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Abstract: This article introduces a new and unobtrusive wearable monitoring device based on
electrodermal activity (EDA) to be used in health-related computing systems. This paper introduces
the description of the wearable device capable of acquiring the EDA of a subject in order to detect
his/her calm/distress condition from the acquired physiological signals. The lightweight wearable
device is placed in the wrist of the subject to allow continuous physiological measurements. With the
aim of validating the correct operation of the wearable EDA device, pictures from the International
Affective Picture System are used in a control experiment involving fifty participants. The collected
signals are processed, features are extracted and a statistical analysis is performed on the calm/distress
condition classification. The results show that the wearable device solely based on EDA signal
processing reports around 89% accuracy when distinguishing calm condition from distress condition.
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1. Introduction

Early mental stress detection can prevent many health problems related to distress
(negative stress). Therefore, there is an urgent need to create new technologies to monitor the physical
and mental health of people during their daily life. Fortunately, some efforts are being carried out
towards monitoring and regulating people’s arousal state [1–3], which is indicative of stress or mental
illness [4–7]. Thus, the lack of human–machine interfaces in interpreting the subjects’ emotional states
is being faced with the important aim of understanding and managing personal well-being regarding
mental health state.

In this regard, a number of physiological features have been widely used in the literature [8,9].
These features use to measure alterations in the central nervous system [10–12]. One of these
physiological markers corresponds to electrodermal activity (EDA). The utilization of EDA is excellent
in assessing the arousal level, as it is able to quantify changes in the sympathetic nervous system.
In order to continuously measure the EDA signal from the subjects, wearable sensors are the most
appropriate in real mobility situations, given their performance in providing detailed user-specific
information. Moreover, wearable sensors are greatly valued due to their light weight and their wireless
communication capacities with either a computer or other wearable sensors [13].

In this sense, there are several low-cost solutions for wearable long-term EDA monitoring.
For instance, the similarity of signals between a prototype of the wearable Moodmetric EDA Ring is
compared with a laboratory-grade skin conductance sensor in a psycho-physiological experiment [14].
Recently, a pilot study of EDA measurements conducted during a trade fair has been presented [15].
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This paper describes and assesses the performance of a new wearable electrodermal activity-based
device in classifying distress or calm conditions. Section 2 introduces the hardware description of the
wearable. Section 3 introduces an experiment that has been designed in order to assess the validity
of the proposed wearable. The experimental design and the description of the study population are
presented in Sections 3.1 and 3.2, respectively. Then, in Section 4, the segmentation and processing
of the several signals (Section 4.1), as well as the feature extraction process (see Section 4.2) and
the statistical analysis of the classification capabilities (see Section 4.3), are described in extensive.
Afterwards, the results are offered in Section 5, and Section 6 includes the most outstanding discussion
and conclusions related to this work.

2. Signal Monitoring and Hardware Description

The electrodermal activity (EDA) measures the changes in conductivity produced in the skin due
to increases in the activity of sweat glands. The preferred sites for EDA measures are located in the
palms of the hands and the soles of the feet. The eccrine glands secrete sweat due to external stimuli
and endogenous processes (memory, attention, vigilance, motor commitment, etc.), filling the skin
pores and increasing the conductivity [16]. The sudomotor nerve activity (SMNA) is responsible for
triggering the sudomotor fibers that activate the sweat glands. SMNA controls different physiological
processes, like thermal regulation or sensory discrimination [17,18]. Nevertheless, it has been reported
that SMNA is linked to the emotional state, particularly influencing the arousal dimension [19].

In the scientific literature two different methodologies are described for measuring EDA signals.
On the one hand, the endosomatic methodology (ESM) is characterized by not using external current to
acquire the EDA signals. Although this method is non-intrusive, it is difficult to interpret the recorded
signals [19]. This is the main reason why the exosomatic methodology (EXM) is commonly used to
measure EDA signals. EXM recording is performed by using direct current (DC-EXM), or alternating
current (AC-EXM). Notice that most EDA studies have been done with DC-EXM, because the empirical
superiority of the AC-EXM variant has not been demonstrated [19]. Consequently, this work has
performed a DC-EXM methodology with a constant current source.

EDA signals are composed by the superposition of two different components. On the one hand,
the phasic component or skin conductance response (SCR) can be observed when the sudomotor nerve
is activated. Given this relationship, SCR has been widely used to measure the sympathetic nervous
system [8,20,21]. From a morphological point of view, SCR is represented by a peak or a burst of peaks
with different amplitudes, slopes and decays depending on the nature of the stimulus [19]. On the
other hand, the tonic component, or skin conductance level (SCL), represents the base line of the
skin conductance. SCL varies among people, depending on their physiological states and autonomic
regulation [22]. Thus, the EDA morphology is represented by a fast changing SCR signal modulated
by a slowly varying SCL component. Given the slow response of the SCL component, the useful
information ranges from 0 to 0.05 Hz. Similarly, the energy of the SCR component ranges from 0.05 to
1.5 Hz. Indeed, it has been reported that the average activation rate of sudomotor fibers (responsible of
the SCR component) are measured at 0.62 Hz [23].

In our electronic design, guided by EDA features previously described, the EDA sensor measures
DC exosomatic electrodermal activity through a couple of Ag/AgCl disc electrodes with contact
diameters of 10 mm. The electrodes are attached to the medial phalanges in palm sides of index
and middle fingers (see Figure 1). A small DC current is applied to the stratum corneum under the
electrodes. Exceeding current must be limited to 10 µA/cm2 in order to avoid damage in the sweat
gland ducts [24] and prevent nonlinearities in the current–voltage curve.
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Figure 1. Prototype of the wearable. (Left) The wearable is put in the wrist of the non-dominant
hand. (Right) The electrodes are attached to the medial phalanges in the palm sides of index and
middle fingers.

A single-supply, rail-to-rail input/output, precision operational amplifier, AD860x
(Analog Devices) [25], implements a voltage-controlled linear current source (transconductor)
as shown in Figure 2b. Such a compact solution is feasible, given that the load (stratum corneum) can
be connected in a floating configuration, the input can provide all the required load current, and the
current does not exceed the operational amplifier’s output current limit. In addition, a single-supply
operation requires the generation of a virtual ground, usually at the halfway along power supply
(VDD/2). Bearing this in mind, a resistor divider biasing technique (Rd1 and Rd2) has been used,
buffered by a second operational amplifier, AD860x (Analog Devices), to provide a low-impedance
ground at first operational amplifier’s non-inverting input, as shown in Figure 2a. Cd1 forms
a low-pass filter to eliminate conducted noise on the voltage rail. Cb1 and Cb2 are bypass capacitors
and Cb is a bulk capacitor.
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Figure 2. Electrodermal activity sensor building blocks. (a) Virtual ground. Rd1 = Rd2 = 100 kΩ,
Cd1 = 1 µF, Cb1 = Cb2 = 100 nF, and Cb = 47 µF; (b) Current source. Rre f = 825 kΩ; (c) Low-pass filter.
Rp = 110 kΩ, Cp = 1 µF, Ra1 = 75 kΩ, Ra2 = 150 kΩ, Ca1 = Ca2 = 1 µF, Rg1 = Rg2 = 10 kΩ, and C f = 1 nF.

Therefore, the current fed into the skin is calculated as:

Iskin =
1
2

VDD
Rre f

(1)

In this regard, the Rre f = 825 kΩ reference resistor limits the current injected by the electrodes into
the skin to a value around 2.546 µA/cm2, well below the 10 µA/cm2 recommendation.

Similarly, the skin resistance is calculated on the basis of the reference resistor as:

Rskin = (1− 2Vout

VDD
)Rre f (2)

By taking the inverse of Equation (2), the skin conductance is obtained.
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Finally, Figure 2c shows a third-order, low-pass filter with a cutoff frequency of about 1.5 Hz.
The filter is implemented as a second-order low-pass active filter stage followed by a first-order
passive RC (Rp and Cp) low-pass filter stage. The active stage consists of a single-supply, low-pass
Sallen-Key topology (Ra1, Ra2, Ca1 and Ca2) with a Butterworth response characteristic. The advantage
of this second-order low-pass topology is that it only uses one operational amplifier, again AD860x
(Analog Devices). Furthermore, this allows the addition of 2× gain (Rg1 and Rg2) to the signal
chain. This filter limits the EDA signal bandwidth and accommodates its amplitude to the input
dynamic range of the micro-controller’s analog-digital converter (ADC). C f helps to the operational
amplifier’s stability.

The sensor power rail is derived from a filtered 3.3 V system supply. Generous power supply
bypassing and ground planes on the printed circuit board help to reduce noise.

3. Experimental Protocol

3.1. Experimental Design

Pictures from the International Affective Picture System (IAPS) have been chosen in order to
trigger the desired arousal and valence levels [26], for the sake of eliciting distress and calmness.
In fact, IAPS consists of a standard and categorized database of color photographs created to provide
a wide range of affective stimuli. Moreover, the two primary dimensions recorded in the database are
affective valence (ranging from pleasant to unpleasant) and arousal (ranging from calm to excited).
So, for each IAPS picture the mean and standard deviation of arousal and valence is provided in four
different tables constructed from the responses of men, women and children who responded by means
of the Self-Assessment Manikin, an affective rating system [27], to the emotion felt when exposed
to the pictures. According to the creators of the database, the existence of this image collection of
normatively rated affective stimuli should: (1) allow better experimental control in the selection of
emotional stimuli; (2) facilitate the comparison of results across several studies conducted in the same
or different laboratory; and (3) encourage and allow exact replications within and across research labs
who are assessing basic and applied problems in psychological science.

Thus, the idea is to use the IAPS database to show a series of images to some volunteer participants.
Each image used in the experiment has to belong to one of the two classes, namely, high arousal-low
valence and low arousal-high valence, corresponding to distress and calm, respectively, according to
the circumplex affect model by Russell [28]. Obviously, high arousal-low valence does not directly
mean “distress”, as “alarmed, tense, afraid, angry, annoyed and frustrated” are also classified in this
quarter of the circumference. In the opposite low arousal-high valence side we have pleased, glad,
serene, content, atease, satisfied, relaxed and calm. For this reason, the images taken as representative
for the calm condition have a described arousal level lower than 4 and a valence level between 4 and 6.
Similarly, the negatively distressed condition consists in samples with an arousal level higher than 5
and a valence level lower than 3.

The procedure for performing the experiment is described next. The participant sits in front
of the experimentation monitor and the wearable is put in the wrist of the non-dominant hand
(see Figure 1). In this regard, the experimentation monitor consists of a high resolution, 28 inch screen.
When the technician verifies the proper functioning of the wearable and its communication with the
software, the experiment starts. Firstly, the participant has to carefully read the general instructions
of the experiment. Then, ten pictures that are labelled with high arousal and low valence are shown
consecutively during 6 s each to the participant. Silences consisting of blank images with a fixed
duration of 1 s are inserted before each picture used from the database.

The pictures are selected randomly from the set of images that fulfil the condition. Therefore,
the segment used for subsequent analysis is 70 s long (10 pictures × 6 s duration, plus one blank
image before each picture). In this sense, a single presentation of many stimuli presented for a short
period of time might favour the continuity of emotional state [29]. Afterwards, a distracting task is
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presented to the participant so that his/her emotional state comes to neutral. Next, the experiment
continues by showing randomly another set of ten images from IAPS that fulfil the condition to be
part of those previously labelled as low arousal and high valence. Therefore, two segments of data
from each individual are finally obtained, one for calm condition and another for distress condition.
Again, silences are used before each picture. Lastly, the distracting task is offered again.

Thus, the total duration of the experiment for each participant is 140 s from the screening of the
first image. The pauses are designed to allow the patient under study to recover from the previous
stimulus. In this regard, the pictures are randomly shuffled, such that the order of viewing is different
for each participant, albeit keeping the silence between two consecutive pictures. It is important to
say that the experiments are carried out in the safest possible way. Accordingly, the participants are
informed that they can stop visualizing the sequence in any moment. Moreover, the technician stays
behind the participant during the whole experiment in order to assist at any time.

3.2. Study Population

Fifty participants (28 men and 22 women, mean age 23.54± 2.64 years) have been enrolled in
this experiment. All participants are informed about the high emotional contents of the pictures and
they agree to be subjected themselves to the study. All participants are students from the Technical
School at Cuenca, Spain. The scholars had to pass the PHQ-9 Depression Test Questionnaire to be
accepted in the experiment. Unfortunately, four students were not approved, and one experiment was
not valid due to technical problems. Thus, the number of valid experiments was forty-five (25 males
and 20 females).

This study was carried out in accordance with the ethical standards of the responsible institutional
committee on human experimentation. All subjects gave written informed consent in accordance with
the Declaration of Helsinki.

4. Methodology

After the experimentation, all signals are segmented and processed according to the time duration
of the stimuli. Next, the most significant time, morphological and frequency features are extracted.
Finally, diverse statistical analysis and classification techniques are applied with the objective of
maximizing the performance.

4.1. Signal Processing

The EDA raw signals are acquired from the wearable at a sampling rate of 10 Hz and a 12-bit
resolution. These specifications are chosen to remain the EDA shape unaltered and to prevent
distortions [19]. EDA signals result from the superposition of two different components, SCR and
SCL. The sympathetic nervous system fires the sudomotor nerve, provoking the phasic response.
Traditionally, the SCR intensity has been quantified after each elicited stimulus by detecting peaks
directly on the EDA signal [19]. Next, the difference between a found peak and its preceding local
minimum is assessed.

However, depending on the stimuli, it is frequent that SCRs appear as bursts, such that an
EDA signal is represented as a sequence of consecutive SCRs. In this case, the SCR boundaries
remain masked by the preceding response. Indeed, SCRs may occur at the rise or decay of existing
stimuli, making it very difficult to determine if these responses correspond to a new stimulus or
are part of previous events. In this regard, some works have defined different strategies for all
possible overlapping cases [30]. Nevertheless, the through-to-peak standard method may result
in an underestimation of the amplitude of consecutive SCRs, depending on the closeness among
responses [31]. Recently, new studies have addressed this problem by decomposing the EDA signal
into its two components by using a deconvolution operation [31]. Despite this approach requires more
intensive signal processing, it has reported better performance than others that process directly the
EDA raw data. Consequently, a similar methodology is applied in this work. Thus, considering the
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raw data from the wearable as y[n], a new 1.5 Hz cut-off low-pass FIR filter with order N = 32 is
applied over this signal in order to decrease the possible noise produced in the different electronic
stages. The resulting filtered signal ŷ[n] is calculated by means of a discrete convolution as:

ŷ[n] = C0y[n] + C1y[n− 1] + ... + CNy[n− N] =
N

∑
i=0

Ciy[n− i] (3)

Next, a deconvolution operation is carried out to separate SCR and SCL components.
The deconvolution is an algorithm-based process used to reverse the effects of combining signals by
finding the solution to the convolution equation, such that:

ŷ[n] = (r× l)[n] =
N

∑
i=0

r[n− i]l[i] (4)

being × the convolution operator in the time domain, ŷ[n] the filtered EDA signal, r[n] the required
SCR and l[n] the SCL components. It is worth noting that l[n] corresponds to the transfer function in
Equation (4), such that, if l[n] is known or estimated, a deterministic deconvolution could be used to
compute the desired component r[n].

In this regard, three different assumptions have been considered in this work. Firstly, the exact
moments when the stimulus (picture) starts have been recorded as events, as can be observed in
Figure 3b. Secondly, notice that the SCR component takes a while since the stimulus is fired until
the sympathetic system reacts through filling the sweat glands, thus increasing the skin conductivity.
Indeed, the exact time occurrence of SCR varies depending on skin type and genetic aspects [22].
Furthermore, the SCR duration varies subject to the stimulus’ nature and the participant’s reaction
against such stimulus. Consequently, a fixed temporal window (5 s) is used as the time segment where
the SCR response may occur, following the recommendations of a previous work [17]. Thus, a period
from +1 to +6 s after the onset of each stimulus is considered. In third place, l[n] corresponds to ŷ[n]
when no stimulus is elicited [19].

Considering the aforementioned assumptions, the time intervals occurring before and after each
phasic impulse are used to estimate the SCL gaps between the different phasic impulses. In this
work, a cubic spline fit is used to approximate l[n] at the gaps produced in the SCR temporal window,
as you may observe in Figure 3c. Once l[n] is known, r[n] can be computed by following the inverse
process defined in Equation (4). Nevertheless, given the complexity of this operation in time, it is
preferable to work in the frequency domain, where convolution and deconvolution become in simple
multiplications and divisions. Thus, ŷ[n] and l[n] are transformed into the frequency domain by using
the Fourier Fast Transforms (FFT), such that r[n] can be calculated as:

r[n]F =
ŷ[n]F
l[n]F

(5)

being ŷ[n]F, r[n]F and l[n]F the FFTs of EDA signal, and SCR and SCL components, respectively.
The original r[n] component alone is estimated by computing the inverse Fourier transform over r[n]F.
As it can be observed in Figure 3d, r[n] corresponds to a signal with zero baseline, where each impulse
reflects the activation of the sudomotor nerve.
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Figure 3. Different stages in EDA signal processing. (a) Raw EDA signal before filtering. (b) Raw EDA
signal after low-pass filtering and stimuli onset. (c) Estimation of EDA baseline using a cubic spline
approximation. (d) Skin conductivity response (SCR) obtained after the convolution process.

4.2. Feature Sets

In the present section, all the features are estimated. The characteristics related to time domain,
frequency domain, statistics and morphological analysis are computed for each physiological variable.
In this work, thirty six features are used, as you may observe in Table 1.

Table 1. Temporal, morphological and frequency features computed for EDA signals.

Analysis Features

Temporal MSC, SDSC, MASC, MISC, DRSC, FMSC, FDSC, SMSC, SDSC
Morphological ALSC, INSC, APSC, RMSC, ILSC, ELSC, KUSC, SKSC, KUSC, MOSC
Frequency F1SC, F2SC, F3SC

Different time-domain and frequency-domain markers are computed over the phasic component
SCR to characterize the EDA signal. The SCL tonic component is out of scope of this study, since it uses
to vary among different people due to physical and genetic aspects [19]. Firstly, a number of temporal
metrics are computed over the SCR component. Thus, the mean (MSC), standard deviation (SDSC),
maximum (MASC), minimum (MISC) and the dynamic range (DRSC), defined as the difference
between MASC and MISC, are estimated. In order to highlight the sudden changes in the skin
conductivity, the first and second derivative of SCR are also computed. Then, the mean (FMSC) and
standard deviation (FDSC) of the first derivative and the mean (SMSC) and standard deviation (SDSC)
of the second derivative are calculated.
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In addition, several morphological features are defined for SCR characterization. Thus, in order
to identify the morphological alterations produced when SCRs are present in the EDA signal, the arc
length (ALSC) is computed as:

ALSC =
N

∑
n=2

√
1 + (r[n]− r[n− 1])2. (6)

This parameter discerns between the presence or absence of SCR components, and it has
been used previously in the morphological characterization of Gaussian responses [32]. Moreover,
some parameters related to the SCR amplitude are also used to assess the activation of the sympathetic
nervous system. Thus, the integral (INSC), normalized average power (APSC) and normalized root
mean square (RMSC) of SCR are calculated as:

INSC =
N

∑
n=1
|r[n]|, (7)

APSC =
1
N

N

∑
n=1

r[n]2, (8)

RMSC =

√√√√ 1
N

N

∑
n=1

r[n]2. (9)

Furthermore, possible relationships between the amplitude and energy of the SCR signal with its
arc length are studied. Thus, the area-perimeter (ILSC) and the energy-perimeter (ELSC) relationships
are estimated as the ratio between INSC and RMSC with ALSC, respectively. Finally, high order
skewness (SKSC) and kurtosis (KUSC) statistics, as well as the central moment (MOSC) are calculated
on the SCR component. These metrics assess the symmetry and shape of a probability distribution,
and can therefore be also considered as geometrical descriptors. Indeed, if an SCR is considered
as a Gaussian distribution, SKSC indicates if the tail distribution is longer at the left or at the right
relative to the normal distribution. Similarly, the SKSC shows the degree of peakedness or flatness of
a distribution relative to the normal distribution.

In regards to frequency aspects, the SCR component is transformed into the frequency domain by
using a nonparametric FFT algorithm. Then, the spectral power in bandwidths 0.1 to 0.2 (F1SC), 0.2 to
0.3 (F2SC) and 0.3 to 0.4 (F3SC) Hz are estimated. These bands have been previously used in other
studies [33].

4.3. Statistical Analysis

Shaphiro-Wilks and Levene tests have proved that the distributions are normal and homoscedastic
for all the features studied. Consequently, the results are expressed in terms of the mean ± standard
deviation for all the samples belonging to a same class. The statistical differences between both classes,
calm and distress, are assessed by a one-way ANOVA test. A value of statistical significance ρ < 0.05
has been considered as significant.

Moreover, a 10-fold stratified cross-validation is used to assess the discriminant ability of each
feature. This kind of cross-validation allows to obtain a highly reliable performance generalization of
the metric under study [34]. Indeed, this approach makes use of all available data both for training and
testing. This avoids the possibility of the classification results to be highly dependent on the choice of
a given training-test segmentation. Thus, the database is firstly partitioned into 10 equally sized folds,
rearranging the data to ensure that each fold is a good representative of the whole. Then, 10 training
and validation iterations are performed, such that a fold of the data is held out for test, whereas the
other ones are used for learning within each iteration. For each learning set, a receiver operating
characteristic (ROC) curve is used to obtain the optimal discriminant threshold between calm and
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distress condition. The ROC curve is created by plotting the true positive (TP) rate against the false
positive (FP) rate at various threshold settings. Here, the TP rate (or sensitivity) is considered as the
percentage of distress condition correctly classified. On the other hand, the FP rate (or one-specificity)
corresponds to the rate of calm individuals improperly identified. The optimal threshold is selected as
the value which provides the highest accuracy. Finally, the global precision is obtained by averaging
this procedure 10 times.

Additionally, the relationships among the different temporal, morphological and frequency
features are analysed by means of decision trees. In brief, the algorithm starts taking into account
all the input data, examining all the possible splits on each feature. Then, the split with the best
optimization criterion, based on the Gini diversity index [35], is chosen. In this respect, the Gini index
is commonly computed by using the Lorenz curve, and it is expressed mathematically as:

G =
a

a + b
(10)

where G corresponds to the Gini index, a represents the area that lies between the line of equality
and the Lorenz curve and b represents the area under the Lorenz curve. Thus, a node containing
observations from just one group (pure node) has Gini index 0, while if the node contains observations
from both groups (impure node), the Gini index is a positive number, ranging between 0 and 1. Finally,
when the split has been executed, the aforementioned process is repeated recursively for the two child
nodes using the remaining data. It is worth noting that some stopping rules are imposed to prevent
tree overgrowth. Thus, the growth of every tree is always stopped when any node only contains
samples from a group of subjects (pure node) or less than 20% of all samples.

5. Results

Table 2 shows the mean and standard deviation of the features calculated. Only those markers
reporting statistical differences throughout a one-way ANOVA test are presented.

Table 2. Results obtained from skin conductance response (SCR). Mean and standard deviation values
for emotional states of calm and distress, and statistical significance (ρ), for all parameters are presented.

Feature Calm Condition Distress Condition ρ

Acronym Mean ± Std Mean ± Std

MSC 5.5339 ± 4.2228 13.0193 ± 8.6201 1.03 × 10−5

SDSC 4.4618 ± 4.8976 12.5249 ± 9.0340 1.33 × 10−5

MASC 28.6079 ± 27.44 69.4104 ± 48.0310 2.68 × 10−5

DRSC 28.5653 ± 27.4660 69.3719 ± 48.0145 2.67 × 10−5

FDSC 0.9932 ± 0.9665 2.2660 ± 1.6756 1.50 × 10−4

ALSC 1.4049 ×104 ± 99.6809 1.4153 × 104 ± 279.7989 0.0175
INSC 193.9833 ± 148.3517 457.2628 ± 304.9061 1.11 × 10−5

APSC 4.6324 ± 9.2181 23.8873 ± 36.4345 0.0026
RMSC 7.3106 ± 6.3476 18.0970 ± 12.4265 1.20 × 10−5

ILSC 5.5067 ± 4.1480 12.8120 ± 8.2006 7.31 × 10−6

ELSC 0.0065 ± 0.0129 0.0330 ± 0.0484 0.002
SKSC 1.8838 ± 1.1882 3.1146 ± 0.7159 0.0031
MOSC 2.2337 ± 5.0694 11.7973 ± 19.7930 0.0057
F1SC 2.9219 ± 5.4380 14.1513 ± 20.2989 0.0018
F2SC 0.1631 ± 0.2984 1.4143 ± 2.1767 8.99 × 10−4

F3SC 0.1391 ± 0.3231 1.2288 ± 2.3907 0.0076

Concerning the study of the SCR component, 16 out of 22 features report significant differences.
In this respect, higher values of skin conductivity are observed in the distress class regarding the
calm class for all temporal parameters. From a statistical point of view, all temporal parameters
achieve a comparable power discrimination between both classes. On the other hand, a number
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of morphological markers are defined and used in this analysis. Most of them show an important
discriminatory power. It is worth noting that ILSC achieves the most remarkable trends, while
ALSC reports the lowest significance. Just like in the temporal parameters, the average values of the
morphological markers show an increasing pattern, such that higher skin conductivities are observed
in distress compared to calm condition. Regarding the frequency parameters, all the markers report
a power increase when the subjects are elicited with stressing stimuli. In this regard, F2SC experiences
the highest difference between the classes, achieving a considerable statistical significance.

In order to estimate a reliable and robust classification accuracy for each studied parameter,
the stratified 10-fold cross-validation is run five times. Thus, the average values of sensitivity, specificity
and accuracy, reported by each marker and for both training and test subsets iterations, are shown in
Table 3.

Table 3. Sensitivity (Se), specificity (Sp) and accuracy (Ac) for all the parameters under study and for
training and test subsets.

Feature Learning Test

Acronym Se (%) Sp (%) Ac (%) Se (%) Sp (%) Ac (%)

MSC 75.95 83.10 79.52 69.00 76.78 72.95
SDSC 85.06 78.95 82.43 78.57 76.07 77.38
MASC 81.45 76.35 78.91 74.07 72.28 73.34
DRSC 82.92 75.42 79.18 76.64 71.00 73.62
FDSC 74.58 80.43 77.50 69.21 74.85 71.81
ALSC 72.15 76.86 74.52 70.92 75.64 73.19
APSC 84.98 79.88 82.43 79.92 78.71 79.28
RMSC 85.92 78.92 82.42 81.57 78.85 79.94
ILSC 85.12 79.71 82.42 81.78 78.14 79.99
ELSC 71.78 73.14 72.25 63.00 75.35 69.16
SKSC 77.44 81.08 79.29 73.28 75.71 74.53
MOSC 86.19 78.75 82.50 75.28 75.21 75.18
F1SC 77.15 77.94 77.57 74.85 75.85 75.38
F2SC 85.29 85.93 85.61 84.92 78.50 81.61
F3SC 85.12 79.71 82.42 80.35 76.42 78.30

The classification results are in agreement with the discriminatory power obtained previously.
Thus, all the temporal parameters computed over SCR component achieve a similar global accuracy,
ranging from 71% to 73%. Similarly, morphological parameters computed over SCR component reach
similar performance with global accuracy varying between 73% and 75%. Nevertheless, the energetic
parameters APSC and RMSC show a very notable classification accuracy, reaching a correctness
of 79.28% and 79.94%, respectively. In agreement with the discriminatory power shown before,
the arc length (ALSC) achieves the worst performance in the classification. On the contrary, the
area-perimeter marker ILSC reports the highest global accuracy among the morphological features,
achieving a precision of 79.99%. Finally, frequency markers show a very notable performance, where
F2SC reaches the highest global accuracy among all the studied parameters. It is important to remark
that almost all markers show a good balance between sensitivity and specificity. Nevertheless, some
remarkable parameters state a slight increase in sensibility, i.e. an increase in the ability of detecting
distress condition. Hence, RMSC, ILSC, F2SC and F3SC report sensibility values higher than 80%.

Considering this context, a series of tree-based classification models are programmed in order
to study the possible relationships among the different parameters. Here we present the tree-based
discriminant model that reaches the highest performance. This model is constructed by exclusively
considering temporal and morphological features. In this case, the frequency parameters are excluded,
thinking in a lighter algorithmic model only focused in analyzing the time domain. In this model,
a threshold value of 4.4830 on SDSC parameter in this model serves to divide into two subgroups.
Then, one of the subgroups is assessed by means of SKSC parameter, taking value 3.1102 as classification
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threshold. This tree-based model achieves a sensitivity, specificity and accuracy of 93.9%, 85.36%
and 89.18%, respectively. In this regard, the model improves the global correctness more than 8%,
regarding the performance of the best single parameter F2SC. It is also important to highlight that
sensitivity, that is, the ability to discriminate distress condition, improves over 9%.

6. Conclusions

A recent paper [36] says that “Stress is a very complex subject and measuring stress is not an easy
task. There are many markers that could be used, many algorithms that could be applied, and many
forms of stress which could be observed”. Moreover, an important number of works can be found
in the literature based in distress detection. Although comparison among works should always be
considered with caution, since different ways to provoke the stress may trigger several cognitive
processes [22], it is worth noting that the present study has achieved a comparable performance to
other systems aimed at classifying calm and distress emotional states. Thus, while this work has
reported a global accuracy around 89% when classifying calm and distress condition, other works
based on electrodermal activity as reported in very interesting reviews on wearable sensors for remote
health monitoring [37–39], state stress detection rates ranging from 75% to 95% [40–43]. Nevertheless,
complex classifiers have been used to improve their performance.For instance, an approach throws
a precision of 75% using EDA after classifying with k-means, Gaussian mixture models, SVM and
decision trees [44].

On the other hand, it is important to highlight that these and/or other approaches have used an
important number of features from more than one physiological sensor to calculate the stress degree.
For instance, electroencephalogram, electrocardiogram and facial cameras complement EDA signals to
reach an accuracy of 68% [45]. The classification is performed by means of support vector machines
(SVM) and naive Bayes classifier. In another approach [46], heart rate variability (HRV) supplements
EDA to obtain 78% of precision, also using SVM classifiers. Two other papers using EDA and HRV
reach an accuracy of 97.3% [10] and 80% [47], respectively. However, in the first article [10] a driving
task is analysed with a series of sensors: hand and foot EDA, together with three other physiological
measurements, namely HRV, Trapezius muscle electromyography and respiration. Moreover, the other
work [47] uses EDA, blood pressure, HRV, eye gaze and pupil dilation. Another work with three
physiological measurements [48], which are HRV, skin temperature and EDA, gets a precision of 91.2%.
In another work [49], a portable embedded device to measure the accumulated stress level is designed.
This device uses EDA and HRV with electrocardiograph or photoplethysmograph signals to obtain an
accurate stress level.

On the contrary, our proposal uses only features from SRC to achieve a high performance that
is comparable to the most remarkable works. In this sense, the most outstanding aspect of our
contribution is the development of the necessary hardware, signal processing and classification model
to deploy a wearable device with a high ability to discriminate between the two considered states.
The simplicity of the classification model and the lightness of the signal processing approach enables
this device to work in real-time and long-term. Another relevant aspect is that almost all the features
computed on the SCR component show some degree of relevance in the classification.

For the sake of comparability and reproducibility of the experiment described in this study,
a DC-EXM method has been chosen for the acquisition of EDA signals. Indeed, most of the works
using EDA, and found in scientific literature, have been performed by means of this methodology [19].
Although ESM approaches may provide some advantages over the EXM methods, as, for instance,
no need of additional amplification and coupling circuitry, the output signal generated is biphasic or
even triphasic, which difficult considerably the interpretation and further processing of the data [19].
From a point of view of electronic design, many efforts have been made to standardize the use of
constant voltage versus constant current sources when using DC-EXM methodology. Despite constant
voltage directly providing conductance values, there is no consensus in the literature about its
generalized use, because the conductance value can be obtained easily with constant current sources if
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SCL is also measured. In this aspect, the design of constant current sources are preferred because they
are easier to design and present less tolerance than constant voltage variants.

Finally, some limitations should be considered. First of all, the wearable prototype has been tested
in laboratory conditions enrolling exclusively young subjects. Therefore, the results of this work can
not be generalized directly to the entire population. With the aim of validating the results obtained,
people of all ages will be enrolled in future studies. Furthermore, a sequence of 10 consecutive pictures
with lengths of 6 s have been used as stimuli in this work. Considering such duration for visualization,
the cognitive dimension of exploration of images during the 6 s may affect the outcomes. In this line,
there is no consensus about which type of stimulus (image, sound, or video clip) and duration is the
most adequate to elicit certain emotional states [22]. Moreover, it should be noted that the same order
of condition high arousal-low valence—low arousal-high valence could affect, which could suppose
an experimental bias.
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