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Abstract: The risks involved in nighttime driving include drowsy drivers and dangerous vehicles.
Prominent among the more dangerous vehicles around at night are the larger vehicles which are
usually moving faster at night on a highway. In addition, the risk level of driving around larger
vehicles rises significantly when the driver’s attention becomes distracted, even for a short period of
time. For the purpose of alerting the driver and elevating his or her safety, in this paper we propose two
components for any modern vision-based Advanced Drivers Assistance System (ADAS). These two
components work separately for the single purpose of alerting the driver in dangerous situations.
The purpose of the first component is to ascertain that the driver would be in a sufficiently wakeful
state to receive and process warnings; this is the driver drowsiness detection component. The driver
drowsiness detection component uses infrared images of the driver to analyze his eyes’ movements
using a MSR plus a simple heuristic. This component issues alerts to the driver when the driver’s
eyes show distraction and are closed for a longer than usual duration. Experimental results show that
this component can detect closed eyes with an accuracy of 94.26% on average, which is comparable
to previous results using more sophisticated methods. The purpose of the second component is to
alert the driver when the driver’s vehicle is moving around larger vehicles at dusk or night time.
The large vehicle detection component accepts images from a regular video driving recorder as input.
A bi-level system of classifiers, which included a novel MSR-enhanced KAZE-base Bag-of-Features
classifier, is proposed to avoid false negatives. In both components, we propose an improved version
of the Multi-Scale Retinex (MSR) algorithm to augment the contrast of the input. Several experiments
were performed to test the effects of the MSR and each classifier, and the results are presented in
experimental results section of this paper.
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1. Introduction

The ultimate goal of our study is to increase driver’s safety by alerting the driver when driving
under non-ideal conditions using a vision-based ADAS. Advanced Drivers Assistance (ADAS) is
slowly reaching technological maturity. There are already many ADAS models that use the video
driving recorder as a sensor, for example, for detecting pedestrians [1]. A few models add a Forward
Collision Warning (FCW) radar [2], as well as other collision avoidance systems [3] such as the
intelligent reversing radar systems to warn the driver while moving. However, while not every vehicle
is equipped with an expensive radar detection system, most cars are equipped with video driving
recorders which can readily supply video input for processing.
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The danger level of driving any vehicle in non-ideal environments is greatly raised when the
driver’s attention level is sub-optimal [4–10]. The video output of video driving recorders can
be processed in a video-based ADAS system to help the driver in these situations. In this paper,
we propose a system that combines a module to determine the level of driver’s drowsiness with a
module to detect the presence of large vehicles. The drowsiness module operates by detecting and
tracking the driver’s eyes using infrared images. The large vehicle detector module detects and tracks
large vehicles via input from a driving recorder. These modules use classifiers based on different
features, including CNN-based features [11], and a Bag-of-Features (BoF) [12] classifier that uses the
patent-free KAZE/AKAZE features.

In previous studies for detecting drowsiness using the driver’s eyes [5–10], better results were
obtained under better lighting conditions, such as daylight. However, in studies of night-time detection
using infrared images, various works report an average detection accuracy of 92.05% [9], 92.21% [8],
and up to 94.74% [10] (without validating the eyes during tracking). Flores, et al. [10] used a more
sophisticated method to obtain this result, where difference, edge, and radial-transformed information
were preprocessed with a Gabor filter before being used to train an SVM classifier. In our drowsiness
component, we used a much simpler method. We used a version of MSR to improve the image contrast
before detecting and tracking the pupils in the driver’s eyes using a simple heuristic so that drowsiness
detection in real-time could be attained.

Experimental results using six videos of five different drivers show that we could achieve
an average accuracy of 94.26%, which is comparable to the results of previous studies. In previous
studies for detecting vehicles at night [13,14], cameras were set up in a fixed location above the vehicles
and used to locate the head and tail lights of the surrounding vehicles. However, their purpose was
to count the passing vehicles [13], or identify license plates [14], which differs from the purpose and
method of our study. Our study uses the video driving recorder onboard the vehicle itself to identify
the presence of vehicles ahead, and to differentiate large vehicles from other vehicles. Our study
seeks to determine the existence of situations at night when the driver should be alerted in real-time.
These situations include the driver’s lowering of attention or drowsiness; i.e., not in a sufficiently
wakeful state to process warnings, and when the driver’s vehicle is in the vicinity of large moving
vehicles. These situations are determined using two different components. The driver’s attention-level
detector component uses the images from a driver-facing infrared camera as input, then a version of
the MSR function is applies to improve its contrast before processing. A trained LBP-based Adaboost
classifier to determine the initial locations of the eyes, then a tracking algorithm [15] is used to track
the eyes continuously. The areas in the images containing the eyes are used to determine whether
the pupils are present. If the pupils cannot be located in either eye then it is assumed that the driver
is either looking downward or has his/her eyes closed due to drowsiness. If the pupils cannot be
detected for longer than a preset threshold, then a warning would be issued. The flowchart for this
component is shown in Figure 1.

The large vehicle detector component first uses the rear-light detection method proposed by
Wu and Lee [16] to find the locations of rear car lights within a video frame. Then the lights
are paired using image mirroring, and the areas between paired lights are the initial guesses
for the regions-of-interest [17]. These regions are assumed to contain individual vehicles within
them. The contents of these regions are then passed to a bi-level classifier system for identification.
The first level of the classifier system is a trained Adaboost classifier [18], and the second level
includes a novel KAZE-based BoF classifier, and a CNN-features-based classifier are used to catch
the false negatives. The bi-level classifier system is used in the following way: first, the images
within each region are passed to a trained LPB-based Adaboost classifier in order to quickly
determine whether it contains a large vehicle, and the positives are tracked immediately. The regions
determined to be negatives by the first classifier are then passed through a rectified version of
MultiScale-Retinex (MSR) based on [19] to improve the contrast before being re-classified by the
second-level classifiers. The second-level classifiers include a KAZE/AKAZE [20] features-based
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Bag-of-Features classifier and a Convolution-Neural-Network features-based classifier. Depending on
the number of regions-of-interest and the contents within the regions, either or both classifiers would
be used in order to further separate true negatives from false negatives. If either the KAZE-based
classifier or CNN-based classifier [21–25] detects a false negative, only then is this information used to
update the tracking algorithm, so the classification operations would not disrupt the tracking algorithm.
Our experiments shows that preprocess the regions using the rectified MSR can improve the detection
rate of the KAZE detector, even under bad conditions. The system process chart is illustrated in Figure 2.
The true negatives are assumed to be standard-sized vehicles, and can be tracked separately.
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Figure 1. The flowchart for the driver attention component.
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2. Driver Attention Detection

An infrared camera is chosen to capture driver’s upper body image during night-time driving.
The condition of the eyes are used to determine the level of focus attention of the driver. After an MSR
operation is used to improve the contrast of the image, a trained LBP-based Ada-boost classifier is
then applied to do a quick initial detection of the locations of the eyes; the requirement for this stage
of processing is that the eyes must be fully opened and the driver is facing directly ahead, as shown
in Figure 3. Once the eyes are detected, they are passed to a tracking algorithm [15] that tracks their
location changes between frames.
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Figure 3. Detection and tracking of the driver’s eyes.

The regions containing the eyes are then passed to a pupil detection algorithm, which seeks to
determine whether the driver’s eyes are open. This is done by using a heuristic of first inverting the
video within these regions then thresholded so that reflection of the infrared lights reflected by the
pupils would appear as black surrounded by white pixels, as shown in Figure 4, and can then be
easily located.
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Figure 4. Detection of the infrared reflection in the pupil.

If the heuristic fails to detect both pupils, as shown in Figure 5, for longer than a preset number
of frames, the algorithm would alert the driver by issuing a warning in order help him or her regain
focus. In Figure 5, the eyes are marked as red to indicate that the pupils could not be detected.

Sensors 2017, 17, 2199  4 of 18 

 

2. Driver Attention Detection 

An infrared camera is chosen to capture driver’s upper body image during night-time driving. 

The condition of the eyes are used to determine the level of focus attention of the driver. After an 

MSR operation is used to improve the contrast of the image, a trained LBP-based Ada-boost classifier 

is then applied to do a quick initial detection of the locations of the eyes; the requirement for this 

stage of processing is that the eyes must be fully opened and the driver is facing directly ahead, as 

shown in Figure 3. Once the eyes are detected, they are passed to a tracking algorithm [15] that tracks 

their location changes between frames. 

 

Figure 3. Detection and tracking of the driver’s eyes. 

The regions containing the eyes are then passed to a pupil detection algorithm, which seeks to 

determine whether the driver’s eyes are open. This is done by using a heuristic of first inverting the 

video within these regions then thresholded so that reflection of the infrared lights reflected by the 

pupils would appear as black surrounded by white pixels, as shown in Figure 4, and can then be 

easily located.  

 

Figure 4. Detection of the infrared reflection in the pupil. 

If the heuristic fails to detect both pupils, as shown in Figure 5, for longer than a preset number 

of frames, the algorithm would alert the driver by issuing a warning in order help him or her regain 

focus. In Figure 5, the eyes are marked as red to indicate that the pupils could not be detected. 

 

Figure 5. Failure to detect pupils. 

However, if the driver’s pupil can be detected, then the locations and the distance between the 

detected eyes and the distance between them are used to calculate the relative angle of focus of the 

driver, as shown in Figure 6, where R represent the distance between the eyes when facing front, and 

θ approximates the angle the head rotation. The rotation angle θ, is approximated by the following 

equation:  

Figure 5. Failure to detect pupils.

However, if the driver’s pupil can be detected, then the locations and the distance between
the detected eyes and the distance between them are used to calculate the relative angle of focus
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of the driver, as shown in Figure 6, where R represent the distance between the eyes when facing
front, and θ approximates the angle the head rotation. The rotation angle θ, is approximated by the
following equation:

θ = arcsec
(

R
R cos(θ)

)
(1)

where R is the distance between the eyes when the driver’s head is facing toward the camera,
and Rcos(θ) is the distance between eyes measured by the camera image when the head is turned
away from the camera.
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Figure 6. Distance between eyes: (a) eyes facing front (b) face rotated by angle θ.

This information can be helpful to determine if the driver’s attention is on the road ahead.
In Figure 7, the tracking of driver’s eyes when the driver’s head is rotated are shown. In order to
test the detection accuracy, a total of five infrared video sequences of four different drivers were used
to test our heuristic, and an average accuracy of 94.26% was achieved. That is, 94.26% of the times
the instances where the driver’s eyes are closed or when the eyes are opened, are correctly identified.
The individual results will be shown in the experimental results section. This value is comparable to
the average of around 92% (without validating the eyes during tracking) obtained by [8,9], and 94.7%
obtained by [10] using a more sophisticated method under similar conditions.
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Figure 7. Determining the angle-of-focus: (a) focus to the right of driver (b) focus to the left.

3. Classifiers

As shown by the flowchart in Figure 2, the rear car light detection algorithm proposed by Wu and
Lee [16] is used, where regions surrounding detected rear tail lights are extracted, then mirror-matching
is used to pair the rear lights. If a match is successful, then it is assumed that this pair of tail-lights
belongs to the same vehicle, and the body of the vehicle is between the two matched tail-lights. If this
assumption holds true, then the distances between the tail-lights can be used to approximate the width
of the vehicle between. Each region-of-interest is extracted by using an initial assumption that each
vehicle is a large vehicle, as shown in Figure 8, so the height of each region vs. the width of each region
would be proportional to that of an average large vehicle. The content of each region is immediately
passed to a trained LBP-based Adaboost classifier to quickly determine whether the content actually
is a large vehicle or not. Figure 8 shows three paired regions, where each region is first assumed to
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contain a large vehicle. The content of each region would be quickly determined as a large or small
vehicle using a trained LBP-based Adaboost classifier, then separately tracked.Sensors 2017, 17, 2199  6 of 18 
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This results in an initial estimation are the locations of large vehicles. However, because false
negatives are possible, in order to catch these false negatives, a rectified MSR based on [19] is used first
to improve the contrast before passing each region to the second-stage classifiers. These second-stage
classifiers use SVM’s trained on extracted features to catch the false negatives. The reason they were
not considered for the first stage is because they take longer time to process than the Adaboost classifier.
Their processing time includes the time for detecting and extracting features plus the classification time.
These second-stage classifiers include a classifier that uses the patent-free KAZE/AKAZE [20] feature
descriptors using bag-of-features method, and a classifier that uses a trained Convolutional Neural
Network-extracted feature descriptors. We performed several experiments to test the performance
differences between the KAZE and the AKAZE BoF classifiers, results of which will be discussed in the
experimental results section. The results show that the KAZE detector locates more feature points than
the AKAZE detector in the night scenes, but takes longer to process. However, in terms of classification
accuracy, the KAZE BoF classifier outperforms the AKAZE BoF classifier. For the CNN-features-based
classifier, we chose the ImageNet-trained AlexNet model [21,25] as the base structure for building
the classifier. This classifier uses the outputs from a fully-connected layer before the softmax output
layer as features for training and classification. Our experimental results show that an SVM trained
using the CNN-features, with some exceptions, is generally more accurate than the KAZE or AKAZE
BoF classifiers.

3.1. Rectified Multi-Scale Retinex (MSR)

For the purpose of improving the contrast for nighttime driving video, the Sigmoid function is
used to replace the Log function in the original MSR algorithm, in order to minimize overexposure.
The original MSR function can be written as:

O(x, y) =
N

∑
n=1

Wn{Log[I(x, y)]− Log[I(x, y)Mn(x, y)]} (2)

where W is the weighting function, I is the input image, and M is the convolution mask. The inner
expression can be written as:

log [
I(x, y)

I(x, y)Mn(x, y)
] (3)

which can be understood as the ratio between the current pixel and its weighted neighbors. However,
as can be seen in Figure 8, where the Log function grows quickly, and easily reach beyond the
original range of image values, while the Sigmoid function remain within the range of image value.
The Sigmoid function we implemented is:
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sig(x) =
1

1 + e−k(x−1)
(4)

where k is used to control the shape of function. Because the Log function quickly climbs beyond
the value of 1 as shown in Figure 9a, for night scenes processed using the Log-based MSR can be
over-exposed, resulting in significant loss of data. By contrast, a Sigmoid-based MSR, because its upper
cut-off is at 1, so it is considered to be a rectifier, which could minimize the loss of data. However,
the standard Sigmoid function quickly reaches the lower cut-off at 0, has the effect of losing critical
information, when ratio in the region is low, so we choose to suppress this effect by modifying the
MSR by replacing its values of Sigmoid function with the values of Log function values when the ratio
falls below 0.3, as shown in Figure 9b. The value of 0.3 was obtained experimentally.

The weighting function we used is:

W(x, y) = (I(x, y) ∗ G(x, y))a (5)

where ∗ is the operator for convolution, G is the Gaussian function, and a is used to control the
weighting. Finally the result after MSR is combined with the original image for the final result X:

X(x, y) = O(x, y)·Wt(x, y) + I(x, y)·[1−Wt(x, y)] (6)

where Wt is the weight used to combine the images.
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Figure 10 compares the original night image, which has low contrast; with images preprocessed
using Log-based MSR and our Sigmoid-based MSR. As can be seen, the image processed with
the Log-based MSR in Figure 9b looks overexposed compared to the image processed using our
Sigmoid-based MSR in Figure 9c. For testing its classification efficacy we performed an experiment and
applied both Log-based MSR and Sigmoid-based MSR to 200 images and measured the classification
rate of KAZE-BoF-based and AlexNet CNN features-based classifiers in classifying these 200 images.
Based on the results of these experiments, we can conclude our Sigmoid-based MSR can help the
performance of these two types of classifiers, especially when the ratio of training data to overall data
exceeds 50%. The details of this experiment will be presented in the experimental results section.
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3.2. Convolutional Neural Network (CNN) Features

A convolutional neural network is composed of one or more convolution layers plus fully
connected layers (corresponding to classical neural networks), but also include weighting and pooling
layers. This structure allows convolutional neural network to make use of: (1) nonlinear units (ReLU),
(2) dropouts that are used during training to selectively dismiss individual neural unit in order to
avoid overfitting the model, and (3) overlap pooling [22] in order to maximize pooling and reduce
the averaging effect of average pooling. Our CNN-base feature classifier makes use of features taken
from the second to the output softmax layer, FC7, of AlexNet, shown in Figure 11 [24], as training
and testing features for an SVM classifier. Features taken from a deeper layer tend to result in
better classification performance than those taken from a shallower layer. This is the process of
our CNN-based classifier: The content of a region-of-interest after MSR is used as input into the
ImageNet-trained AlexNet, then the output features are extracted from FC7 [23] layer, and are used to
train a multi-class SVM classifier.

We performed an experiment to select a suitable CNN structure to extract feature for our purposes
before choosing the AlexNet CNN structure. The first experiment compares the performance of the
features from two pre-trained CNN architectures using the ImageNet data: the VggNet [26] architecture
and the AlexNet [26] architecture in classifying images of night-time vehicle images. We used a total
of 23,066 images of large and small vehicles started at 90% for training (10% for test), and slowly
decreased the ratio of training data until the features from one of the structure gave us an error in
classification. Using this process, we finally chose AlexNet. Another reason for selecting AlexNet
was results of [25], where AlexNet was shown to be faster than most of the other ImageNet-trained
CNNs. Figure 11, based on a figure in [24], presents a simple to understand structure for the AlexNet
CNN. The AlexNet structure includes five convolutional layers and sublayers in total. There are two
normalization sublayers following the first two convolutional sublayers, three max pooling sublayers,
follows by three fully-connected layers, and the last fully-connected layer is a softmax layer which
outputs CNN classification results. The first two fully-connected layers each has 4096 outputs, and the
softmax layer outputs onto 1000 classes, according to ImageNet data. Our systems takes the outputs
from FC7 and used them to form 4096-long feature vectors as training vectors for a multi-class SVM.

A second experiment was designed to test whether using other classification features that
also calculates the features from the entire image region, such as the Hog and the LBP features,
would perform better than the AlexNet CNN-based features. The experiment we performed used only
486 of the 23,066 images and using features such as LBP [26], HoG [26] and AlexNet CNN [21,25] in
testing their effectiveness in classification using SVM, and the clear winner was the AlexNet CNN.
The results of this experiment will be discussed in the experimental results section.
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Figure 11. AlexNet Layers.

3.3. KAZE/AKAZE Features-Based BoF Classifier

The patent-free KAZE feature, introduced by Alcantarilla et al. [20], uses the Addition Operator
Split (AOS) algorithm and nonlinear diffusion, as shown in Equation (7), to build a nonlinear scale
space, from which sampled values would be closer to the original values than those taken from a linear
scale space:

∂L
∂t

= divergence(c(x, y, t)·∇L)

where:
c(x, y, t) = g(|∇Lσ(x, y, t)|) (7)

where:
g =

1

1 + |∇Lσ |2
λ2

where L is the luminance, Lσ is the Gaussian-smoothed L, and λ is the contrast factor. The AKAZE
features seeks to improve the speed of the KAZE by trying to calculate the scale space faster.
The difference between KAZE and AKAZE descriptors from the patented SURF and SIFT descriptors
is that KAZE and AKAZE calculate the main direction of the feature point for building nonlinear
scale space.

Unlike the CNN-based features, KAZE and AKAZE features have to perform key-points detection
first before extracting feature descriptions in each detected key-point in the sample space. They extract
disordered sets of local small blocks from which descriptors are calculated from the key-points.
These descriptors are then grouped into local clusters using a clustering algorithm, such as the
K-means algorithm, where each cluster center is treated as a vocabulary word for a visual dictionary,
and a term characterized by a clustering center corresponds to the formation of a code word. However,
KAZE is relatively slow due to the calculation for nonlinear scale space, but the AKAZE feature is
faster. We performed experiments to test KAZE against AKAZE by using them as features in BoF
classifiers in the task of classifying large vehicle types using different dictionary sizes (number of
bags in BoF). The purpose of these experiment was to determine an appropriate dictionary size for
both KAZE and AKAZE BoF classifiers. However, as the graphs in Figure 12 show, the results not
as unexpected.
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Figure 11 shows that the dictionary size has relatively little effect on the KAZE features from
500 onward, while it greatly impacts the performance of the AKAZE features, so a single value for
dictionary size that would work for the AKAZE BoF classifier could not be easily found; we finally
settled on 1500 as default. Also, in another experiment in classifying night-time vehicle images,
we found that the performance of the AKAZE features could not match those of KAZE, due to the fact
that the AKAZE feature point detector detects far fewer key points than those of the KAZE detector.
This will be discussed in the experimental results section. So from the result of these experiments,
it appears that the KAZE-based BoF classifier would be a better choice than the AKAZE-based
BoF classifier.

4. Experimental Results and Discussion

A total of eight experiments were set up to test the performance and accuracy of these two
modules. The first five experiments were set up to test the large vehicle detector module according
to the order of the flowchart in Figure 1. In the first experiment, the LBP-based Adaboost Classifier
was tested, followed by the second experiment to test the rectified MSR; then the third, which is to
test the BoF classifiers; followed by the fourth, which is to compare the CNN-based classifier against
similar features; then the fifth, which is a comparison experiment between the BoF and the CNN-based
classifiers in when the input images are crisp and cleanly extracted. The next two experiments sought
to test the same classifiers when the input images were not crisp and cleanly or even correctly extracted.
The last experiment is set up to test the accuracy of the driver attention module. The computer we
used for the experiments had the following configuration: Intel i7 3630 M CPU (base frequency of
2.4 GHz, four cores), 8 GB Ram, running only on the CPU without GPU enhancement.

The first experiment seeks to test the performance of the LBP-based Adaboost classifier, which is
the first-pass classifier according to the flowchart for the large vehicle detector module. The positive
training samples include several types of large vehicles, such as buses, trucks and trailers, for a total of
10,420 positive images. The negative training samples include images of small sedans and empty street
lights, for a total of 12,646 images, so the total of number images is 23,066 images. Two LBP-based
Adaboost classifiers were trained, one to the 21st stage, and the other to only the 20th stage. Table 1
shows the results comparing these two versions and shows a great difference with just one single stage
added. We decided to use the 21-stage LBP-based Adaboost classifier.
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Table 1. LBP-based Adaboost Classifier Classification Results.

Classifier Stages Accuracy (%)

LBP 20 84%
LBP 21 96%

The second experiment sought to test the effectiveness of our Sigmoid-based MSR vs. the traditional
Log-based MSR as preprocessors when used in the second-stage classifiers. We used a total of 200 images
of large and small vehicles taken at night.

The plots of classification miss rate vs. ratio of training data to overall data are generated
for the classifier using the AlexNet CNN-based features, and the classifier using KAZE features.
Figures 13 and 14 show the plots using the KAZE-based BoF and CNN-based classifiers, respectively.

As can be seen in Figure 13, our Sigmoid-based MSR markedly improved the performance of the
KAZE-based BoF classifier once the ratio of training data to overall data passed 45%. For the CNN
features-based classifier, as shown in Figure 14, the Sigmoid-based MSR outperformed the Log-based
MSR in almost every instance. This experiment shows that our Sigmoid-based MSR can be of help for
both types of classifiers and validated our design.Sensors 2017, 17, 2199  11 of 18 
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Figure 13. Kaze-based BoF classification rates.
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Figure 14. CNN features-based classification rates.

The third experiment sought to test the effectiveness of the BoF classifier using the KAZE vs.
the AKAZE features. We first separated the training set into four classes: bus, truck, trailer, and
standard-sized sedan. The training set include 8532 bus images, 1466 truck images, 352 trailer images,
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and 3117 sedan images, for a total of 13,467 images. Table 2 shows the classification results using KAZE
and AKAZE features-based BoF classifiers when 80% of all data were used as training data. The results
show that the AKAZE feature is less accurate than the KAZE features when used in BoF classifiers for
these images.

Table 2. BoF classifiers classification accuracy results.

Classifier Bus Trucks Trailers Sedans

KAZE 97.1% 100% 100% 98.14%
AKAZE 96.3% 89.06% 74.86% 94.77%

In the fourth experiment we wanted to validate our choice of using CNN-features for the classifier,
so we compared the AlexNet CNN-features against similar feature-based types that also calculate
features using the entire image, such as the HOG and LBP [26] features. In the setup for this experiment,
all the images were preprocessed using the rectified MSR before the calculations for the feature vectors.
These feature vectors are then passed to respective SVMs for training and classification. In this
experiment, because we were interested only in relative accuracy, only 486 images were selected for
training and classification. These images were all resized according to the requirement for AlexNet,
which is 64 by 64. Table 3 shows the number of features extracted by CNN, HOG and LBP feature
extractors for each of the resized images.

Table 3. Size of feature vector per image.

CNN HOG LBP

4096 26,244 46,256

These feature vectors are then used to train each SVM for classifying large and small vehicles
at the ratios of 10%, 50% and 90% of all data as training data. Figure 15 shows the results of this
experiment. As seen in Figure 15, the classifier using the LBP feature vectors, which are the longest
feature vectors of the three, performed the worst. The HOG features classifier was the second-best
performer, and CNN-based classifier was the best performer overall, so we decided to use CNN, as it
performed the best of all three according to our needs.
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Figure 15. Classification miss rates for CNN, HOG and LBP.

In the fifth experiment, we used the images from the third experiment plus 10% additional images
taken during sub-ideal conditions, such as during rainshowers, and preprocessed each one with
our proposed Sigmoid-based MSR. Each of these images is a cleanly cropped image containing only
a single vehicle. These images then used to compare the performance of classification of the CNN
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features-based classifier against the KAZE features-based and AKAZE features-based BoF classifiers in
separating large vehicles from the small vehicles. The processing time was taken for each image in
order to calculate the average execution time to process each image. The average processing time are
decomposed into the time used for feature extraction, the time used for SVM training, and the time
used for SVM classification. The average processing time, in seconds, for each classifier are listed in
Table 4. As can be seen in Table 4, the KAZE-based BoF takes the longest time on average. If we choose
to keep both type of classifiers, then this result could imply that if the number of regions-of-interest is
above a certain threshold, which would take longer time to process, then the use of CNN features-based
classifier should take precedent over the KAZE-based classifier, but this is for future research.

Table 4. Average time to process each image.

Time CNN KAZE AKAZE

Feature Extraction time 0.215 s 0.52 s 0.145 s
SVM Training time 17.55 s 28 s 11 s
SVM Testing time 0.02 s 0.0125 s 0.0083 s
Classification time 0.235 s 0.5325 s 0.1533 s

In addition to the processing time, the classification accuracy is also determined for each
combination of MSR and classifier in this experiment. We measured the performance by splitting
the images into different ratios of training and testing data; from 10% to 90% of images were
allocated to training, and the rest for testing. The results for different ratios are shown in Figure 16.
According to plot in Figure 16, the combination of using the rectified Sigmoid-based MSR and the
CNN features-based classifier shows the best performance overall followed by the KAZE BoF then
the AKAZE BoF. The experimental results, so far, shows that the CNN-based classifier appears to
be sufficient without the BoF classifiers. We wished to find out, experimentally, whether there are
situations where the KAZE feature, which requires detecting feature key-points, can perform better
than the CNN-features-based classifier.
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Therefore, in the sixth experiment, we deliberately chose images that resemble vehicles but
actually were street lights and signs. These images, an example of which is shown in Figure 17,
are used to classify and generate the plots of miss rate vs. false positives (i.e., misidentified as large
vehicles) for the CNN, KAZE and AKAZE classifiers. They are preprocessed using our Sigmoid-based
MSR before classification training and testing. The results are shown in Figure 18, where the y-axis is
the miss rate, and the x-axis are simply the percentage of the total number of images mis-classified as
large vehicles by the classifiers.
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Figure 18. Vehicle classification miss rates vs. false positives.

These images were not in the training set of these classifiers, since they are neither large vehicle
types nor sedans. Again, these images were first pre-processed with Sigmoid-based MSR before
training and classification. As it can be seen in Figure 18, the miss rates of the KAZE-based classifier
dropped faster than either CNN or AKAZE classifier, which implies that the KAZE-based features
can perform better than CNN-features for easy-to-misidentify images. In order to test this hypothesis,
we designed the seventh experiment, where the training and test images contain not just cleanly
cropped vehicles itself but also contain signs and/or other vehicles. We envision that this type of
situation can occur if the initial detection and pairing of tail-lights did not perform as expected, or the
initial ROI extraction contains non-vehicular lights. Examples of these images are show in Figure 19.
These images were not in the training set of the classifiers. Again, they were first pre-processed using
the rectified MSR.
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Figure 20 shows the miss rate vs. ratio of training data for this type of images only, at different
training ratios. It is clear that the CNN-features-based classifier performed better for the ratios between
10% and 60%, but then the KAZE-based classifier shows better performance for the ratios after 65%.
The result of this experiment shows that it would be wise to keep the KAZE-based classifier in our
flowchart as a backup to catch the false-negatives.Sensors 2017, 17, 2199  15 of 18 
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Figure 20. Classification miss rates vs. ratio of training data for sub-optimal images.

The results of the above experiments confirmed our flowchart for the large vehicle detector module.
After the initial detection and extraction of tail-lights, the size of each region-of-interest is determined
by assuming a large vehicle would be contained within each pair of tail-lights. This assumption could
either result in a clean bounding box containing just the vehicle itself, in which case the Adaboost LBP
classifier helps in the identification, and the false negatives can be caught using the CNN-features
based classifier. However, if the bounding box contains other misleading features, such as those in
Figure 19, then the KAZE-based classifier can help re-adjust the type of vehicle being tracking if the
false negatives are not caught by the CNN-based classifier. The tracking of the vehicles by size is
a separate process from the operations of the secondary classifiers, the purpose of which is to catch the
false negatives, so tracking of vehicles is continuous unless false negatives are caught by the secondary
classifiers. In which case, the trackers tracking the false negatives would be updated so they would
know that they are tracking large vehicles rather than standard-size sedans, as shown in Figure 21,
where the tracking of large vehicles and small vehicles types are tracked and marked separately.
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The last experiment was designed to test the accuracy of the driver drowsiness detection system.
Six infrared video sequences taken at 20 fps of five different drivers were obtained, as shown in Figure 22,
and their processed results were counted and displayed in Table 5. The purpose of this experiment
is to test the feasibility to detect drowsiness when and if it occurs by testing the accuracy of locating
pupils with sample sequences. In Table 5, TP stands for True Positives, where closed eyes were correctly
detected; TN stands for true negatives where opened eyes were correctly detected; FP stands for false
positives, where opened eyes were wrongly detected as closed eyes; and FN stands for false negatives,
where closed eyes were falsely detected as opened eyes. The accuracy, ACC, is calculated using:

ACC =
TP + TN

Frame Count
× 100% (8)

The results show that for these six videos, their accuracies ranges between 88% and 98%, with the
average of 94.26%, without validating the eyes while tracking. These results show a good promise that
the driver would be alerted when and if drowsiness occurs.
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Table 5. Results of Detecting Eyes Closed.

Sequence Frame Count TP TN FP FN ACC (%)

1 447 101 332 8 6 96.87
2 333 104 189 14 26 87.98
3 371 209 131 19 15 91.64
4 583 31 541 1 10 98.11
5 535 287 214 25 9 93.64
6 4286 1425 2615 235 11 94.26%

5. Conclusions

In this paper, two components to augment the capabilities of vision-based ADAS at night were
proposed. We also proposed a modified MSR which would improve the contrast of night-time videos
without overexposure and can help improve classifying accuracy. The first component seeks to improve
the driver’s safety by alerting the driver when he or she becomes too distracted or drowsy to process
warnings. The second component seeks to alert the driver when large vehicles come near the driver’s
vehicle. Both components use our modified MSR as a preprocessor. The first component was designed
to evaluate driver drowsiness at night by tracking the driver’s eyes and detecting the presence of the
pupils using an infrared camera. The second component uses the images from a standard driving
video recorder to differentiate vehicles by size. It locates the tail-lights, and use them as hints to extract
regions, each of which should contain a single vehicle. In this component, a trained Ada-boost classifier
is used to quickly detect large vehicles. The identified large vehicles then are tracked immediately in
a CPU process independent of the secondary classifiers which are designed to catch false negatives
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from the first classifier. The negatives of the first classifier, which are assume to contain false negatives,
are first enhanced by a Sigmoid-based MSR before being processed by two types of classifiers, one of
which—the KAZE features-based classifier—uses a key-points detection-based approach. The second
type—the CNN feature-base classifier—computes a feature vector directly using the entire region.
Several experiments were designed to test each stage of the flowcharts of these two components.
The results of these experiments together show that the false negatives of the LBP-based Adaboost
classifier can be caught by the secondary classifiers. Our experiments also shows that while the
CNN-features-based classifier is the preferred classifier if the objects have relatively clean backgrounds,
for classifying images containing easy-to-misidentify features, a key-point based classifier like the
KAZE BoF can perform better. Also, in order to test the classification accuracy under sub-ideal driving
conditions, at least one of the experiments included images taken while driving under bad conditions,
such as rainshowers. From the results of these experiments, the classification accuracy results show
that these classifiers can be trained to perform their designed classification tasks even under bad
driving conditions. Future researches include combining different features into a single classifier and
define the interactions between these two components.
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