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Abstract: The development of wireless power transfer (WPT) technology has inspired the transition
from traditional battery-based wireless sensor networks (WSNs) towards wireless rechargeable
sensor networks (WRSNs). While extensive efforts have been made to improve charging efficiency,
little has been done for routing optimization. In this work, we present a joint optimization model
to maximize both charging efficiency and routing structure. By analyzing the structure of the
optimization model, we first decompose the problem and propose a heuristic algorithm to find the
optimal charging efficiency for the predefined routing tree. Furthermore, by coding the many-to-one
communication topology as an individual, we further propose to apply a genetic algorithm (GA) for
the joint optimization of both routing and charging. The genetic operations, including tree-based
recombination and mutation, are proposed to obtain a fast convergence. Our simulation results show
that the heuristic algorithm reduces the number of resident locations and the total moving distance.
We also show that our proposed algorithm achieves a higher charging efficiency compared with
existing algorithms.
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1. Introduction

Because of the wide applications of wireless sensor networks (WSNs) in environmental
monitoring, ecosystem surveillance, and physical hazard prevention, WSNs have attracted a flourish
of research efforts from both the industry and academia in the last decade. However, most WSNs still
face a limited operating time, as they are powered by battery. In order to prolong the network
lifetime, extensive research efforts have been focused on low-power hardware architecture [1],
low-complexity software implementation [2], power-efficient wireless communication [3], topology
control [4], and dynamic routing techniques [5]. Although these solutions can extend the network
lifetime to some extent, the limited battery remains a paramount hurdle to the development of
large-scale applications. Some other solutions have resorted to energy harvesting sources, such as solar,
wind, hydroelectric, and thermoelectric. However, these harvesting sources are generally expensive
and with a large size, requiring an additional energy harvesting component, and they may not always
be accessible because of the environment dynamics [6]. For example, the availability of a solar-based
harvesting system drastically varies with time and weather, and these cannot provide enough energy
for duty-cycle applications [7].

In place of conventional energy harvesting techniques, the recent breakthrough in the area of
wireless power transfer (WPT) has opened up a promising alternative to power devices using radio
frequency (RF) signals over the air. It was shown in an Intel research report that a wireless identification
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and sensing platform (WISP) can harvest energy to power the operation of micro-controller unit
(MCU) [8]. In their study, WPT was performed by harvesting energy from the ambient RF signals
radiated by the surrounding transmitters, and they also showed that WPT technology is fully adjustable
in its transmit power, waveforms, and resource blocks. Regarding the energy harvesting efficiency,
the results in [9] showed that nearly 40 µW can be transferred over a distance of 10 m with a transmit
power of 3 W, which is sufficient to power the operations of many low-power devices, such as sensors
and RF identification (RFID) tags. As a result of the inherent energy harvesting characteristic of the
WPT technique, a relatively short transmission distance and multiple simultaneous transmissions in
WSNs, wireless rechargeable sensor networks (WRSNs) can be a promising solution to achieve high
energy efficiency, and they have attracted much attention recently [10].

In WRSNs, the rechargeable sensors are capable of harvesting energy from the RF signals
transmitted by energy sources to power the data sensing from the environment and data delivered
to the sink. In most applications, these energy sources are mobile chargers carried by autonomous
vehicles [11] to tackle the dynamic topology problem. With the moving speed and the predefined
charging capacity, the modeling, characterization and optimization of charging in WRSNs becomes
extremely important. There has been some research focusing on charging optimization in WRSNs.
In [12], by importing the concept of a renewable energy cycle, an optimal traveling path for a mobile
charging vehicle is designed. In [13], velocity control with a predefined charging trajectory is designed
to satisfy the traveling time constraint. In [14], as a result of the redundant deployment of sensors,
the optimal energy replenishment joint with coverage control is designed to achieve the balance
between the coverage rate and the energy partitioning. However, all these works assume that the
data-gathering tree is predefined before energy harvesting. In [15], a joint routing and charging
schedule was proposed to prolong the network lifetime. For cluster-based WSNs, an energy-efficient
cooperative transmission optimization was proposed in [16], for which the power allocation, power
splitting and relay selection were formulated as a non-convex problem, and a distributed iteration
algorithm based on fractional programming and dual decomposition was proposed. However, the
charging model defined in their work can harvest energy to only one sensor each time, which may
cause a longer charging time for large-scale applications. Assuming that the mobile charger can also
be a data collector, the joint mobile energy replenishment and data gathering are considered [17–19].
However, because of downlink (DL) WPT and uplink (UL) information transmission, the energy
replenishment and data gathering should work in different time slots, which may induce larger data
collecting latency, especially for large-scale applications. In addition, combining the data collector and
power transfer together has another inherent drawback, called the “doubly near–far” problem [20];
that is, the far-away sensors consume more energy in the UL and harvest less energy in the DL as a
result of the distance-dependent power loss. To tackle these problems, a separately located power
charger and data collector are considered as a more flexible way to balance the energy and information
transmissions [21,22].

In conventional battery-powered WSNs, data-gathering techniques have been widely investigated
in the last decade. In such works, as a result of uneven energy depletion with the distance
to the predetermined sink, how to extend the network lifetime by designing a routing tree has
attracted much attention. Uniform sensor deployment, resulting in the network lifetime decreasing
by the sensors at the first hop from the sink, was first discovered in [23], and is also known as
the “energy hole” problem. The authors in [24–26] have proposed several approaches to mitigate
this problem. In [24], the authors propose an analytic model to estimate the entire network lifetime
from network topology. This method can also be used to determine the boundary of the energy
hole in a data-gathering WSN. In [25], the authors present a heuristic relay selection algorithm to
balance the whole energy consumption, and a routing scheme based on maximum residual energy is
proposed to mitigate the energy hole problem during data gathering. The authors in [26] investigated
the energy hole problem and designed guidelines for maximizing the lifetime and avoiding energy
holes in sensor networks with a non-uniform distribution. However, it should be noted that there
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exists a major difference between battery-based WSNs and WRSNs. In battery-based WSNs, one
common objective is to minimize the total energy consumption of those sensors near the sink node,
thus prolonging the network lifetime. However, such an energy balance-orientated design is not
necessarily optimal for WRSNs, because of the fact that a high power consumption of any sensors in
any location can now be replenished by means of WPT via the mobile chargers. This clear difference
indicates that the routing techniques in WRSNs should be redesigned to fully take advantage of WPT.
Unlike existing works, the aim of this work is to design a joint energy replenishment and routing
mechanism for WRSNs. Specifically, given the velocity of the mobile charger, we aim to find the best
traveling path corresponding with the optimal routing tree. In this way, we mitigate the gap between
the heterogeneous energy consumption among the routing tree and the charging efficiency. To the best
of our knowledge, this is the first study on the joint optimization for both energy charging and routing.
The main contributions of this paper are summarized as follows:

• We present a novel joint optimization model including both charging efficiency and routing,
rather than the typical charging optimization problem considering only the predefined
data-gathering route.

• We propose a genetic algorithm (GA)-based optimization framework to find the optimal routing
tree, in which the specific many-to-one routing tree is coded as an individual for evolution. We
design an efficient individual encoding scheme and effective constraints handling mechanisms to
achieve quick convergence.

• We then propose a heuristic algorithm to find the optimal resident locations with the given routing
tree. By calculating the minimum moving distance and total charging time to evaluate the fitness
of each individual, the evolution process of the GA is thus guided.

• We evaluate the proposed algorithms with extensive simulations and study the impact of multiple
environmental factors, including the number of sensors and the types of routing tree. Our
simulation results have showed that our proposed algorithm achieves a substantial improvement
compared with the predefined route.

The remainder of this paper is organized as follows. In Section 2, we present the system model
and problem formulation. Section 3 proposes our heuristic algorithm and the GA-based algorithm with
computational complexities analysis. Section 4 presents numerical results, and Section 5 highlights
our conclusions.

2. System Model and Problem Formulation

2.1. System Model

We consider a WRSN consisting of a single sink node and N sensor nodes, which periodically
generate data with a different rate. The sensor nodes are labeled as N = {1, ..., N}. Without loss of
generality, each node n ∈ N in the network has an initial energy En

i , a fixed communication radius Rc

and generates sensing data at a rate ri. After deployment, we assume all the sensors can be accurately
localized via existing localization algorithms, either centralized [27] or distributed [28]. The entire
network can be represented as a directed topology graph G(N , E), where eij ∈ E if dij ≤ Rc, and dij
represents the distance between nodes i and j (i, j ∈ N , i 6= j). We define the node’s dead state by its
residual energy being below Emin. In this state, although it can still sense data, it cannot send its sensing
data to the sink node either directly or indirectly via relay nodes, because of the energy constraint.

2.2. Routing Constraints

We assume each sensor node has the same sensing rate λn (n ∈ N ) and define the real variable
f n
ij (and f n

ji ) as the data flow traveling over link eij (and over eji ) for node n, where eij, eji ∈ E . We have
the following constraints when designing the routing tree:

For the source node n, we have
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∑
eij∈E

f n
ij = λn(i = n) (1)

For node i, as an intermediate relay node for sensor n, that is, i 6= n, i 6= Sink, we have

k 6=Sink

∑
eki∈E

f n
ki =

j 6=n

∑
eij∈E

f n
ij (i 6= n, Sink, i ∈ N ) (2)

For node n, as the sink node of sensor n, we have

∑
eji∈E

f n
ji = λn (i = Sink) (3)

On the basis of the above definition, the energy consumption of each sensor i can be calculated as

Pi = Cr
i Dr

i + ∑j∈N Ct
ijD

t
ij (4)

where Cr
i is the energy consumption per receiving data rate of node i, Dr

i is the total received rate of
node i, Ct

ij is the energy consumption per transmitting data rate from node i to j, and Dt
ij is the total

transmitted rate from node i to j. In Equation (4), Ct
ij, Dr

i and Dt
ij are given as

Dr
i = ∑n∈N ∑k∈N\i,n f n

ki (5)

Dt
ij = ∑n∈N f n

ij (6)

and

Ct
ij = β1 + β2dα

ij (7)

where β1 is a distance-independent constant term, β2 is a coefficient of the distance-dependent term,
and α is the path-loss index.

2.3. Energy Charging Cycle

We consider the scenario of a mobile charging vehicle periodically traveling inside the sensor
network and charging each sensor node’s battery wirelessly.

To prolong the network lifetime, there exists a mobile charger v with a charging radius Rv

and an initial power Pv, which we assume can charge multiple sensors within its charging radius
simultaneously. Similarly to [12,13,29], we assume the charging is only concerned with the distance
and we ignore the environmental factors for simplicity. We thus define the charging rate of sensor n as

Un =

{
Pvu(dn,v)

0
if dn,v ≤ Rv

otherwise
(8)

We assume this mobile charger charges the network with a fixed schedule S and a predefined
traveling path P with a period of τ. The path P consists of a set of resident locations denoted as
M = {1, ......, M}. We denote the set of nodes covered by location m as Sm, which is given by

Sm = {n|dn,m ≤ Rv, n ∈ N , m ∈ M} (9)

This should satisfy N = S1 ∪ S2 ∪ ...∪ SM, which means that all sensors should be covered by all
resident locations.

The charger starts from the first location and charges those nodes in S1 with a time τ1. Then,
it leaves the first location and moves to the second location with a traveling speed v. When it reaches
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the second location, it remains for time τ2 to charge the nodes in S2. These steps are repeated until all
the locations are visited once. After that, the charger returns to the first location to replace its battery
and ready itself for the next charging tour. Thus, the cycle time τ can be written as

τ = ∑
m∈M

τm + (
M−1

∑
m=1

dm,m+1

v
+

dM,1

v
) + τvac (10)

where the first term is the time for charging, the second term is the time for moving, and the third term
is the rest time.

For the resident location m ∈ M, the charging time τm depends on the charger’s residual energy
and the node’s energy consumption rate. In order to ensure that all the nodes are still alive, the amount
of charged energy for sensor i ∈ Sm must be greater that the amount of consumed energy during the
next cycle τ, which is expressed as

τPi ≤ τmPm , ∀i ∈ Sm (11)

where Pm denotes the charger’s residual energy when it reaches the resident location m, which is
given as

Pm = Pv −
m−1

∑
q=1

∑
n∈Sq

τqPn − ρ
m−1

∑
q=1

dm,m+1 (12)

Here, the second term is the consumed energy for the charging nodes from set S1 to Sm−1, the third term
is the consumed energy for moving, and ρ is the energy consumption for a moving unit of meters.
One example of the charging model is illustrated in Figure 1 with 16 sensors and 4 resident locations.
The mobile periodically visits each resident location and charges those sensors in its charging radius.
How to find the optimal resident locations and the optimal routing tree to achieve the optimal charging
efficiency is discussed in the next section.

Sink

Rl 1

Traveling cycle

Rl 2

Rl 3

Rl 4

Figure 1. A mobile charger periodically visits each resident location once and charges those nodes in
its charging radius.

2.4. Problem Formulation

In this section, we formulate our joint model, including both the charging efficiency and
routing optimization.
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Charging efficiency problem: Charging efficiency is conventionally regarded as the ratio between
the working time and charging schedule. On the basis of this criterion, the objective of this problem
is to maximize the charging efficiency for the networks. This can be achieved by searching the
optimal resident locations, the optimal routing tree and the optimal traveling path. This problem is
formulated as

max τvac
τ

s.t.(1) ∼ (12)
(13)

We note that the constraints of Equations (1)–(7) are the routing constraints, whereas the
constraints of Equations (8)–(12) are the charging constraints. Instinctively, both of these two
optimization problems are in the form of a non-linear programming (NLP) problem, which are
generally non-deterministic polynomial-time hardness (NP-hard) and cannot be solved by traditional
optimization methods [30]. In the next section, we develop the bio-inspired GA to solve these two
optimization problems.

3. Optimization Algorithms

In this section, we propose two optimization algorithms to solve the joint charging and routing
optimization problem. In both algorithms, we divide the optimization into two problems: the routing
and the optimal charging. First, we propose the heuristic algorithm for optimal charging with
a predefined routing tree, and then, the routing and charging are optimized in a combined manner.
In this algorithm, the optimal tree is obtained by a GA, and the heuristic algorithm is used to evaluate
the fitness of each individual in the GA and guide the evolution process.

3.1. Heuristic Algorithm for Optimal Charging

In this subsection, We assume the routing tree can be predetermined by some existing approaches,
such as the Dijkstra routing algorithm or the minimum spanning tree (MST) routing algorithm. The
optimization model can be transformed as the following:

max τvac
τ

s.t.(8) ∼ (12)
(14)

From the description of Equation (14), we know that the optimal charging efficiency is related
to the resident locations M and the total moving distance ∑M−1

m=1
dm,m+1

v +
dM,1

v . This total moving
distance should be the shortest Hamiltonian cycle among all the resident locations. Otherwise, more
time is spent on traveling. In addition, according to Equation (11), as a result of the lower left power,
more time is needed to charge the sensors. Thus, the optimal charging efficiency is only related to
the resident locations. According to Equations (8)–(12), these resident locations should cover all the
sensors within its charging radius. Additionally, the Hamiltonian cycle among these locations should
be the smallest. To satisfy these requirements, we therefore propose a heuristic algorithm shown in
Algorithm 1 to find the optimal resident locations with the predefined routing tree. In our algorithm,
we first introduce the following two definitions:

Definition 1. If a node has no neighbor nodes within a circle of radius 2Rv, this node is defined as
an isolated node.

Definition 2. If a node has neighbor nodes within a circle of radius 2Rv, this node is defined as
a non-isolated node.

We design the following two strategies to select the resident location for nodes of a different type.
The first strategy is for isolated nodes. We first line an isolated node with the previous selected resident
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location; then, the location along this line and with a distance of Rv to that isolated node is selected
as the current resident location. The second strategy is for non-isolated nodes. We first select a node
with the maximum distance to this non-isolated node within a distance 2Rv. After that, the midpoint
between these two nodes is selected as the resident location.

Algorithm 1: Heuristic algorithm for resident location selection
Initialization: Obtain the location of service station {x0, y0}, the set of uncharged sensors N ,
and the working period τ.

Set the previous resident location Rlp = {x0, y0}, and set the resident location setM = {Rlp}.
Set the counter for the resident location as m = 1.

while N 6= ∅ do
Find a sensor i∗ ∈ N satisfying di∗ ,p < dk,p, ∀k ∈ N .
Determine the type of sensor i∗.
if i∗ is a isolated node then

Select resident location Rlm according to the first strategy.
else

Select resident location Rlm according to the second strategy.
end
M =M∪ Rlm.
Rlp = Rlm.
Sm = {n|n ∈ N && dn,m ≤ Rv}.
Calculate charging time τm for Sm as τm = maxi∈Sm

τPi
Pm

.
N = N −Sm.
m = m + 1.

end
Calculate the shortest Hamiltonian cycle amongM.
Calculate the objective value τvac

τ with {τm} according to Equations (4)–(7) and
Equations (9)–(12).

As an example, Figure 2 shows how to select the resident location for different types of nodes.
First, as shown in Figure 2a, node n1 is selected as the first node near the service station, by judging its
type as non-isolated. Node n2 is selected, for the reason that n2 has the maximum distance to n1 within
a distance 2Rv. After that, the location in the middle of n1 and n2 is chosen and denoted as the first
resident location Rl1. Similarly to Figure 2a, we further select the second resident location Rl2. Because
node n6 is an isolated node, Rl3 is selected along the line between Rl2 and n6. Additionally, it has a
distance of Rv to n6, as shown in Figure 2c. We therefore give the description of our heuristic algorithm
in Algorithm 1 according to the following. In this algorithm, we first select these resident locations
to cover all the sensors and calculate the minimum moving distance with the shortest Hamiltonian
cycle. Then, with the energy consumption model defined by Equations (5)–(7), and with the charging
constraints of Equations (9)–(12), the maximum charging efficiency is obtained. Here we assume that
the mobile charger can visit any locations of the target area for simplicity. In fact, it is possible that
some locations are hard to arrive at, because of the environmental factors. In this case, the heuristic
algorithm should take these environmental factors into account. Additionally, the shortest Hamiltonian
cycle among all the resident locations should be redesigned, for the reason that some resident locations
cannot be directly connected.
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Figure 2. Illustration of how to select resident location.

3.2. Joint Optimization of Routing and Charging

In order to find the best routing tree corresponding to the selected resident location,
a straightforward solution is to conduct an exhaustive search by constructing all feasible routing
trees. This approach, however, is infeasible for networks with a larger number of sensor nodes.
The heuristic algorithm is based on decomposition. However, this approach may be suboptimal
because of the fact that the routing tree and charging efficiency interact with each other and the routing
and charging should be optimized in a compact form. Therefore, we apply the GA to integrate these
two schemes to achieve the interaction between the charging efficiency and the routing tree.

By simulating the process of evolution in the natural system, the GA can be considered as an
adaptive heuristic search algorithm that is very suitable for providing a robust, near optimal solution
for many real world NP-hard problems, and it is also widely applied for the performance optimization
of WSNs, such as in network coverage control for WSNs [31–33], the scheduling problem [34,35], the
optimal sensor deployment problem [36,37], and topology control [38]. This bio-inspired algorithm
imitates the natural evolution of biological organisms to provide a robust, near-optimal solution for
various problems. The GA is inherently an evolutionary process that involves individual encoding,
selection, crossover, mutation, and replacement operations [39].

3.2.1. Individual Encoding

The GA cannot deal with the solutions of the optimization problem directly. The solutions need
to be represented as chromosomes in terms of the data structure. In our optimization problems,
a tree-based encoding scheme is proposed to represent the potential solutions.

In our scheme, the routing paths of all the sensors to the sink node are randomly generated, to thus
explore the genetic diversity. For each sensor i, its first forward node i1f is randomly selected from its

neighboring set Ni/i. Then, we randomly select the second forward node i2f from the neighboring
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set Ni1f
/{i, i1f }. This step is repeated until the data is received by the sink node. In the above path

construction, the sensors already in the routing path are excluded, thereby to re-enter the same node.
We denote the path of sensor i as Pi = {i, i1f , i2f , ..., sink}, and we can conclude that the maximum length
of path Pi is less than N − 1 because the total number of sensors is N. After we have found routing
paths for the sensors inN , these paths are further combined as a reverse many-to-one multicast routing
tree ending at the only sink node. This reverse multicast tree is further mapped as a matrix ΓN∗N−1,
where the ith row denotes the routing path of sensor i. Figure 3 illustrates an example of six routing
paths and their chromosome representation, where the sink node is denoted as node 0. With this
coding scheme, we first generate an initial populationR with R matrices.

Additionally, considering that the routing tree obtained by Dijkstra’s algorithm is also a
sub-optimal solution, we thus take it as a potential individual in the initial population. In this
way, the initial population in our algorithm contains R− 1 randomly generated individuals and one
existing sub-optimal solution. By doing so, this initialization can converge much faster than that
without exploiting the knowledge we already have. The population initialization procedures are
described in Algorithm 2. We note that the initialization procedures can generate R different routing
trees, and each routing tree satisfies those routing constraints defined by Equations (1)–(7).

6

5

4

3

2

1

0

1 5 0 0

2 5 0 0

3 6 5 0

4 6 0 0

5 0 0 0

6 5 0 0

Figure 3. Individual encoding scheme.

Algorithm 2: Population initialization

for individual r = 1 to R do
for sensor i = 1 to N do

m = 1
Γr

i,m = i
im

f =randomly select an element from Ni/Γr
i

while im
f 6= sink do

Γr
i,m = im

f
m = m + 1
im

f =randomly select an element from Ni/Γr
i

end
break

end
end
Replace the first individual by the routing tree generated by Dijkstra’s algorithm.
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3.2.2. Fitness Functions and Natural Selection

In the GA, the selection operation is applied to choose individuals to participate in reproduction,
which has a significant impact on driving the search towards a promising trend and finding optimal
solutions in a short time. We adopt the famous roulette wheel selection method to select the individual
on the basis of its selection probability, which is proportional to its fitness function. The selection
probability of the rth individual is defined as

qr =
f (r)

∑r∈R f (r)
(15)

where f (r) is the fitness function of individual r. In this paper, the fitness value is defined as
the charging efficiency obtained from Algorithm 1 with the given routing tree.

3.2.3. Crossover and Mutation

The crossover operation is used to mix the individuals to increase their fitness. Considering
that the chromosomes are expressed by a tree data structure, a single-point crossover is designed to
exchange a partial chromosome. For the two individuals selected to crossover, we first select common
nodes between these two trees; then, one common node among them is randomly selected as the
crossover point. After that, the subtrees rooted from this node are swapped to generate two new
routing trees. We illustrate an example of single-point crossover and the individual repair operation
in Figure 4, where the common node is node 11. The crossover between parent A and parent B is
performed by switching the subtree rooted at node 3 with that of parent B. After the crossover, the
new generated routing tree in child A has a routing loop of 2–3–5. As such, we repair this routing loop
by randomly deleting link e23. Additionally, nodes 5 and 8 are randomly linked to child B to ensure
the feasibility.

1

2

3

5

7

8

4 6

1

2

3

5

7

8

4 6

1

2

3

5

7

8

4 6

1

2

3

5

7

8

4 6

Parent A

Parent B

Child A

Child B

Figure 4. Tree-based crossover operation.

In the mutation operation, the elements in both matrices of each individual are randomly altered
to diversify the population after the crossover operation, which will pave the way towards global
optima. In this paper, once a node (denoted as n) is selected as the mutation point with probability qm,
the mutation replaces the path n to the sink node by a randomly generated new path. It is observed
that the designed genetic operation still generates routing trees, indicating that routing constraints are
still satisfied.
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3.2.4. Replacement

After generating a new population through the crossover and mutation operators, an elitist
model-based replacement is employed to update a certain number of individuals in the old population
with the new generated individuals. The low-quality individuals with low fitness values in the parental
population are replaced by their children in the next generation.

Now, we have designed the key components of the GA operation, which are the individual
encoding, population initialization, selection, crossover, mutation, and replacement operation. The joint
optimization of routing and charging based on the GA is depicted in Algorithm 3, where G is
the given number of generations, R is the population size, qc is the crossover probability, and qm

is the mutation probability.

Algorithm 3: Joint optimization based on genetic algorithm
Set g = 1.
Generate initiation populationR using Algorithm 2.
Calculate the fitness value of each individual inR using Algorithm 1.
while g ≤ G do

SetR′ = Φ.
for i = 1 to R/2 do

Select two parents p1 and p2 fromR using roulette wheel selection method.
r2∗i−1 = p1 and r2∗i = p2.
Cross r2∗i−1 and r2∗i using single-point crossover strategy with probability qc, and
produce two children r′2∗i−1 and r′2∗i.

Repair elements in r′2∗i−1 and r′2∗i if needed.
Mutate r′2∗i−1 and r′2∗i using mutation strategy with probability qm.
R′ = R′ ∪

{
r′2∗i−1, r′2∗i

}
.

Calculate the fitness value of each individual inR′.
end
Set g = g + 1.
Replace the individuals with low fitness values in populationR with the children in
offspringR′ using Algorithm 1.

end
Return the fittest individual inR.

In the proposed GA-based optimization, the computational complexity is dominated by
the complexity in evaluating the fitness of Algorithm 1, which has to be evaluated R times in each
iteration. The time complexity for calculating the fitness function of the resident locations is O(N)

within an iteration. Aside from this, a GA-based approach also depends on other factors, which
are difficult to clearly enumerate, such as strategies to generate a new population, and the tolerance
allowable for cumulative changes in the fitness values [40]. Excluding these parameters, the total
complexity of our algorithm is O(G(NR + R2)). Similarly to that in [12,19,41], our algorithms are
performed in an offline manner. We assume the algorithm is executed at the sink node until the
optimal routing tree and charging schedule are obtained. After that, the obtained routing tree is sent
back to all the sensors via broadcasting, and the resident locations and traveling path are sent to the
mobile charger. To run our algorithm, the sink node needs to collect the ID and location of each sensor.
After receiving the results, one sensor can quickly find its forward sensor by only exchanging its IDs
with its neighbors.

4. Numerical Results

In this section, we provide numerical results to illustrate the performance of our proposed
algorithm. We consider a WRSN with a fixed sink node, and no more than 80 sensor nodes are
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randomly deployed in a square area with size 500 × 500. We assume the sink node is located in the
center of the area, the service station is located at the corner, and the moving speed of the mobile
charger is 5 m/s. The details of these parameters are summarized in Table 1 unless otherwise specified.
The corresponding simulations were implemented in Matlab 7 using a laptop with an Intel (i5-4300)
CPU. All the results were obtained by averaging over 100 simulations.

Table 1. Simulation parameters.

Parameters Value

The initial energy of sensor n, En
i 10,800 J

The minimum energy for working, Emin 540 J
The mobile speed, V 5 m/s

The full charging ratio, uFull 5 W
The minimum charging ratio, Umin 1 J

The charging radius, Rv 2.7 m
The sensing ratio of node, n λn 1∼10 kbps

The number of sensors, N 20∼80
Distance-independent constant term, β1 50× 10−9 J/b

Coefficient of distance-dependent constant term, β2 0.0013× 10−12 J/(bm4)
Pass-loss index , α 4

Energy consumption for receiving per data rate, Cr
i 50× 10−9 J/b

4.1. Convergence Behavior

In the GA, the convergence behavior is affected by many control parameters, such as the initial
population, the mutation probability and the crossover mechanism. To the best of our knowledge,
the conditions for GAs to converge have been proved only for binary encoding with Markov chain
models [42]. However, for the GA algorithm with integer encoding, the convergence is still an open
problem [43]. In this paper, rather than using an analytical approach, extensive simulations are
employed to investigate the convergence issue. In our simulations, we set the maximum number of
generations as 500. In fast, the number of generations depends on the number of individuals. For
instance, more generations are needed for a greater number of sensors.

Figure 5 plots the convergence behavior of the charging efficiency with the number of generations,
and we can observe that the algorithm converges after approximately 300 generations for various
numbers of sensors. It takes 50 s to converge for N = 70 sensors. This is sufficient for many
applications. If we use a more powerful computer, it is expected that it can converge much faster.
For our optimization problem, the charging efficiency with a random generated routing tree at
the initialization is 72.9%, while the final obtained value after optimization with the GA is 99.5%,
which showcases that the GA achieves a nearly 50% greater charging efficiency compared with that of
the random routing tree. This also indicates that it is important to design a joint optimization including
both routing and charging. Additionally, it is revealed that the converge speed can be substantially
increased with a reduced number of sensors.
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Figure 5. Convergence behavior versus different number of generations.

4.2. Total Traveling Distance

Figure 6 plots the number of selected resident locations versus a different number of sensors.
We also compare this with using the hexagon algorithm in [12] and the anchor point selection (APS)
algorithm proposed in [17]. We observe that the number of resident locations increases by increasing
the number of sensors. More importantly, our algorithm obtains fewer resident locations than the other
two algorithms. This can be explained by the fact that resident locations with the hexagon algorithm
are selected in the adjacent hexagons one by one, and the number of sensors covered by each resident
location is random. In APS, the resident location is always selected as the location of the sensor node,
while in our approach, we always aim to charge the largest number of sensors in one resident location;
therefore, few resident locations are needed to cover all the sensors. Figure 7 further plots the total
traveling distance versus a different number of sensors. As expected, we observe that our approach
obtains fewer traveling distances than the other two algorithms. Another observation is that the total
traveling distance increases with an increasing number of sensors.
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Figure 6. Number of resident locations versus different number of sensors.
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Figure 7. Total moving distance versus different number of sensors.

4.3. Routing

Figure 8 plots the comparison of the charging efficiency with different algorithms. Here, LB is
the low latency based routing algorithm proposed in [25], where the sensor with the maximum
residual energy in the next forward ring is selected as the forwarder. EE-ABB is an energy-efficient
routing protocol based on an artificial bee colony algorithm [44], where an intelligent clustering
algorithm is applied to improve the performance of LEACH (low-energy adaptive clustering hierarchy
protocol) [45]. It is observed that the charging efficiency decreases with an increasing number of sensor
nodes. We can also observe that our algorithm achieves the best performance compared with other
algorithms. Figure 9 plots the average received power comparison of these algorithms. We can observe
the same trend as in Figure 8. Additionally, we can observe that the LB algorithm achieves a better
performance than the clustering algorithm, which is mainly because of the higher energy consumption
of the cluster node, and more charging time being spent on those cluster nodes. We can also observe
that the substantial improvement in the charging efficiency is achieved by jointly optimizing both
charging and routing in our algorithm, which also demonstrates the effectiveness of our algorithm.
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Figure 8. Comparison with the charging efficiency.
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Figure 9. Comparison with the average received power.

5. Conclusions

In this paper, we have presented the joint optimization model, including both the charging
efficiency and routing for WRSNs. We have developed a heuristic algorithm to obtain the optimal
charging efficiency with the predefined routing tree. We have also proposed an efficient GA-based
algorithm for the joint optimization of routing efficiency and charging efficiency. The number of
resident locations and total traveling distance can be improved by choosing the optimal resident
locations with the proposed heuristic algorithm. Jointly optimizing both charging and routing can
further improve the charging efficiency compared with the existing routing algorithms.
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