the azimuth that does not depend on the
target elevation and the use of this parameter will align the plots better than with the simple model.
Also, trajectories near to one of the radars are highly affected by altitude errors.

For future work two topics derived from this paper can be studied. On the one hand the
distribution of the plots seems to be an important topic. An estimation method will be studied in order
to try to make the density of the plots in a given area not so critical for the precision of the estimations.
On the other hand, the parametrized model developed in this paper assumes that the atmospheric
conditions are constant in all the airspace but the temperature and pressure at MSL change slowly
with position. In the future we will also study the extension of the model with slow changing curves
for pressure and temperature, and the potential associated improvements. Also, the estimation of
transponder error, maybe exploiting ideas similar to the ones in [8] will be addressed.
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