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Abstract: The CMOS (Complementary Metal-Oxide-Semiconductor) is a new type of solid image
sensor device widely used in object tracking, object recognition, intelligent navigation fields, and so
on. However, images captured by outdoor CMOS sensor devices are usually affected by suspended
atmospheric particles (such as haze), causing a reduction in image contrast, color distortion problems,
and so on. In view of this, we propose a novel dehazing approach based on a local consistent
Markov random field (MRF) framework. The neighboring clique in traditional MRF is extended
to the non-neighboring clique, which is defined on local consistent blocks based on two clues,
where both the atmospheric light and transmission map satisfy the character of local consistency.
In this framework, our model can strengthen the restriction of the whole image while incorporating
more sophisticated statistical priors, resulting in more expressive power of modeling, thus, solving
inadequate detail recovery effectively and alleviating color distortion. Moreover, the local consistent
MRF framework can obtain details while maintaining better results for dehazing, which effectively
improves the image quality captured by the CMOS image sensor. Experimental results verified that
the method proposed has the combined advantages of detail recovery and color preservation.

Keywords: CMOS image sensors; image dehaze; atmospheric scattering model; local consistent
Markov random field

1. Introduction

Complementary Metal-Oxide-Semiconductor (CMOS) [1] image sensors, given their high
integration, low power consumption, small size, low cost and other advantages, have been widely
used in environmental monitoring, intelligent navigation [2], outdoor tracking, and so on. The outdoor
collection of visible light images will inevitably encounter cloudy weather (especially in recent years,
haze weather), resulting in the reduction of visibility, contrast and sharpness of the scene, therefore
making monitors, intelligent navigation, and outdoor object recognition difficult. A haze image is
generated as shown in Figure 1.
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Figure 1. Image degradation model of the Complementary Metal-Oxide-Semiconductor (CMOS) 
image sensor. 

As one of the most commonly used probabilistic graphical models, the Markov random field 
(MRF) provides not only an effective framework for modeling the statistical prior of natural  
images [3,4], but also a means of making inferences about images [5]. These inferences, widely 
investigated and applied to solve problems such as image reconstruction [6], segmentation [7], 
denoising [8–10], inpainting [11], concern underlying image and scene structure. In a CMOS for a 
single outdoor image, MRF has been informally used to model the haze scene and improve the 
dehaze result in some works. Fattal [12] assumed that the surface Lambertian shading factor and the 
scene transmission were locally independent to separate the haze from the scene, and then used a 
Gaussian MRF to smooth the transmission values. This was physically valid, but the assumption 
was too strong for a variety of images, and thus tended to under-estimate the haze thickness in 
practice. Based on the two observations that (1) images with enhanced visibility have more contrast 
than hazy images, and (2) air-light tends to be smooth, an interesting single image haze removal 
algorithm was proposed by maximizing the local contrast of the restored image in the framework of 
MRF in Reference [13]. The results were visually compelling; however, the method might not be 
physically valid. Nishino [14] introduced a novel Bayesian probabilistic method that modeled the 
image with a factorial MRF where the scene albedo and depth were two statistically independent 
latent layers and jointly estimated. Most details could be recovered from the haze image by this 
approach, but the result often suffered from oversaturation. Caraffa [15] proposed a novel MRF 
model for the single image dehazing problem, which could easily be refined to obtain better results 
on road images using the planar constraint; however, this method only outperformed the 
state-of-the-art in single road scene image dehazing. 

As above-mentioned, these MRF-based techniques focus on traditional first-order MRF to 
model a single hazy image in References [12–15]. However, in a CMOS, the traditional first-order 
MRF only models the statistical dependency between the neighboring pixels and constrains image 
on the local prior information, not the whole image. To better capture the image structures, 
higher-order MRF extends its models to larger neighborhoods. Compared with first-order MRF, 
higher-order MRF incorporates more sophisticated qualitative and statistical priors, resulting in 
stronger modeling power. However, it is harder to minimize their energy functions and it is much 
more complex to estimate their parameters due to the explosive growth of their number. Therefore, 
higher-order MRF applications in image processing are still seldom used for the limitation of energy 
function optimization algorithm. 

To enhance the first-order MRF constraint ability of the whole image and avoid too much 
complexity by the higher-order MRF algorithm, we propose a novel MRF dehazing method based 
on local consistent patches. The proposed method is unlike the traditional first-order MRF, which 
requires second-order clique potentials to constrain the neighboring relationships, and nor like the 
higher-order MRF that needs higher-order potentials defined on the overlapping cliques. There are 
two basic observations: the depth change of a hazy image is usually gradual, and the correct depth 
values in neighbor tend to be the same, hence, regardless of their scattering coefficient, the medium 

Figure 1. Image degradation model of the Complementary Metal-Oxide-Semiconductor (CMOS) image sensor.

As one of the most commonly used probabilistic graphical models, the Markov random field (MRF)
provides not only an effective framework for modeling the statistical prior of natural images [3,4],
but also a means of making inferences about images [5]. These inferences, widely investigated
and applied to solve problems such as image reconstruction [6], segmentation [7], denoising [8–10],
inpainting [11], concern underlying image and scene structure. In a CMOS for a single outdoor
image, MRF has been informally used to model the haze scene and improve the dehaze result in some
works. Fattal [12] assumed that the surface Lambertian shading factor and the scene transmission
were locally independent to separate the haze from the scene, and then used a Gaussian MRF to
smooth the transmission values. This was physically valid, but the assumption was too strong for
a variety of images, and thus tended to under-estimate the haze thickness in practice. Based on the
two observations that (1) images with enhanced visibility have more contrast than hazy images, and
(2) air-light tends to be smooth, an interesting single image haze removal algorithm was proposed
by maximizing the local contrast of the restored image in the framework of MRF in Reference [13].
The results were visually compelling; however, the method might not be physically valid. Nishino [14]
introduced a novel Bayesian probabilistic method that modeled the image with a factorial MRF where
the scene albedo and depth were two statistically independent latent layers and jointly estimated.
Most details could be recovered from the haze image by this approach, but the result often suffered
from oversaturation. Caraffa [15] proposed a novel MRF model for the single image dehazing problem,
which could easily be refined to obtain better results on road images using the planar constraint;
however, this method only outperformed the state-of-the-art in single road scene image dehazing.

As above-mentioned, these MRF-based techniques focus on traditional first-order MRF to model
a single hazy image in References [12–15]. However, in a CMOS, the traditional first-order MRF
only models the statistical dependency between the neighboring pixels and constrains image on the
local prior information, not the whole image. To better capture the image structures, higher-order
MRF extends its models to larger neighborhoods. Compared with first-order MRF, higher-order MRF
incorporates more sophisticated qualitative and statistical priors, resulting in stronger modeling power.
However, it is harder to minimize their energy functions and it is much more complex to estimate their
parameters due to the explosive growth of their number. Therefore, higher-order MRF applications in
image processing are still seldom used for the limitation of energy function optimization algorithm.

To enhance the first-order MRF constraint ability of the whole image and avoid too much
complexity by the higher-order MRF algorithm, we propose a novel MRF dehazing method based
on local consistent patches. The proposed method is unlike the traditional first-order MRF, which
requires second-order clique potentials to constrain the neighboring relationships, and nor like the
higher-order MRF that needs higher-order potentials defined on the overlapping cliques. There are
two basic observations: the depth change of a hazy image is usually gradual, and the correct depth
values in neighbor tend to be the same, hence, regardless of their scattering coefficient, the medium
transmission map can be considered as a constant in a small patch; atmospheric light, tending to be
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smooth, mainly depends on the distance of scene and can be roughly considered as a constant in local.
Relying on these two observations, we developed a linear model at small patches between the hazy
image and the restored image, and then proposed a cost function in local consistent MRF. Our major
contribution in this paper is that a local consistent range MRF was constructed by extending the
neighboring range clique around the pixels to a non-neighboring range clique, where several similar
patches in an effective window exist around each pixel. In this framework, both of the neighboring
pixel structures and the correlations among the similar patches can be captured. This local consistent
MRF cost function can be efficiently optimized by gradient-based methods. Thus, as our processing is
carried out within the effective windows around each pixel, it can be considered as a local filter for a
CMOS image sensor.

Very recently, He [16] developed a dehazing method based on local filtering which used a
neighboring window-based operation and a local linear model, namely, soft matting. However,
this method has an obvious limitation, that is, it may exhibit halo artifacts near some edges.
To address this problem, many edge-aware weights were incorporated into the local-based filtering.
Interestingly, by explicitly simplifying our cost function with respect to model parameters, we found
that the cost function constructed by local consistent MRF had a dramatic relationship with the soft
matting. Furthermore, unlike the soft matting, our method had an additional edge-preserving term.
So, compared with the soft-matting, the proposed local consistent MRF model avoided the halo artifacts
and restored more detailed information. Experimental results also verified its effectiveness.

The rest of this paper is organized as follows. In Section 2, we present the image degradation
model due to the presence of haze in the scene, and in Section 3 we construct the local consistent
MRF to better restrain the whole image. Considering that both the atmospheric light and medium
transmission map satisfied local consistency, we solve the local consistent MRF in Section 4 and report
the experiment results in Section 5. In Section 6, we summarize the proposed approach and discuss
its limitations.

2. Degradation Model

During inclement weather conditions such as fog, haze, and mist, in images captured by CMOS
sensor devices light passing through the scattering medium is attenuated along its original course and
distributed to other conditions. This process is commonly modeled mathematically by an atmospheric
scattering model, which is widely used in computer vision and image processing [17–20], and can be
expressed as follows:

I(x) = J(x)t(x) + A(x)(1− t(x)) (1)

The first term is the direct attenuation and the second term is the air-light. I(x) is the image capture
from the CMOS sensor device; x is the 2D spatial location; and J(x) is the real scene to be recovered. A(x)
is the atmospheric light, which describes the ambient light in the scene. Existing methods commonly
assume that A(x) is globally constant and it is independent from location x; however, in practice, the
variation of the values of A(x) is dependent on the scene depth, and cannot be deemed as a constant in
a nutshell. t(x) is the medium transmission map which describes the portion of the light that is not
scattered and reaches the camera:

t(x) = e−β(x)d(x) (2)

where β(x) is the scattering coefficient and is regarded as a constant in a homogeneous atmosphere
condition; and d(x) is the distance from the scene point to the camera. The aim of haze removal is
to restore the haze-free image J(x) from the hazy image I(x). It is a challenging problem as haze is
dependent on the unknown depth information d(x) as seen in Equation (2). In addition, it is ill-posed
as the input is only a single hazy image while the components t(x), A(x) and J(x) are all unknown.
To restore the haze-free image J(x), both the atmospheric light A(x) and the medium transmission map
t(x) need to be estimated. Once A(x) and t(x) are estimated, the dehazed image J(x) is obtained by:
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J(x) =
1

t(x)
(I(x)− A(x)) + A(x) (3)

where 0 < t(x) ≤ 1, and we define ax as the 1/t(x) and cx as the A(x). Therefore, in this paper, the
atmospheric scattering model can be simplified as:

J(x) = ax(I(x)− cx) + cx (4)

3. Local Consistent Markov Random Fields

The energy functions for many commonly used MRF models can be written as a sum of unary
and pairwise cliques [21,22]:

E(x) = ∑
m∈v

φm(xm) + ∑
(m,n∈ε)

ψm,n(xm, xn) (5)

where ν corresponds to the location set of all image pixels, and ε is the set of all neighboring pixels of
m. The neighboring set is commonly chosen to be 4-neighborhood. The random variable xm denotes
the configuration of pixel m of the image. Every possible assignment of the random variable x defines
a restored image. The unary potential φm is defined as the cost of a label being assigned to pixel m
and can be computed using sophisticated potential functions such as color, texture, location, shape
prior, and so on. The pairwise terms ψm,n, mostly considered as smooth terms, are typically defined as
an edge feature based on the difference between neighboring pixels. The use of the pairwise terms
in the MRF model makes it favor smooth object boundaries. Bearing the risk of undesirable side
effects, it improves results in most cases, and restored images obtained by pairwise terms tend to
be over-smooth and often do not extract the fine details of the scene. Additionally, pairwise terms
modeling the image prior statistics in small image patches do not easily generalize to priors for entire
images [23]. This limits their impact in machine vision applications.

To address the over-smooth problem and use this formulation to model the statistics of entire
images [24,25], a higher-order method has been proposed. Unlike the conventional MRF model
explained in the previous section, the clique potentials of a higher-order Markov random field model
are extended by incorporating higher-order terms defined on sets or regions of pixels [3,26,27]. The cost
function of this higher-order MRF model can be written as:

E(x) = ∑
m∈v

φm(xm) + ∑
(m,n∈ε)

ψm,n(xm, xn) + ∑
c∈S

ϕc(xc) (6)

where S refers to a set of image regions defined on super-pixels, and ϕc are higher-order terms defined
on them. The framework described above is quite flexible and can be used to extract more detail
from the restored images. However, the complexity of the algorithm for optimizing the cost function
increases linearly with the size of the clique. This hinders wide use of the higher-order MRF model in
image processing.

3.1. Basic Definition

Images degraded by haze are normally taken from outdoor natural scenes, therefore, the change
in scene depth is usually gradual and the correct depth values generally satisfy the local smooth
feature, except for pixels at depth discontinuities, whose number is relatively small. At the same
time, we found that within the local pixel block, the same colors had the same scene depth changes.
This discovery enabled us to use the image color feature to find the local consistent blocks about the
scene depth information. As shown in Figure 2, we defined a local consistent MRF model based on
these local consistent blocks.
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Thus, we used the second-order color moment to measure the similarity of the different image 
blocks in this paper. 

In local consistent MRF, the clique of each pixel is composed of the neighboring pixels around 
the pixel and its top similar blocks, searched by block matching with squared error in all color 
channels as block similarity in an effective neighborhood around the pixel. As shown in Figure 2, the 
clique of pixel m (shown in the central point) combined its connected pixels (shown in the blue 
block) and the similar blocks (shown in the red blocks) in an effective neighborhood. Apparently, the 
local consistent blocks of pixel were adaptively located over the effective regions, and we selected 
the top six blocks by similarity as the local consistent blocks according to the squared errors. 

Based on the above definitions, we denoted the clique of pixel m as F(xm), combined with two 
separations: 1-dimensional vector F0(xm) and Fk(xm). F0(xm) was defined over pixel and its neighboring 
pixels called the neighboring block. Fk(xm) was defined across all the top k similarity blocks of the 
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Figure 2. Local consistent Markov random field (MRF). (a) The input image; and (b) The local
consistent blocks.

Unlike the conventional cliques of MRF that are generally defined by the relationship between
the neighboring pixels or the super-pixels, we designed the local consistent range of cliques which
captured both the neighboring pixels’ structures and the correlations among the local similar patches.
To take advantage of local consistent MRF in image dehazing, we first defined the local consistent
blocks; and color moment is a kind of simple and effective representation in color feature. Thus,
we used the second-order color moment to measure the similarity of the different image blocks in
this paper.

In local consistent MRF, the clique of each pixel is composed of the neighboring pixels around the
pixel and its top similar blocks, searched by block matching with squared error in all color channels as
block similarity in an effective neighborhood around the pixel. As shown in Figure 2, the clique of
pixel m (shown in the central point) combined its connected pixels (shown in the blue block) and the
similar blocks (shown in the red blocks) in an effective neighborhood. Apparently, the local consistent
blocks of pixel were adaptively located over the effective regions, and we selected the top six blocks by
similarity as the local consistent blocks according to the squared errors.

Based on the above definitions, we denoted the clique of pixel m as F(xm), combined with two
separations: 1-dimensional vector F0(xm) and Fk(xm). F0(xm) was defined over pixel and its neighboring
pixels called the neighboring block. Fk(xm) was defined across all the top k similarity blocks of the
pixel, as shown in Figure 3. The variable xm denoted the labeling of pixel m of the image. Then, F(xm)
can be written as:

F(xm) = {F0(xm), F1(xm), · · · , Fk(xm)} (7)

where the similarity between the neighboring block F0(xm) and the local consistent blocks Fk(xm) can
be defined by squared errors, which can be denoted by:

σ2
k (xm) =

3

∑
i=1

(
F0

(
xi

m

)
− Fk

(
xi

m

))(
F0

(
xi

m

)
− Fk

(
xi

m

))T
(8)

where xi
m is the color label of pixel m in channel i, i ∈ {r, g, b}.
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3.2. Formulation of Local Consistent MRF Model

We used cliques composed of neighboring pixels around the pixel and its top similar blocks to
develop the clique potentials instead of the pairwise and higher-order cliques as this method not only
strengthened the constraint of conventional MRF models, but also avoided the complexity. Meanwhile,
the cost function of local consistent MRF can be represented as:

E(x) = ∑
m∈n

φm(xm) + ∑
m∈n

∑
k

ϕ(F0(xm), Fk(xm)) (9)

where the first term ∑
m∈ν

φm(xm) = |xm − x̃m|2 was used to constrain the relationship between the

correct value xm; and the estimated value x̃m in pixel m to ensure that the error was as small as
possible. The second term ∑

k
ϕ(F0(xm), Fk(xm)) = ∑

k
λ‖F0(xm)− Fk(xm)‖2 was used to describe the

difference between the neighboring block and the local consistent blocks in pixel m. λ is a regularization
parameter penalizing the difference.

4. The Solution of Local Consistent MRF

The problem described in Section 2 is a totally ill-posed problem; however, there are some clues
or observations that can be considered as haze priors to resolve the ambiguity:

1. The input images degraded by haze are normally taken from outdoor natural scenes. Therefore,
the scene depth change is usually gradual and the correct depth values of neighboring pixels
tend to the same and, hence, the medium transmission map t(x) can be considered as a constant
in a small patch, regardless of their scattering coefficient β(x).

2. The value variations of A(x) are dependent on the scene depth, that is, objects with the same
depth have the same values of A(x). So, the values of A(x) tend to be the same in local except for
the pixels at depth discontinuities, whose number is relatively small.

From the observations mentioned above, we can consider that atmospheric light A(x) and medium
transmission map t(x) both satisfy the character of local consistency.

4.1. Construction of Local Consistent MRF Model

According to the clues above, the changes of A(x) and t(x) across the image tended to be smooth
for the major pixels in local. Thus, atmospheric light and transmission map were assumed to be
constants in one local patch. The image degradation model in Equation (4) was simplified as:

J(x)= ax′(I(x)− cx′) + cx′ ,
bx′ = cx′ − cx′ ax′ , ∀x ∈ px′

J(x) = ax′ I(x) + bx′

(10)

which was assumed to have constant values of ax′ , bx′ , and cx′ in one small local patch px′ centered at x′.
As such, Equation (10) builds up a linear relationship between the transmission map and the input image.

Motivated by the above descriptions, we used the haze-free image J(x) to develop a local consistent
MRF model for the estimation of transmission map and atmospheric light. We calculated the potential
function of MRF as:

E({ax′ , bx′}|px′ ) = E({J(x)}|px′ ) = ∑
x

φx( px′ |{J(x)}) + λ∑
x

∑
k

ϕ(F0(Jx), Fk(Jx)) (11)

where px′ is a small patch centered at x′; λ is a regularization parameter penalizing the smoothness
term; and k represents the number of consistent neighboring patches selected. We defined the first
term, the data term, as:
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φx( px′ |{J(x)}) = ‖ax′ I(x) + bx′ − J̃(x)‖2
(12)

where J̃(x) is the initial value of the haze-free image J(x); and ax′ are two constants in local patch px′ .
The second term, the smoothness term, was defined as:

∑
k

ϕ(F0(Jx), Fk(Jx)) =
6
∑

k=1
‖F0(Jx)− Fk(Jx)‖2

=
6
∑

k=1

3
∑

i=1

[(
ax′Fi

0(Ix) + bx′
)
−
(
ax′Fi

k(Ix) + bx′
)][(

ax′Fi
0(Ix) + bx′

)
−
(
ax′Fi

k(Ix) + bx′
)]T

(13)

In one local patch px′ , the cost function E(ax′ , bx′) was equivalent to:

E(ax′ , bx′) = ∑
x∈px′

((
ax′ I(x) + bx′ − J̃(x)

)2
+

λ
6
∑

k=1

3
∑

i=1

[(
ax′Fi

0(Ix) + bx′
)
−
(
ax′Fi

k(Ix) + bx′
)][(

ax′Fi
0(Ix) + bx′

)
−
(
ax′Fi

k(Ix) + bx′
)]T
)

= ∑
x∈px′

‖ax′ I(x) + bx′ − J̃(x)‖2
+ Nλa2

x′
6
∑

k=1
σ2

k (Ix)

(14)

where N is the pixel number in local patch px′ . We denoted Γx′(x) = 1
6
∑

k=1
(σ2

k (Ix)+ε)
, ε as a small constant

and its value is 0.001. Then, Equation (14) can be derived as:

E(ax′ , bx′) = ∑
x∈px′

‖ax′ I(x) + bx′ − J̃(x)‖2
+

Nλ

Γx′(x)
a2

x′ (15)

Recent work in He [16] referred to a similar cost function as “soft matting”. It is important to
note the difference in our approaches. Soft matting is used as a local filter to refine the transmission
map. Interestingly, with Equation (15), our cost function based on local consistent MRF had a dramatic
relationship with soft matting. In other words, with the local consistent MRF model, we established
the dehazing relationship between the method based on random field and the method based on local
filter, such as soft matting. However, unlike soft matting, our method has an edge-preserving term and
larger weights are assigned to pixels at edges than to pixels in flat areas. Due to the edge-preserving
term, the local consistent MRF model could avoid halo artifacts and recover most details from the
haze image.

To obtain the variables ax′ , bx′ accurately, Equation (15) can be expressed as follows:

(ax′ , bx′) = argminE(ax′ , bx′) (16)

To solve this, we first calculated the partial derivative of E(ax′ , bx′) and made them equal to zero:

∂E(ax′ , bx′)

∂ax′
= 2 ∑

x∈px′

((
ax′ I(x) + bx′ − J̃(x)

)
· I(x)

)
+

2Nλ

Γx′(x)
ax′ = 0 (17)

∂E(ax′ , bx′)

∂bx′
= 2 ∑

x∈px′

(
ax′ I(x) + bx′ − J̃(x)

)
= 0 (18)

According to Equations (17) and (18), the estimation of variables ax′ , bx′ were:

ax′ =

1
N ∑

x∈px′
I(x) · J̃(x)− bx′

N ∑
x∈px′

I(x)

λ
Γx′ (x) +

1
N ∑

x∈px′
I(x) · J̃(x)

(19)
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bx′ =

∑
x∈px′

J̃(x)− ax′ ∑
x∈px′

I(x)

N
(20)

Applying Equation (20) to Equation (21), we have:

ax′ =

1
N ∑

x∈px′
I(x) · J̃(x)− 1

N ∑
x∈px′

I(x) · 1
N ∑

x∈px′
J̃(x)

λ
Γx′ (x) +

1
N ∑

x∈px′
I(x) · J̃(x)− 1

N ∑
x∈px′

I(x) · 1
N ∑

x∈px′
J̃(x)

(21)

bx′ =
1
N

(
∑

x∈px′
J̃(x)− ax′ ∑

x∈px′
I(x)

)
(22)

As mentioned above, transmission map t(x) and atmospheric light A(x) both satisfied the feature
of local consistent. Thus, once the values of ax′ , bx′ were available, it can be derived that

t(x) =
1
ax

, A(x) =
bx

1− ax
(23)

where ax = 1
N ∑

x′∈px

ax′ , bx = 1
N ∑

x′∈px

bx′ . N is the pixel number in patch px centered at x. ax and bx

present the mean values of ax′ and bx′ in patch px.
At this point, the values of the atmospheric light A(x) and the medium transmission map t(x)

became available, hence, the dehazed image J(x) could be recovered easily according to Equation (3).
As the recovered scene radiance J(x) will suffer from noise when the transmission t(x) is close to
zero, we restricted the value of t(x) by a lower bound t0, which was experimentally fixed to 0.1 in
Reference [16]. The final function used for restoring dehazed image J(x) can be expressed by:

J(x) =
1

max(t(x), t0)
(I(x)− A(x)) + A(x) (24)

4.2. Label Candidates and Initialization

As mentioned above, the energy minimization process presented in Equation (15) requires an
initial estimate J̃(x) to start the operation. Theoretically, the choice of initial solution determines the
optimization speed, thus we needed to select a close approximate to the solution as an initial estimate
to speed up the process. The initial value J̃(x) cannot be accessed directly, therefore, to obtain the
initial value of dehazed image J̃(x), we approximately estimated it through the coarse atmospheric
light and transmission map with Equation (3).

In this paper, we used the blurred Y(x) of the YIQ model [13] as the coarse value of atmospheric
light Ã(x). The value Y(x) and the blurred Y(x), the atmospheric light, are shown in Figure 4.

With Equation (3), the transmission map can be derived from:

ln(A(x)− I(x)) = ln(A(x)− J(x)) + lnt(x) (25)

and Equation (25) can be simplified as:

Ĩ(x) = J̃(x) + T̃(x) (26)

We estimated the initial transmission map values as the largest possible transmission map at
each pixel. The observed image contained three color channels, and a single transmission map can
be obtained to estimate each channel c ∈ {r, g, b}. Thus, the largest possible transmission map value
occurs when J̃(x) = 0, and the corresponding transmission map estimate T̃c(x) is:
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T̃c(x) = Ĩc(x) (27)

where c is a specific color channel. Next, we noted that there was only one map estimate in the three
transmission map estimates T̃c(x), c ∈ {r, g, b} is the possible value for all three-color channels. Thus,
we set the initial transmission map estimate t̃(x) to the closest one over all channels:

t̃(x) = e
max

c∈{r,g,b}
T̃c(x)

= e
max

c∈{r,g,b}
Ĩc(x)

(28)
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Figure 4. Initial value of the atmospheric light. (a) Input hazy image; (b) The value of Y(x); and (c) the
blurred Y(x), namely the initial value of atmospheric light.

In other words, the largest transmission map t̃(x) was the valid map for all three-color channels.
Note that when we maximized the Ĩc(x), we determined A(x) by picking image points corresponding
to direct observations of the sky or the brightest scene points in Reference [12].

Figure 5 shows the initial transmission map estimate computed from the hazy image, and
illustrates the initial estimate capturing the scene transmission map structure well.
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Figure 5. Initial value of the transmission map. (a) Input hazy image; and (b) the initial value of the
transmission map.

Recently, He [16] proposed an estimation of the transmission map based on the dark channel prior
(DCP). The DCP is used as the initial estimate for the soft matting that imposes conventional smoothing
on the transmission map estimation. Furthermore, the estimate transmission map is computed in local
leading to halo artifacts. The transmission map in this paper was also estimated in local areas with
the edge-preserving terms in the proposed local consistent MRF cost function, and our method finally
resulted in a finer estimation.
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Above all, we obtained the estimated value of the dehazed image J̃(x) by applying the initial
atmospheric light Ã(x) and transmission map t̃(x) to Equation (3). The redundant details in the
atmospheric light and the transmission map were refined and correctly represented in Equation (16)
during the joint minimization.

5. Experimental Results

To verify the effectiveness of the proposed dehazing method, we compared it with other
MRF-based and soft-matting-based methods, including Tan [13], Nishino [14], Fattal [12] and He [16]
on various hazy images. The experimental results in this paper consist of two parts. Part A discusses
the dehazing results through a qualitative comparison of hazy images captured by CMOS sensor
devices in the real-world. Part B presents the quantitative comparison of the respective dehazing
results of the proposed method with other methods on real-world hazy images and synthetic hazy
images. In addition, all the tests were implemented in the Matlab R2014a environment on an Intel Core
(T) i7-3770 CPU @3.40 GHz processor with 8.00 GB of RAM running a Windows 7 operation system.

5.1. Qualitative Comparison among Real-World Hazy Images

We have stated that the local consistent MRF plays an important role for edge preservation.
The edge-preserving term helps to recover better results. Most of the dehazing algorithms are able to
obtain really good results in many hazy images. We used the dehazed images generated by different
methods and their corresponding visible edges images to contrast the results markedly.

As shown in Figures 6–9, a qualitative comparison of results with the four state-of-the-art dehazing
algorithms mentioned in References [12–14,16] were measured on different real-world hazy images.
Among them, Figures 6–8 show the results of our method when compared with the MRF-based
methods. Figure 9 shows the comparison results between our method and soft-matting.
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Figure 6. Comparison of our method to the method discussed by Tan [13] using real-world images.
(a,b) are input hazy images and their corresponding visible edges, respectively; (c–f) are the dehazing
results with corresponding visible edges generated by the method of Tan [13] and ours, respectively.
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As shown in Figure 6, most haze was removed in Tan’s [13] results, and the scene details were 
restored. However, the results suffered significantly from over-enhancement and did not fully 
recover the scene colors. For instance, the road region of the second image was dark and the swans 
in the first image became brown. This was because Tan’s algorithm was based on maximizing the 
local contrast of the restored image and had the inherent problem of overestimating the dehazed 
image. The results of Nishino [14] had a similar problem which tended to introduce color distortion 
in the dehazed image. As observed in Figure 6c, the restored images were over-saturated and 
distorted, especially in the first image where the sky color was turned to a darker blue and the wheat 
was not its real color. Furthermore, Nishino’s algorithm also over-enhanced the local contrast. In 
some results (the third image in Figure 7), Nishino’s results and its corresponding visible edges 
showed more details than our algorithm, while their visual pleasures were not as good as ours. In all 
cases, the results of Fattal [12] (shown in Figure 8) all showed color distortion, such as the darker 
color of the wheat bundles around the mountain in the first image, the brighter green in the middle 

Figure 7. Comparison of our method to the method by Nishino [14] using real-world images. (a,b)
input hazy images and their corresponding visible edges, respectively; (c–f) are the dehazing results
with corresponding visible edges generated by the method of Nishino [14] and ours, respectively.
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Figure 8. Comparison of our method to the method by Fattal [12] using real-world images. (a,b) are
input hazy images and their corresponding visible edges, respectively; (c–f) are the dehazing results
with corresponding visible edges generated by the method of Fattal [12] and ours, respectively.

As shown in Figure 6, most haze was removed in Tan’s [13] results, and the scene details were
restored. However, the results suffered significantly from over-enhancement and did not fully recover
the scene colors. For instance, the road region of the second image was dark and the swans in the first
image became brown. This was because Tan’s algorithm was based on maximizing the local contrast
of the restored image and had the inherent problem of overestimating the dehazed image. The results
of Nishino [14] had a similar problem which tended to introduce color distortion in the dehazed
image. As observed in Figure 6c, the restored images were over-saturated and distorted, especially in
the first image where the sky color was turned to a darker blue and the wheat was not its real color.
Furthermore, Nishino’s algorithm also over-enhanced the local contrast. In some results (the third
image in Figure 7), Nishino’s results and its corresponding visible edges showed more details than our
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algorithm, while their visual pleasures were not as good as ours. In all cases, the results of Fattal [12]
(shown in Figure 8) all showed color distortion, such as the darker color of the wheat bundles around
the mountain in the first image, the brighter green in the middle forest of the second image, and in the
third image, the grayish tint to the buildings in the middle and far distance. In contrast, our results
were natural and remaining in colors across the entire image. Regarding detail contrast, the results by
Fattal [12] lacked details in the far scene, while our algorithm recovered a dehazed image with finer
granularity even in areas such as the mountain at the top region of our recovered image in Figure 8f.
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In Figures 6–8, all of the algorithms compared did not produce halo artifacts. It was clearly
observed that our results were slightly sharper than the dehazed images by other haze removal
methods, given the main contribution of the edge-preserving term in our local consistent MRF model.

Figure 9 shows the comparisons between the proposed method and soft-matting. Our results were
more saturated and have no apparent haze degradation. Observing this comparison, the algorithm in
Reference [16] may exhibit halo artifacts near some edges, for instance, the mountain and the plant
leaves in the first image. Additionally, the blocking effect existed obviously in the sky of the first
and second images. Moreover, He’s method also introduced color distortion in the regions with
white objects such as the sky regions in the second and third images where the reason was that the
scene brightness was similar to the atmospheric light as the method recovering the transmission map
used in Reference [16] ( based on the DCP) was invalid. In addition, the atmospheric light is also an
important factor for estimating the transmission in [16]. Therefore, to obtain the correct transmission
map, we required an accurate estimation of the atmospheric light. However, the estimating method for
atmospheric light in He’s algorithm was the approximate, not its accurate value. Hence, He’s method
has its limitations. In contrast, with close initial estimations, our method estimated the atmospheric
light and transmission map jointly in the framework of local consistent MRF, and also with the terms
of edge-preserving, so our method could avoid the halo artifacts and recovered most of the scene
details in the dehazed image.

5.2. Quantitative Comparison

The real-world hazy images dehazing results were compared by entropy and Peak Signal-to-Noise
Ratio (PSNR). Entropy describes the image information. PSNR is used to characterize the full degree of
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the image’s information as well as structure. Note that the higher PSNR and entropy scores imply more
excellent restored quality. In Table 1, the PSNR and entropy comparison of Figures 6–9 are provided.
As seen, our results mostly achieved a higher PSNR and entropy than the other methods. In Table 2,
the execution time comparison of Figures 6–9 are provided. The experimental results show that our
algorithm is slower than that of Tan [13], Nishino [14] and Fattal [12] due to local consistent block, but
our algorithm avoids the use of high order energy terms, so that is faster than He [16].

Table 1. Comparison of entropy and Peak Signal-to-Noise Ratio (PSNR) on the real-world image for
each algorithm compared.

Image Entropy PSNR
Input Tan Ours Tan Ours

Figure 6
Image (1) 7.0079 7.2235 7.6043 9.9862 10.9585
Image (2) 7.0079 7.3420 7.0079 9.3524 9.7479
Image (3) 7.0955 7.6129 7.7114 10.6062 12.5667

Image Input Nishino Ours Nishino Ours

Figure 7
Image (1) 7.1143 7.6770 7.7742 10.1835 16.3444
Image (2) 7.1578 6.9343 7.2157 15.8571 15.9809
Image (3) 6.5114 7.0954 7.4754 12.1857 14.7134

Image Input Fattal Ours Fattal Ours

Figure 8
Image (1) 7.0878 7.3270 7.4739 12.6795 15.2639
Image (2) 6.7272 6.9164 7.6595 9.3204 12.5983
Image (3) 7.1773 7.2793 7.1832 16.1457 17.5572

Image Input He Ours He Ours

Figure 9
Image (1) 5.6610 6.8479 7.1597 14.4612 12.5766
Image (2) 6.4788 6.9625 6.9819 10.6480 18.4398
Image (3) 7.1773 7.2793 7.1832 16.1457 17.5572

Table 2. Comparisons of arithmetic effectivity on the real-world image for running times (second) of
the haze removal algorithm.

Image Size Tan Ours

Figure 6
Image (1) 624 × 416 21.9913 30.5733
Image (2) 596 × 396 18.4131 25.8991
Image (3) 1024 × 768 53.9185 71.4230

Image Size Nishino Ours

Figure 7
Image (1) 600 × 400 29.7421 33.8257
Image (2) 465 × 384 21.8739 26.1618
Image (3) 440 × 448 25.8193 29.8271

Image Size Fattal Ours

Figure 8
Image (1) 512 × 348 18.9123 25.2018
Image (2) 351 × 244 8.0125 12.9139
Image (3) 576 × 768 36.9777 43.5120

Image Size He Ours

Figure 9
Image (1) 660 × 440 107.9991 39.8194
Image (2) 480 × 360 84.3372 23.7916
Image (3) 576 × 768 181.0391 43.5120

To evaluate the proposed algorithm comprehensively, we used synthetic hazy images with
their corresponding known haze-free images to quantify the dehazed images on various dehazing
algorithms. Figure 10 shows the comparison on synthetic hazy images, and Figures 11 and 12 show
the Mean Square Error (MSE) and Structural Similarity Index Measurement (SSIM) values produced
by different algorithms in Figure 10, respectively.
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Figure 10. A comparison of the results of synthetic hazy images. (a) Synthetic hazy images;
(b) Caraffa’s [15] results; (c) He’s [16] results; (d) Our results; and (e) ground truth images.
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Figure 12. Structural Similarity Index of different algorithms. Structural Similarity Index Measurement
(SSIM) of different algorithms.
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Lower MSE implies a greater similarity between the dehazed image and the referenced
ground-truth image. From Figure 11, our algorithm had the lowest value in almost all cases, which
meant that our results were closer to the ground-truth images and the dehazing effects more natural.

SSIM evaluates the ability to preserve the structural information of the algorithms where a higher
SSIM implies a greater similarity between the dehazed image and the ground-truth image. Figure 12
shows the SSIM comparison results in Figure 10 where it was obvious that the proposed algorithm
could preserve the structures.

In Table 3, the execution time comparison of Figure 10 are provided. The experimental results
show that our algorithm is slower than that of Caraffa [15] due to local consistent block, but our
algorithm avoids the use of high order energy terms, so that is faster than He [16].

Table 3. Comparisons of arithmetic effectivity in Figure 10/s.

Input Size Caraffa He Ours

Figure 10 Image (1) 640 × 480 36.8444 102.3404 42.4456
Figure 10 Image (2) 1376 × 1032 113.3376 387.5691 125.9364
Figure 10 Image (3) 512 × 384 18.9124 59.4183 24.7468
Figure 10 Image (4) 960 × 720 57.1672 197.8565 69.8188
Figure 10 Image (5) 736 × 552 42.3516 173.0013 58.8756

6. Conclusions

Due to its small volume and low cost, the CMOS image sensor has attracted increased interest in
the last few years and is expected to play a major role in outdoor surveillance, intelligent navigation,
object tracking, and so on. Unfortunately, in many cases, the images captured by CMOS are often of
low clarity under the effect of fog and haze weather. To ensure the quality of the image captured is
more suitable for analysis in various surveillance applications, we proposed a novel framework for a
novel local consistent MRF model for robust dehazing based on two clues where both the atmospheric
light and the transmission map satisfy the features of local consistency. Accordingly, we created a linear
model for the dehazed image with a local consistent transmission map and atmospheric light, and
constructed a cost function in local consistent MRF. Interestingly, we found that the cost function had a
dramatic relationship with the soft-matting; however, unlike soft-matting, the cost function had an
additional edge-preserving term which resulted in the avoidance of halo artifacts and restoring more
details. Consequently, the local consistent MRF model proposed could effectively produce haze-free
restoration results. Qualitative and quantitative results demonstrated that the proposed local consistent
MRF model performed better in hazy image restoration on both real-world images and synthetic data.
Nevertheless, the proposed model had some limitations, such as reduced execution time and local
artifacts without considering the semantic information of the whole image. Both problems will be
studied in our future work.
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