
sensors

Article

Command Disaggregation Attack and Mitigation in
Industrial Internet of Things

Peng Xun 2 ID , Pei-Dong Zhu 1,*, Yi-Fan Hu 2, Peng-Shuai Cui 2 and Yan Zhang 3

1 Department of Electronic Information and Electrical Engineering, Changsha University,
Changsha 410022, China

2 College of Computer, National University of Defense Technology, Changsha 410073, China;
xunpeng12@nudt.edu.cn (P.X.); ouchyf@foxmail.com (Y.-F.H.); cuipengshuai@nudt.edu.cn (P.-S.C.)

3 Department of Informatics, University of Oslo, Oslo 0316, Norway; yanzhang@ieee.org
* Correspondence: peidong_nudt@163.com

Received: 5 September 2017; Accepted: 18 October 2017; Published: 21 October 2017

Abstract: A cyber-physical attack in the industrial Internet of Things can cause severe damage to
physical system. In this paper, we focus on the command disaggregation attack, wherein attackers
modify disaggregated commands by intruding command aggregators like programmable logic
controllers, and then maliciously manipulate the physical process. It is necessary to investigate
these attacks, analyze their impact on the physical process, and seek effective detection mechanisms.
We depict two different types of command disaggregation attack modes: (1) the command sequence
is disordered and (2) disaggregated sub-commands are allocated to wrong actuators. We describe
three attack models to implement these modes with going undetected by existing detection
methods. A novel and effective framework is provided to detect command disaggregation attacks.
The framework utilizes the correlations among two-tier command sequences, including commands
from the output of central controller and sub-commands from the input of actuators, to detect
attacks before disruptions occur. We have designed components of the framework and explain
how to mine and use these correlations to detect attacks. We present two case studies to validate
different levels of impact from various attack models and the effectiveness of the detection framework.
Finally, we discuss how to enhance the detection framework.

Keywords: cyber-physical attack; industrial Internet of Things; command disaggregation; command
correlation; attack detection

1. Introduction

A large-scale industrial Internet of Things (IIoT) [1] is deployed to help utilities such as smart train
and smart grid provide better service. A typical hierarchical system is adopted in many large-scale
IIoTs to obtain flexible control [2–4]; this system includes many lower-layer sub-controllers, such as
programmable logic controllers (PLCs) in power systems. Sub-controllers are in charge of command
disaggregation. For example, a demand response (DR) load reduction of 70 MW in power grid is
requested across the entire grid. The command needs to be disaggregated into some sub-commands
such as load reduction of 10 MW, 20 MW, and 40 MW according to the capacity of endpoint field
devices because the appliances have different levels of capacity. This disaggregation process continues
until local commands for endpoint field devices are generated and exercised [5,6].

However, with the wide openness of communication infrastructure which is used to improve
efficiency, reliability, and sustainability of services [7] such as smart grid, new vulnerabilities have
been exposed [8–12]. High-skilled attackers can obtain many opportunities to remotely access
sub-controllers to inject malicious commands and modify data from sensors. A real case was studied
in [13] to demonstrate this ability of smart attackers.

Sensors 2017, 17, 2408; doi:10.3390/s17102408 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0002-5225-6118
http://dx.doi.org/10.3390/s17102408
http://www.mdpi.com/journal/sensors

Sensors 2017, 17, 2408 2 of 23

When commands reach sub-controllers, malicious entities remotely attack sub-controllers to
generate wrong executed commands called command disaggregation attack. The attack may
result in disruptions of physical process. In this paper, we focus on the process of launching the
command disaggregation attack and its detection method. Previous studies, such as [2], introduced
the concept of command disaggregation attack. Attackers can inject false commands or modify
sensory data to implement false command disaggregation. However, these studies did not describe
how to launch effective command disaggregation attacks to result in damages to the physical
system. Besides, when attackers simultaneously launch command disaggregation attacks and inject
false feedback data to confuse the security detector, existing detection methods such as false data
estimation [14] can not effectively identify anomalies. Detecting command disaggregation attacks with
false feedback data injection is still an unexplored topic.

Driven by the above considerations, we depict two different command disaggregation attack
modes: (1) false command sequence; and (2) wrong command allocation. The former refers
to the situation that attackers delay the disaggregation of some commands to disorder its logic,
thereby resulting in disruptions of physical process; the latter refers to the situation that disaggregated
commands are issued to other than the expected or planned actuators, causing the failure of control
objective or physical damages. We also describe three attack models to implement command
disaggregation attacks in two kinds of modes. When attackers manipulate the disaggregation of
commands, they simultaneously inject false feedback data to confuse security detectors to ensure that
the attack goes undetected. To deal with the threats above, we provide a detection framework based on
correlations among two-tier command sequences, which collects two-tier commands including those
issued from the central controller and the sub-commands executed by actuators. We design components
of the detection framework and explain the method of mining correlations among commands and
using the correlations to detect attacks. Finally, two cases are studied to demonstrate the different
levels of impact from various attack models and the effectiveness of proposed detection framework.

The rest of the paper is organized as follows. We introduce the related work and summarize
our contributions in Section 2. We depict two kinds of modes and three attack models in Section 3.
In Section 4, we describe the detection framework. Two case studies are given in Section 5. We discuss
how to enhance the detection framework in Section 6 and conclude our work in Section 7.

2. Related Work and Our Contribution

2.1. Related Work

In this section, we first survey the state of the art of attacks that cause disruptions of physical
process. Then, we review the works about attack detection.

Three methods, namely, false command injection, false data injection, and time-delay attacks,
can be used to disrupt the physical system. In [15–17], attackers directly injected false commands
into the controller to disturb physical process. False data injection attack was described in [18,19].
Attackers capture sensors to inject false data, which causes false state estimation or hides signs of
faults leading to disruptions. In [7,20], authors described time-delay switch attack, which increases
time delays in the sensing loop or in the automatic generation control signal to impact the control
process. In [21], authors considered DoS attacks. Attackers jammed communication channels by
intruding into the advanced metering infrastructure of smart grid. Commands and feedback data
can not be transmitted to the actuators and controller thereby compromising the control process.
In [13], authors described a real case that attackers can manipulate sub-controllers by infecting
the firmware of a PLC. An attacker gets access to the PLC’s input values through the firmware
from the physical world, processes them, and then provides outputs that are forwarded to the
physical world through the firmware. Moreover, attackers also can modify feedback data which
are transmitted to the central controller from the compromised PLC. These studies showed that the
existing vulnerabilities in IIoTs can enable attackers to remotely disrupt physical process, but they
did not consider the command disaggregation attack. Currently, there are some researches that

Sensors 2017, 17, 2408 3 of 23

have focused on command disaggregation attacks. For example, in [2], the authors demonstrated
the possibility of command disaggregation attacks and revealed the cascading failure effect, but the
process of command disaggregation attacks that can cause damage to physical system is not described.

Although many detection methods have been proposed to detect anomalies caused by attacks,
they are not effective to identify false command disaggregation attacks. For example, in [22],
some counter-attack mechanisms were proposed to defend attacks, however, attackers may find
vulnerabilities and bypass these mechanisms to launch false command disaggregation attacks by
injecting elaborately constructed false data or directly intruding into the controllers [2]. In [23,24],
authors used the linear correlations among sensory data to detect anomalies. However, when false
command disaggregation occurs and attackers simultaneously inject false data to confuse the security
detectors [14], anomalies can not be detected. Likewise, false data estimation that used multiple data
detectors with dissipativity-theoretic fault detection function in [14] and detection method based
on correlations between commands and sensory data in [25,26] also failed in identifying the above
attacks. In [27], authors used methods based on machine learning to detect attacks, however, when bad
data is successively injected, the method is still ineffective to identify command disaggregation
attacks. In [28,29], authors mined the correlations among commands to detect injected false commands.
However, command disaggregation attacks modify commands after commands are collected from the
controller, which leads to the undetected situation. If defenders only collect commands from actuators,
multi-variant types of commands will increase the difficulty and inaccuracy of correlation mining.

2.2. Our Contribution

After summarizing the related work in attack and in detection, we clarify our contributions as

(i) We introduce two kinds of command disaggregation attack modes, namely, false command
sequence and wrong command allocation.

(ii) We describe three attack models to implement command disaggregation attacks in two modes.
Attacks based on the three models can not be detected by the existing detection methods.

(iii) We provide an effective detection framework based on correlations among two-tier command
sequences. Detecting command disaggregation attacks with false feedback data injection is still
an unexplored topic and our method is the first to effectively identify command disaggregation
attacks before a disruption occurs.

3. Command Disaggregation Attack

In this section, we first introduce a simplified model of IIoT control system. Second, we unveil
two kinds of command disaggregation attack modes, including wrong command allocation and false
command sequence, wherein we depict attack models.

3.1. System Model

Figure 1 shows the structure of a typical IIoT control system, which is composed of the central
controller, sub-controllers, actuators, and sensors. The central controller issues command sequences
based on the physical system state and sends these commands to the corresponding sub-controllers.
Sub-controllers are responsible for command disaggregation and feedback data transmission from
sensors to the central controller. There exist multi-tier sub-controllers. The sub-controller in the
upper level sends disaggregated commands to the sub-controllers in the lower tier. Sub-commands
are gradually disaggregated until the sub-controllers in the lowest level send sub-commands to the
actuators. Actuators execute sub-commands to implement the physical process and the physical system
state has a change. The current physical system state is evaluated based on values of sensors, and then
new commands are issued to further control the physical process. An example of the command
disaggregation is shown in Figure 1, where commands C(t) = {c1, ..., cn} are issued simultaneously
from the central controller at time t. After multi-tier sub-controllers disaggregate these commands,

Sensors 2017, 17, 2408 4 of 23

sub-commands AC(t) are executed by the actuators. ci denotes a kind of command and AC(t) denotes
the executed sub-commands, which are defined in subsequent description of the system model.

Controller

1th tier sub-controller 1th tier sub-controller

nth tier sub-controller nth tier sub-controller nth tier sub-controller nth tier sub-controller...

...

Actuator Actuator Actuator Actuator ... Actuator Actuator Actuator Actuator

Physical Process

Command

Collector

Commands at time t: C(t)= C1...CN

Executed Commands AC(t)

... n-2

tiers

Figure 1. The structure of IIoT control system.

The system model is described using six-tuple:

P = {C, Ts, S, AC, Re, Fs} (1)

where

• C = {c1, ..., cm} is a finite set of commands from the central controller. ck is the kth kind of
command. C(t) = {ci, ..., cj} indicates the commands issued by the central controller at time t.

• Ts = {ts1, ..., tsnd} is a finite set of time series. A time series is the measured values of one
sensor with the change of time. tsi = {tsi(1), ..., tsi(k)}T means the time series from the ith sensor.
tsi(l) denotes the measurement of the ith sensor at time instant l. nd means the number of sensors.

• S = {s1, ..., sn} is a finite set of physical system states. sj = {a1, ..., and}T denotes the jth kind of
state and ai ∈ R. Detectors and controllers can evaluate the system state at time k, S(k), based on
values of sensors, which can be computed by

S(k) = Cmatrix × Ts(k) (2)

where Cmatrix ∈ Rnd×nd is the constant matrix. S(k) ∈ S denotes the evaluated state at time k,
and under normal circumstances, S(k) = S(k). Ts(k) ={ts1(k), ..., tsnd(k)}T where tsi(k) denotes
the value of time series tsi at time instant k.

• AC = {AC11, ..., ACij, ..., ACmn} is a set of sub-commands executed by actuators.
ACij = {acij(1), ..., acij(N)}T indicates the executed sub-commands by actuators when command
from the central controller is ci and the system state is sj. Element acij(k) defines the sub-command
that will be executed by the kth actuator. N means the number of actuators. An actuator
only executes a sub-command in unit time, and a sub-controller only disaggregates one
command from the upper-tier sub-controller during once outflow of the central controller.
AC(t) = {aci1 j1(1), ..., aciN jN (N)}T denotes the executed sub-commands when the corresponding
commands C(t) are issued from the central controller. AC(i, t) is an element of AC(t) and denotes
the sub-command executed by the ith actuator. The system state at time t, S(t), is decided by
S(t− dt) and AC(t− dt) [14], which can be described as

S(t) = A× S(t− dt) + B× AC(t− dt) (3)

Sensors 2017, 17, 2408 5 of 23

where A ∈ Rnd×nd and B ∈ Rnd×N are constant matrices. dt indicates the time interval between
the time t when current commands are issued and the time of its last outflow.

• Re = {r1, ..., rm×n} is a finite set of relationships among commands and system states.
rd =< sj, ci, ACij > (rd ∈ Re) indicates that the executed sub-commands are ACij when the
system state is sj and the command from the controller is ci.

• Fs = { f s1, ..., f sy} is a subset of set S. A disruption occurs when the system state is f si.

The model is based on the assumption that the information and physical systems have not
yet been attacked, and all observed states and commands can be regarded as a representation of
normal system behavior. From the above process, we can know that the accurate feedback data
and commands are critical for the normal running of systems. When security mechanisms such as
authentication [30] and cryptography [31] are used to protect the data from sensors to controllers
and commands from the controller to the sub-controllers, false command injection and bad data
injection can be launched with less possibility. However, when attackers control the PLC’s firmware
below the control logic by compromising a device through the Joint Test Action Group interface [13],
these mechanisms may become ineffective. Besides that, adding authentication and cryptography
mechanisms may be unwelcome in many existing IIoTs because of a large amount of investment.
Moreover, security mechanisms may delay the response from the physical system, which can not be
accepted by some real-time systems. In follow-up studies, we assume that attackers can bypass these
mechanisms or focus on vulnerable systems without these security mechanisms.

We also use subCom(ci) to denote a set. Any element x ∈ subCom(ci) satisfies{
x ∈ AC

< ci, sj, x >∈ Re

where sj is any possible system state when command ci is issued.
To describe the attack models, we define two operations about sets, “−” and “+”. For any two

sets Q1 and Q2, Q1 + Q2 = {e|e ∈ Q1 ∪ e ∈ Q2} and Q1 −Q2 = {e|e ∈ Q1 ∩ e /∈ Q2}.

3.2. Two Kinds of Attack Modes and the Attack Models

In this section, we will disclose two kinds of attack modes and describe the corresponding attack
models in details. During the implementation of the attack models, attackers usually inject false data
into sensors or feed back false data to detectors to hide signs of attacks.

3.2.1. Wrong Command Allocation

When a command ci is disaggregated at system state sk, the sub-commands may be sent to false
actuators or changed to other sub-commands leading to a situation that sub-commands ACik are
changed to ACjl . There exist two situations about wrong command allocation mode, including wrong
command inner allocation and wrong command outer allocation. Wrong command inner allocation
occurs when an attacker changes the executed sub-commands ACik to the false sub-commands
ACjl ∈ subCom(ci). Wrong command outer allocation occurs when attackers change ACik to false
sub-commands ACjl /∈ subCom(ci). In Figure 2, an example is shown to explain the two situations.
c1, c2, c3, c4 are commands from the controller, and s1, s2 are physical system states. Commands at
different system states can turn on/off valves. When the current command is c1 and the system state is
s1, if attacks make Valve 2 turned on, this situation is called wrong command inner allocation. If attacks
turn Valves 3 or 4 off or on, this situation is called wrong command outer allocation.

Sensors 2017, 17, 2408 6 of 23

Valve 1
Valve 2 Valve 3 Valve 4

Actuator 1 Actuator 2 Actuator 3 Actuator 3

ON/OFF ON/OFF ON/OFF ON/OFF

c1 with s1 : turn on Valve 1

c1 with s2 : turn on Valve 2

c2 with s1 : turn on Valve 3

c2 with s2 : turn on Valve 4

c3 with s1 : turn off Valve 1

c3 with s2 : turn off Valve 2

c4 with s1 : turn off Valve 3

c4 with s2 : turn off Valve 4

Figure 2. An example: explaining different attack modes.

Next, we depict the attack models that implement the above two situations.

(1) Attack model based on wrong command inner allocation (WCIA)

ACjl ∈ subCom(ci) means j = i. To achieve this target, attackers can inject false data to interfere
with the state estimation. As shown in Figure 3a, WCIA is described as follows:

Controller

n-1th tier sub-controller

nth tier sub-controller nth tier sub-controller

...

Actuator-1 Actuator-2 Actuator-3 Actuator-4

Physical Process

Sensors

State Sk

State Sk

State Sl

Ci

ACil

(a) Attack model based on wrong command inner allocation.

Controller

n-1th tier sub-controller

nth tier sub-controller nth tier sub-controller

...

Actuator-1 Actuator-2 Actuator-3 Actuator-4

Physical Process

Sensors

State Sk

State Sk

State Sk

Ci

ACjl

State Sl

Inject commands Rear(Cj)

to replace Rear(Ci)

(b) Attack model based on wrong command outer allocation.

Figure 3. Attack models based on wrong command allocation mode.

Sensors 2017, 17, 2408 7 of 23

• Information collection

Attackers first find a set of issued commands C(t), command ci, state sk, and state sl satisfying
Equation (4). 

ci ∈ C(t),

< sk, ci, ACik >∈ Re,

< sl , ci, ACil >∈ Re,

sm = A× sk + B× (AC(t)− ACik + ACil),

sm ∈ Fs.

(4)

• False data injection

When attackers discover that the current state is sk and command ci will be disaggregated,
attackers inject bad feedback data into sub-controllers in charge of the disaggregation of ci and inform
them the current state is sl . Attackers need to control different levels of sub-controllers based on
different demands. If attackers inject false feedback data into the ith sub-controllers, they also need
to inject the same false feedback data to manipulate the corresponding (i + 1)th tier sub-controllers.
The disaggregation of commands is influenced and the executed sub-commands are changed from
ACik to ACil . A disruption occurs when ACil are executed because the system state becomes sm ∈ Fs.
To go undetected as described before, attackers again inject false feedback data after ACil was executed,
which needs to change the state from sm to si (si = A × sk + B × AC(t)). Unlike the former false
feedback data injection, this false state should be obtained by the central controller and sub-controllers,
which means that attackers should directly inject false data into sensors or feed back the false state to
all controllers.

(2) Attack model based on wrong command outer allocation (WCOA)

ACjl /∈ subCom(ci) means j 6= i. To achieve the target, attackers not only need to inject bad
feedback data, but also to modify the command, as shown in Figure 3b. WCOA is described as follows:

• Information collection

Attackers first find a set of issued commands C(t), commands ci and cj, state sk, and state sl
satisfying Equation (5). 

ci ∈ C(t),

< sk, ci, ACik >∈ Re,

< sl , cj, ACjl >∈ Re,

sm = A× sk + B× (AC(t)− ACik + ACjl),

sm ∈ Fs.

(5)

• Command modification

We use Rear(ci) to denote the disaggregated commands of ci by the middle-tiers sub-controllers.
Unlike the wrong command inner allocation, attackers first change the commands Rear(ci) to Rear(cj)

when ci has been disaggregated as Rear(ci), and then transfer them to the next-tier sub-controllers.

• False data injection

When disaggregated commands have been modified, attackers need to inject bad feedback data
to the next-tier sub-controllers. Bad data informs the next-tier sub-controllers that the current state

Sensors 2017, 17, 2408 8 of 23

is sl . The real situation is sk. If the commands received by the next-tier sub-controllers still require
disaggregation, attackers should inject false feedback data to its next-tier controllers. Thus, attackers
should try to control the nearest sub-controllers from the actuators to decrease the number of
compromised sub-controllers.

When the sub-commands ACjl were executed by actuators, attackers should also re-inject false
feedback data to confuse the controller. The state should be changed to si (si = A× sk + B× AC(t)).

3.2.2. False Command Sequence

Under normal situations, if ci is executed before cj is issued from the central controller,
then actuators should first execute sub-commands from the disaggregation of ci. Sub-commands
from the disaggregation of cj then are executed. From the controller’s point of view, < ci, cj > stands
as sequential commands, however, the actuators execute the sequence < cj, ci > when attacks based
on false command sequence occur. To achieve the target, attackers need to delay the disaggregation of
command ci, meanwhile, inform the controller that ci has been executed and command cj should be
issued from the controller. After cj is executed, ci is disaggregated. For example, in Figure 2, under the
normal situation, the controller first issues the command c1 at the system state s1, and then issues the
command c3. If c3 is disaggregated before c1 is disaggregated, the false command sequence occurs.

As shown in Figure 4, the attack model (FCS) is described as follows:

• Information collection

Attackers first find command sequence < C(t− dt), C(t) > satisfying Equation (6).

Controller

1th sub-controller

nth sub-controller nth sub-controller

...

Actuator-1 Actuator-2 Actuator-3 Actuator4

Physical Process

Sensors

Ci, Cj

ACjk, ACii

Attacker

1. Delay the disaggregation of Ci

2.Inject false data

State Sk, Sl, Si

State Sk, Sl, Si

State Sk, Sl, Si

Figure 4. Attack model based on false command sequence mode.



ci ∈ C(t− dt),

cj ∈ C(t).

< sk, ci, ACik >∈ Re,

< si, ci, ACii >∈ Re,

sl = A× sk + B× AC(t− dt),

si = A× sl + B× AC(t),

sh = A× sk + B× (AC(t− dt)− ACik),

sn = A× sh + B× AC(t),

sm = A× sn + B× (ACii),

sm ∈ Fs.

(6)

Sensors 2017, 17, 2408 9 of 23

• Time-delay attack

Attackers manipulate the sub-controllers to delay the disaggregation of ci. The disaggregation of
ci begins after the sub-commands from the disaggregation of cj are executed.

• False data injection

Commands C(t− dt) are issued at state sk. After sub-commands AC(t− dt)− ACik from the
disaggregation of commands C(t− dt)− ci are executed, the real physical system state is changed
from sk to sh. Because the current state is not sl , the controller does not issue the commands
C(t). Thus, attackers inject false data into sensors to induce false state estimation. The controller
issues the commands C(t) when it obtains the false state sl . After sub-commands AC(t) from the
disaggregation of C(t) are executed, the state becomes sn. To enable command ci to be disaggregated,
attackers again inject false data to tell the controller and sub-controllers that the current state is si.
When the sub-commands ACii is executed, the real state is changed from sn to sm and a fault will occur.
Attackers can enhance attack effect by avoiding anomaly discovery. To achieve this target, fault data
can be continuously injected into controllers and detectors to tell them that the current state is si.

4. Detection Framework Based on Correlations among Two-Tier Command Sequences

WCIA, WCOA, and FCS change executed commands during the process of disaggregation,
meanwhile, inject false data to confuse detectors. The existing detection methods in Section 2, such as
false data evaluation [14] and event correlation based method that collects commands from the central
controller [28], can not discover anomalies caused by these attacks. To fill the gap, we propose a
novel and effective detection framework to identify attacks based on WCIA, WCOA, and FCS. We first
describe the structure of the detection framework. Second, we examine how to mine correlations and
use these correlations to identify anomalies caused by command disaggregation attacks.

4.1. Detection Framework

The detection framework is in charge of collecting command sequences, mining correlations,
and identifying anomalies. As shown in Figure 5, the framework is comprised of command collector,
correlation analyzer, correlation database, and exception detector. The functions of the four components
are described below.

• Command Collector

Command collector is responsible for collecting commands from IIoTs. Command collector gets
commands from two sites, as shown in Figure 1, including commands from the central controller
and sub-commands from all actuator inputs. Every time a command collector receives a four-tuple
< C(k), k, AC(k), tAC(k) >, where tAC(k) = {tAC(k)(1), ..., tAC(k)(N)}, and tAC(k)(i) means the time
when sub-command AC(i, k) ∈ AC(k) is executed by the ith actuator. Data is then transferred to two
other components, namely, correlation analyzer and exception detector.

• Correlation Analyzer

Correlation analyzer tries to discover whether correlations exist among commands and
sub-commands. Correlation analyzer mines correlations by using the recently collected history data.
Once in a while the analyzer will update the correlations in correlation database. We will discuss
which correlations and how they are mined in the next subsection.

• Correlation Database

Correlation information is stored in the correlation database. Correlation information includes
discovered correlations and the time and number of occurrences of commands and sub-commands.
Correlation database provides the corresponding information when the correlation analyzer or
exception detector requires.

Sensors 2017, 17, 2408 10 of 23

• Exception Detector

Exception detector examines anomalies of the input four-tuple based on correlation information.
The exception detector directly utilizes correlations in database, instead of waiting for knowledge
from the correlation analyzer, to identify anomalies. Therefore, the time that the detector spends in
identifying anomalies is not related to correlation mining. The detector can provide the real-time result
when a 4-tuple is input.

Command

Collector

Correlation

Analyzer

Correlation

Database

Correlation knowledge

4-tuples

Exception

 Detector

C
o

rr
e

la
ti

o
n

k
n

o
w

le
d

g
e

U
p

d
a

te

C
o

rr
e

la
ti

o
n

4
-t

u
p

le
s

Input

Output

Figure 5. The structure of detection framework.

4.2. Correlation Mining and Exception Detection

We mainly mine two kinds of correlations including correlations between a command and
sub-commands, and correlations between executed sub-commands.

4.2.1. Correlation between a Command and Sub-Commands

If executed sub-command acij(k) can be obtained by the disaggregation of command cl , there exists
a correlation between command cl and sub-command acij(k), denoting as < 1, cl , acij(k) >. From an
input four-tuple, we can not easily judge which command is correlated with an executed sub-command
because multiple commands may be issued simultaneously from the central controller. We use greedy
rules to mine this kind of correlation by analyzing a large number of four-tuples. We first define
one parameter:

Latter support ratio Pacij(k)(cl , acij(k)): denotes the ratio of the number of occurrences that acij(k)
is executed when command cl is disaggregated, to the number of occurrences that command acij(k) is
executed. It can be computed as

N(cl , acij(k))
Nacij(k)

where N(cl , acij(k)) denotes the number of occurrences that cl is issued from the controller and
acij(k) is executed by the actuator in an effective time interval Tinterval . Nacij(k) means the number of
occurrences that sub-command acij(k) is executed by the kth actuator. The value of Tinterval depends
on the characters of physical system and transmission delay.

At the beginning of correlation mining, there exist many 4-tuples {< C(1), 1, AC(1), tAC(1) >

, ...,< C(k), k, AC(k), tAC(k) >, ...,< C(T), T, AC(T), tAC(T) >}. The latter support ratio between any
executed sub-command AC(k, l) = acij(l) and any command ci ∈ C is computed by analyzing these
4-tuples. For any sub-command acij(l), the process of mining which commands are correlated with the
sub-command can be divided into two phases including verified correlation selection and correlation
validation. The flowchart is shown in Figure 6 and the details are described as follows:

Sensors 2017, 17, 2408 11 of 23

Beginning

k>T
k=k+1

Ending

l>N

No

 l=1

Yes

Yes

sub=AC(k,l) Cd=C

l=l+1

ꓱ Sd(sub)

Sd(sub)=null

No

k=1

Cd!=null

Find cm with the largest Psub(cm, sub)

from set Cd

setSd=Sd(sub)

Yes

Yes

No

setSd!=null

Yes

 cn=cq

Cq satisfying :<1, cq, sub> is an

element of Sd(sub)

(7) is

satisfied

No

Delete <1, cn, sub> from setSd

Yes

No
Add <1, cm, sub> into Sd(sub)

Remove cm from Cd

Phase I

Phase II

Figure 6. The flowchart of correlation mining between a command and a sub-command.

Phase I: verified correlation selection. In this phase, the correlation analyzer only needs to find
a command cm satisfying

max
cm∈Cd

Pacij(l)(cm, acij(l))

where Cd is a set of commands and it is equal to C when correlation mining between sub-command
acij(l) and commands begins.

Phase II: correlation validation. In the second phase, the correlation analyzer judges whether
there exists a correlation between cm and acij(l).

We use Sd(acij(l)) to denote the set that comprises correlations related to acij(l) that have been
validated. If cm does not satisfy Equation (7), the correlation exists and we add the correlation
< 1, cm, acij(l) > into set Sd(acij(l)). If cm satisfies Equation (7), the correlation does not exist.
After that, cm is removed from set Cd.{

T(cm, acij(l)) & T(cn, acij(l)),

< 1, cn, acij(l) >∈ Sd(acij(l)).
(7)

where T(cm, acij(l)) is the set containing all time intervals from the time of issuing command cm to the
time of executing acij(l) in history data, for example, [k, tAC(k)(l)] is an element of T(cm, acij(l)).

The two phases are executed repetitively until set Cd is null.

Sensors 2017, 17, 2408 12 of 23

4.2.2. Correlation among Executed Sub-Commands

If Equation (8) is satisfied for executed sub-commands acmn(i) and acpq(j) that are correlated to
command cl , a correlation exists between acmn(i) and acpq(j), denoted as < 2, cl , acmn(i), acpq(j), θ∗ >.
θ∗ means θ(cl , acmn(i), acpq(j)). This kind of correlations denotes that there exists a linear relationship
between the number of occurrences of two sub-commands.

ψ(k) = [−y(k− 1), ...,−y(k− pn), x(k), ...x(k− pm)]
T ,

‖y(k)− ψ(k)Tθ(cl , acmn(i), acpq(j))‖ < ε,

θ(cl , acmn(i), acpq(j)) = [a1, ..., apn , b0, ...bpm]
T ,

(8)

where y(k) and x(k) indicate the number of occurrences that acmn(i) is executed by the ith actuator and
the number of occurrences that acpq(j) is executed by the jth actuator when command cl is issued at
its kth outflow. ε is the error threshold. pn, pm, and ε are input parameters and are obtained based on
characters of system and data analysis.

The flowchart of correlation mining among sub-commands is given in Figure 7. The key procedure
is to compute θ∗, which is elaborated as

Beginning

X x1,x2, ,xT

Y: y1,y2, ,yT

Compute ɵ*

K>T

K=max(Pm, Pn)+1

(8) is satisfied

No

Yes There exist a correlation

between acmn(i) and acpq(j)

There does not exist a

correlation

Yes

K=K+1

No

Ending

Figure 7. The flowchart of correlation mining between two sub-commands.

The correlation analyzer can obtain ON = {x(1), y(1), ..., x(N), y(N)} from the correlation
database. θ∗ is a constant vector and can be computed in Equation (9) by applying the least squares
method to minimize estimation error EN(θ, ON).

EN(θ
∗, ON) =

1
N

N

∑
t=1

(y(t)− ψ(t)Tθ∗),

θ∗ = [
N

∑
t=1

ψ(t)ψ(t)T]−1
N

∑
t=1

ψ(t)y(t).

(9)

After computing θ∗, we will validate whether (8) is satisfied for any k ∈ [max(pm, pn) + 1, N].
When (8) is satisfied for any k, the correlation exists. Otherwise, there does not exist a correlation
between acmn(i) and acpq(j). Correlations and history data should be updated due to the degradation
of system performance and changes in behaviors [15]. At the beginning of update, existing correlations
will be directly removed from the database and new correlations are computed based on the
mentioned process.

Sensors 2017, 17, 2408 13 of 23

Lastly, we introduce the detection process of the exception detector.
Exception detector identifies anomalies based on broken correlations. For a sub-command

acmn(h) ∈ AC(k) from the input four-tuple {C(k), k, AC(k), tAC(k)}, if we can not find a command
ci ∈ C(k) to ensure that correlation < 1, ci, acmn(h) > exists in the database, then an alarm will be
issued. For any correlation < 2, cl , acmn(i), acpq(j), θ∗ >, if ci = cl (ci ∈ C(k)), the exception detector
will verify whether the correlation is broken under the new command ci and sub-command AC(k).
If an existing correlation is broken, an alarm is issued .

5. Case Study

In this section, we investigate two cases about tank system and energy trading system in the
smart grid to illustrate the impact of attacks and the effectiveness of our detection framework.

5.1. Scenarios

5.1.1. Scenario 1:3-Tank System

A tank system [16,32] with 100 sub-tank systems of the same liquid is utilized in this case.
Figure 8 demonstrates the structure of tank system. The factory produces liquid C by the neutralization
process of ingredient A and ingredient B. The ratio of ingredient A to ingredient B is 1. Error within
10% is allowed, and 1 mL A and 1 mL B can neutralize 2 mL liquid C. Ingredient A and ingredient
B flow out from their tanks by 3 mL/second. Liquid C flows out from its tank by 6 mL/second.
Every sub-system that can produce liquid C is composed of three tanks with ingredient A, three tanks
with ingredient B, and one tank used to neutralize liquid C, six pumps used to output ingredient A
or ingredient B, one valve used to output liquid C. When the central controller issues a command,
Group Operational Systems will issue the same command to its all next-tier sub-controller.

 A A A

Pump

 C

Valve

V11

Sub-Controller-11

P11

P12

P13

B B B

Pump

P21

P22

P23

Sub-Controller-21 Sub-Controller-22 Sub-Controller-23

A A A

Pump

 C

Valve

V21

Sub-Controller-12

p31

P32

P33

B B B

Pump

P41

P42

P43

Sub-Controller-24 Sub-Controller-25 Sub-Controller-26

......

......

......

Group Operational Systems

Central Controller

Tank11Tank12Tank13 Tank21 Tank22 Tank23

TankC1

Figure 8. The structure of a tank system.

We only describe a sub-system to illustrate the control process. Table 1 describes the 14 executed
sub-commands and 7 sensors. Sensors S11, S12, and S13 measure the amount of ingredient A in Tank11,
Tank12, and Tank13, respectively. Sensors S21, S22, and S23 measure the amount of ingredient B in
Tank21, Tank22, and Tank23, respectively. Sv1 measures the amount of liquid C in TankC1.

Sensors 2017, 17, 2408 14 of 23

Table 1. Description of data in the tank system.

Command/Time Series Description

P11o/P11f Switch on/off Pump P11
P12o/P12f Switch on/off Pump P12
P13o/P13f Switch on/off Pump P13
P21o/P21f Switch on/off Pump P21
P22o/P22f Switch on/off Pump P22
P23o/P23f Switch on/off Pump P23
V11o/V11c Open/Close Valve V11

T11 Measurements of Sensor S11
T12 Measurements of Sensor S12
T13 Measurements of Sensor S13
T21 Measurements of Sensor S21
T22 Measurements of Sensor S21
T23 Measurements of Sensor S23
Tv1 Measurements of Sensor Sv1

A plan of producing M× 3× 2× 100 mL liquid C within T = 3×M + 240 s is provided to the
central controller. The central controller will continuously issue commands including turning on the
pump that outputs ingredient A at time 0 s (pao), turning off the pump that outputs ingredient A at time M s
(pac), turning on the pump that outputs ingredient B at time M + 60 s (pbo), turning off the pump that outputs
ingredient B at time 2×M + 60 s (pbc), opening the valve that outputs liquid C at time 2×M + 180 s (pvo),
and closing the valve that outputs liquid C at time 3×M + 240 s (pvc). The process is executed repetitively
if users have a new order of goods. When the sub-controller will output M × 3 mL liquid A for a
sub-system, it will open the pump with the largest amount of ingredient A until the output is equal
to M× 3 mL. If the tank with the largest amount of ingredient A is insufficient, the sub-controller
will open other pumps to produce ingredient A. Thus, the sub-controller can simultaneously open
multiple pumps to output ingredient A. For example, when users will produce M× 3× 4× 100 mL
liquid C within 3×M + 240 s, the sub-system should open two pumps of outputting ingredient A.
If sub-controllers open multiple pumps and receive the command “turning off the pump”, they also
issue sub-commands to turn off multiple pumps. The corresponding ingredient will be supplied when
two or more tanks with ingredient A or ingredient B are empty. The initial volume of every tank with
ingredient A or ingredient B is 60× 6× 3 mL.

The above neutralization process depicted is simulated in Java, where the central controller,
actuators, and sub-controllers are designed as components by using Java Class. Every switch and
sensor are seen as attributes of related actuators. When some attributes occur a change, the central
controller issues new commands. Some executed sub-commands can cause the changes of the attributes.
Different components communicate with each other by function call with parameters. The parameters
include commands and feedback data. The central controller automatically keeps running and issues
commands based on the users’ input and the designed control process. During the operation of the
system, values of sensors, sub-commands, and commands are written into different files per unit
time. Moreover, every sub-controller component provides an interface for users. When users call the
interface and input parameters, sub-controllers have been compromised and commands and feedback
data can be modified.

5.1.2. Scenario 2: Energy Trading System in the Smart Grid

With the increasing proliferation of new energy, many users can become suppliers who sell energy
to other users called consumers. Every supplier has an energy storage system that stores extra energy.
When consumers need to buy energy, energy is routed to these consumers from suppliers based on
energy routing schemes.

Sensors 2017, 17, 2408 15 of 23

A simplified model of energy trading system in the smart grid [33,34] is shown in Figure 9,
where there are 3 suppliers and 3 consumers. The central controller receives sensory data from
consumers and suppliers and sends commands to control switches that are responsible for outputting
or inputting energy. Sensory data from the consumers describes how much energy has been input
and data from the suppliers depicts how much energy can be outputted. When a switch is turned
on, energy can be input or be outputted by 500 w/s. When the output of energy is larger than the
demands of consumers, extra energy will be wasted. When supplied energy can not satisfy demands
of consumers, some consumers have to turn off some appliances. If the amount of energy routed to a
consumer is larger than his demands, extra cost needs to be paid. The control process needs to try to
avoid the above three situations.

In the model, there are 12 sub-commands and 6 sensors, which are shown in Table 2. Sensors Ss1,
Ss2, and Ss3 measure the amount of energy that can be provided by suppliers s1, s2, and s3, respectively.
Sensors Sc1, Sc2, and Sc3 measure the amount of energy that has been bought by consumers c1, c2,
and c3, respectively.

s1

s2

s3

c1

c2

c3

Grid

S
u

b
-c

o
n

tr
o

ll
e

r
sc

-1
1

S
u

b
-co

n
tro

lle
r sc

-1
2

Central Controller

W1

W2

W3

Suppliers Consumers

W4

W5

W6

Figure 9. The model of energy trading system in the smart grid.

Table 2. Description of data in the energy trading system.

Command/Time Series Description

w1o/w1f Turn on/off switch w1
w2o/w2f Turn on/off switch w2
w3o/w3f Turn on/off switch w3
w4o/w4f Turn on/off switch w4
w5o/w5f Turn on/off switch w5
w6o/w6f Turn on/off switch w6

T11 Measurements of Sensor Ss1
T12 Measurements of Sensor Ss2
T13 Measurements of Sensor Ss3
T21 Measurements of Sensor Sc1
T22 Measurements of Sensor Sc1
T23 Measurements of Sensor Sc3

At the beginning of every circle, consumers sent their demands K× 500 w and suppliers send
the amount of their energy to the central controller. The central controller will continuously issue
commands including turning on the switch that outputs energy at time 0 s (Ooute), turning on the switch that
inputs energy at time 0 s (Opute), turning off the switch that outputs energy at time K s (Coute), turning off
the switch that inputs energy at time K + 10 s (Opute). When the suppliers will output K w energy, it will

Sensors 2017, 17, 2408 16 of 23

turn on the switch with the largest amount of energy until the output is equal to K w. If multiple users
request power, the sub-controller will turn on other switches to output energy. The initial volume of
every storage system is 60× 6× 500 w. Energy will be compensated when two or more suppliers can
not supply enough energy. The described model with the trading process is also simulated in Java and
the details of implementation are similar to scenario 1.

5.2. Attack Cases

In this subsection, we introduce six attack cases based on WCOA, WCIA and FCS. Under normal
circumstances of scenario 1, users randomly receive orders of goods including 60× 3× 2× 100 mL,
60× 3× 4× 100 mL, and 60× 3× 6× 100 mL. We show the normal measurements of sensors with the
change of time under random orders of goods in Figure 10. Figure 10a,b show the measurements of
sensors about ingredients A and B. Figure 10c shows the amount of liquid C. When the value in TankC1
reaches the highest point in a cycle, the ratio of ingredient A to ingredient B is 1. Hence, liquid C
can be obtained. Under normal circumstances of scenario 2, consumers randomly receive orders of
energy including 60× 500 w (one consumer) and 60× 2× 500 w (two consumers). We also show the
normal measurements of sensors with the change of time under random orders of energy in Figure 11.
Figure 11a–c show the amount of energy in storage systems of three suppliers. Figure 11d–f show the
amount of energy obtained by three consumers in every circle.

(a) Measurements of sensors with ingredient A (b) Measurements of sensors with ingredient B (c) Measurements of sensors with liquid C

Figure 10. Measurements from sensors under the normal situation of scenario 1.

0 100 200 300 400 500 600 700 800 900 1000
0

1

2
x 10

5

Time
(a) Measurements of sensor Ss1

S
to

re
d

en
er

gy
 (

w
)

0 100 200 300 400 500 600 700 800 900 1000
0

1

2
x 10

5

Time
(b) Measurements of sensor Ss2

S
to

re
d

en
er

gy
 (

w
)

0 100 200 300 400 500 600 700 800 900 1000
0

1

2
x 10

5

Time
(c) Measurements of sensor Ss3

S
to

re
d

en
er

gy
 (

w
)

0 100 200 300 400 500 600 700 800 900 1000
0

2

4
x 10

4

Time
(d) Measurements of sensor Sc1

O
bt

ai
ne

d
en

er
gy

 (
w

)

0 100 200 300 400 500 600 700 800 900 1000
0

2

4
x 10

4

Time
(e) Measurements of sensor Sc2

O
bt

ai
ne

d
en

er
gy

 (
w

)

0 100 200 300 400 500 600 700 800 900 1000
0

2

4
x 10

4

Time
(f) Measurements of sensor Sc3

O
bt

ai
ne

d
en

er
gy

 (
w

)

Figure 11. Measurements from sensors under the normal situation of scenario 2.

Six attack cases are described as follows:
Attack case 1 in scenario 1: When the controller issues command pao, malicious entities launch

attacks based on WCIA to turn on pump p13 by telling sub-controller sc-22 that Tank13 has the most
ingredient A.

Attack case 2 in scenario 1: At t = 960 s, the controller issues the command pao and malicious
entities launch attacks based on WCOA by manipulating the sub-controller sc-11 and modifying
state feedback to sc-22 and sc-23. Operation “turning on the pump p11” is replaced by the operation
“turning on the pump p21”.

Sensors 2017, 17, 2408 17 of 23

Attack case 3 in scenario 1: At t = 0 s, the controller issues command pao and attackers launch
attacks based on FCS. Malicious entities first manipulate sub-controller sc-22 not to disaggregate
command pao. Command pao is disaggregated after command pac is disaggregated at t = 60 s.

Attack case 4 in scenario 2: When the controller issues command Ooute, malicious entities
launch attacks based on WCIA to turn on w1 by telling sub-controller sc-11 that supplier s1 has the
most energy.

Attack case 5 in scenario 2: At t = 0 s, the controller issues the command Ooute and malicious
entities launch attacks based on WCOA by manipulating the sub-controller sc-11 and modifying state
feedback to sc-11. Operation “turning on the switch w1” is replaced by the operation “turning off the
switch w2”.

Attack case 6 in scenario 2: At t = 0 s, the controller issues command Ooute and attackers launch
attacks based on FCS. Malicious entities first manipulate sub-controller sc-11 not to disaggregate
command Ooute. Command Ooute is disaggregated after command Coute is disaggregated at t = 60 s.

During the above attack processes, attackers also modify data of sensors to confuse the central
controller and detectors, thereby resulting in sensory data same to those in Figures 10 and 11.

5.3. Attack Impact

5.3.1. Case 1

Figure 12 demonstrates the real measurements of sensors under attack case 1. Real measurements
refer to the real values of sensors, which may be different from received sensory data by the central
controller or state estimator. Compared with Figure 10, ingredient B normally flows into TankC1.
However, the change in the amount of ingredient A is abnormal since t = 480 s. From the beginning
of the second circle, Tank13 always outputs ingredient A until the tank is empty. Before Tank13 is
empty, the ratio of ingredient A to ingredient B in TankC1 is 1 and the factory can produce liquid
C. When Tank13 is empty, the sub-controller still turns on pump p13 and outputs ingredient A from
Tank13, which leads to a false ratio and fails to produce liquid C. Figure 12c demonstrates the above
process. The ratio is false and liquid C can not be obtained in the seventh circle.

(a) Measurements of sensors with ingredient A (b) Measurements of sensors with ingredient B (c) Measurements of sensors with liquid C

Figure 12. Measurements from sensors under attack case 1.

5.3.2. Case 2

Figure 13 describes the real measurements of sensors under attack case 2. Unlike in Figure 10,
ingredient A in Tank12 and Tank13 is normal. From t = 960 s, ingredient A should be outputted from
Tank11 and Tank13. However, ingredient A is only outputted from Tank13 in Figure 13a. In the third
circle (from t = 960 s to t = 1440 s), 180 mL ingredient A flows into Tank13. In Figure 13b, 540 mL
ingredient B flows into TankC1 from Tank21 from t = 960 s to t = 1440 s and 180 mL of ingredient B
flows into TankC1 from Tank23. The ratio of ingredient A to ingredient B is not 1 and liquid C can not
be produced. At the beginning of the fourth circle, the TankC1 is not empty, but users still obtain the
wrong product.

Sensors 2017, 17, 2408 18 of 23

(a) Measurements of sensors with ingredient A (b) Measurements of sensors with ingredient B (c) Measurements of sensors with liquid C

Figure 13. Measurements from sensors under attack case 2.

5.3.3. Case 3

Figure 14 describes the real values of sensors under attack case 3. The change in the amount of
ingredient B is normal in Figure 14b. Unlike in Figure 10a, Figure 14a shows that the change in the
amount of ingredient A in Tank13 is abnormal. When turning off pump p13 occurs before turning on
pump p13, the ingredient A will be outputted continuously from Tank13. At t = 480, users can not
obtain the liquid C because of false ratio. At the beginning of the second circle, the liquid in TankC1
still exists and liquid C is still not obtained. It also fails to obtain liquid C at the third circle, the fifth
circle and the sixth circle because the amount of ingredient A in Tank13 is zero.

(a) The measurements of sensors with ingredient A (b) The measurements of sensors with ingredient B (c) The measurements of sensors with liquid C

Figure 14. Measurements from sensors under attack case 3.

5.3.4. Case 4–Case 6

Figure 15 describes the sum of the amount of supplied energy or the sum of the amount of energy
obtained by consumers under attack cases 4–6. In Figure 15a, we show the sum of the amount of
energy obtained by consumers under attack case 4. Compared with the situation in Figure 11d–f,
we can find that at the 7th circle and the 8th circle, consumers can not buy energy. That is because
when the central controller turns on the switch w1 to output energy, energy in the storage system of
supplier s1 is zero because of attacks. In Figure 15b, we also show the sum of the amount of energy
obtained by consumers under attack case 5. Compared with the situation in Figure 11d–f, we can find
that in the first circle, consumer c1 can not buy energy. That is because when attacks occur, the switch
s1 is not turned on and energy can not be outputted. In Figure 15c, the sum of the amount of energy
supplied by supplier s1 is shown. We can clearly see that supplier s1 does not output energy at the
first circle, which enables consumers to turn off some appliances. Moreover, supplier 1 loses a large
amount of energy in the interval from time t = 60 to time t = 260.

Sensors 2017, 17, 2408 19 of 23

0 200 400 600 800 1000
0

1

2

3

4

5

6
x 10

4

Time
(a) Attack case 4

T
he

 s
um

 o
f t

he
 a

m
ou

nt
 o

f
 e

ne
rg

y
ob

ta
in

ed
 b

y
cu

st
om

er
s

0 200 400 600 800 1000
0

1

2

3

4

5

6
x 10

4

Time
(b) Attack case 5

T
he

 s
um

 o
f t

he
 a

m
ou

nt
 o

f
en

er
gy

 o
bt

ai
ne

d
by

 c
us

to
m

er
s

0 200 400 600 800 1000
0

0.5

1

1.5

2
x 10

5

Time
(c) Attack case 6

T
he

 s
um

 o
f t

he
 a

m
ou

nt
 o

f
en

er
gy

 s
up

pl
ie

d
by

 s
up

pl
ie

r s
1

Figure 15. Impact of attack case 4, attack case 5, and attack case 6.

The above six cases demonstrate that command disaggregation attacks can lead to disruptions of
physical process and create great impact.

5.4. Effectiveness of Our Detection Framework

We employed java to implement the detection framework described in Section 4, where every
component is described as a Java class and we use MySQL Database software as the correlation
database. Different components use functions to exchange information with the database. In each
component, we add functions to implement the corresponding operations. We analyze the data from
tank system in Figure 8 and energy trading system in Figure 9. The data is collected from the files that
are written by tank system and energy trading system. The information comprises sensory data from
sensors, commands from the central controller, and executed commands from the actuators. We set
Tinterval = 60 s. Data is collected from t = 0 s to t = 3× 106 s under random orders of goods and
energy purchase.

We check whether the proposed detection framework can effectively identify six attack cases.
Two kinds of correlations are obtained by analyzing data. In Table 3, the correlations between a
command and executed sub-commands are described. 14 correlations in scenario 1 and 12 correlations
in scenario 2 are discovered. To mine correlations between sub-commands, we set parameters pn = 0,
pm = 2, and ε = 1. We can obtain 24 correlations in scenario 1 and 12 correlations in scenario 2
as shown in Figure 16. Any link between two sub-commands can denote two existing correlations
between two sub-commands. For example, the correlations between two sub-commands, p11o and
p13o, are described as

F(pao, p11o, t) = 0.75F(pao, p13o, t)− 1 + 0.25F(pao, p13o, t− 1)

F(pao, p13o, t) = 0.65F(pao, p11o, t) + 1 + 0.35F(pao, p11o, t− 1)

where F(pao, p11o, t) denotes the number of occurrences that p11o is executed when pao is
disaggregated at its tth outflow, and F(pao, p13o, t) indicates the number of occurrences that p13o is
executed when pao is disaggregated at its tth outflow.

Table 3. Correlations between commands and executed sub-commands.

Command Correlation Scenario

pao < pao, p11o >, < pao, p12o >, < pao, p13o > 1
pbo < pbo, p21o >, < pbo, p22o >, < pbo, p23o > 1
pac < pac, p11c >, < pac, p12c >, < pac, p13c > 1
pbc < pbc, p21c >, < pbc, p22c >, < pbc, p23c > 1
pvo < pvo, v11o > 1
pvc < pvc, v11c > 1

Ooute < Ooute, w1o >, < Ooute, w2o >, < Ooute, w3o > 2
Opute < Opute, w4o >, < Opute, w5o >, < Opute, w6o > 2
Coute < Coute, w1 f >, < Coute, w2 f >, < Coute, w3 f > 2
Cpute < Cpute, w4 f >, < Cpute, w5 f >, < Cpute, w6 f > 2

Sensors 2017, 17, 2408 20 of 23

p11o

p12o
p13o

p21o

p22o
p23o

p11c

p12c
p13c

p21c

p22c
p23c

pao pbo

pac pbc

w1o

w2o
w3o

Ooute

w1f

w2f
w3f

Coute

Figure 16. Correlations between executed sub-commands. A link denotes two correlations between
two nodes.

Table 4 displays the results of detection based on two types of correlations under six attack cases.
Results show that when attackers launch a command disaggregation attack based on WCIA in scenario
1 at t = 480 s, the correlation between sub-commands will be broken and the alarms are instantly
shown. When an attack based on WCOA at t = 960 s is launched in scenario 1, there does not exist a
correlation between command pao and sub-command p22o in the database and defenders can achieve
the alarms instantly. When an attack based on FCS in scenario 1 occurs at t = 0 s, there does not exist a
correlation between command pac and sub-command p11o. An alarm is issued until the disaggregation
of the next command occurs at t = 60 s. When attackers launch a command disaggregation attack
based on WCIA in scenario 2 at t = 0 s, the correlation between sub-commands will be broken and
the alarms are instantly shown. When an attack based on WCOA at t = 0 s is launched in scenario 2,
there does not exist a correlation between command Ooute and sub-command w2 f in the database
and defenders can achieve the alarms instantly. When an attack based on FCS in scenario 2 occurs at
t = 0 s, there does not exist a correlation between command Coute and sub-command w1 f . An alarm
is issued until the disaggregation of the next command occurs at t = 60 s. These alarms can be obtained
when false sub-commands are executed, and occur before disruptions of physical process. During the
process, our detection framework does not issue false alarms, which demonstrates that our methods of
correlation mining are effective.

Table 4. Broken correlations under attacks.

Attack Case Alarm

1 < pao, p13o, p11o >, < pao, p13o, p12o >, < pao, p12o, p13o > at t = 480 s
2 < pao, p22o > at t = 960 s
3 < pac, p11o > at t = 60 s
4 < Ooute, w1o, w2o >, < Ooute, w1o, w3o >, < Ooute, w2o, w1o > at t = 0 s
5 < Ooute, w2 f > at t = 0 s
6 < Coute, w1o > at t = 60 s

We also implement two other detection methods in [14,35] to detect six attack cases. Because false
feedback data is injected into the state estimator, the detection method in [14] cannot identify six
attack cases. The detection method in [35] also does not show any exception under the six attack cases
because detectors use commands from the central controller.

To better illustrate the performance of the proposed detection framework, we randomly launch
attacks based on WCIA, WCOA, and FCA in scenario 1 and scenario 2. Every type of attack is
launched many times at the different time. We find that attacks based on FCA and WCOA can be
identified with 100% accuracy in two scenarios. Attacks based on WCIA in scenario 1 can be identified
with 95% accuracy because some elaborately constructed attacks enable the correlation between two

Sensors 2017, 17, 2408 21 of 23

sub-commands not to be broken. An example will be described in Section 6. 47.5 % attacks based on
WCIA in scenario 2 can be identified. It is lower than the accuracy in scenario 1 because there does not
exist a correlation among sub-commands w4o, w5o, w6o, w4 f , w5 f , and w6 f . When correlations can
not be mined among sub-commands, attacks based on WCIA may not be detected. For the detection of
the above attacks, the detection framework does not issue any false alarm.

The experiments demonstrate that the detection framework can effectively identify many
command disaggregation attacks, and can find anomalies before disruptions of physical process occur.

6. Discussion of Detection Framework Enhancement

This section discusses further improvement measures for the defects of our detection framework.
Difficulties of correlation mining. A large number of linear relationships exist among data of

complex IIoTs [36], however, the relationship between two sub-commands may be nonlinear, which can
increase the difficulty of identifying command disaggregation attacks. Thus, the detection framework
can utilize other methods, such as information theory [35] to identify nonlinear relationships, which can
be decided by defenders.

The futility of detecting elaborately constructed attack sequences. Experiments in Section 5
have shown the effectiveness of the detection framework. While the priest climbs a post, the devil
climbs ten. Hence, if attackers launch attacks based on WCIA without breaking correlations between
sub-commands, the proposed detection framework may not issue an alarm. For example, when the
system in Figure 8 attempts to output ingredient A by merely opening a pump, attackers can open two
pumps to output additional ingredient A, which can conduct false ratio of ingredient A to ingredient B.
When the normal sub-command sequence is {< p11o, t = 0 >,< p12o, t = 480 >,< p13o, t = 960 >}
and attackers continuously manipulate the sub-controllers to issue command sequence {< p11o, t = 0 >,
< p12o, t = 0 >,< p13o, t = 480 >,< p11o, t = 480 >,< p12o, t = 960 >,< p13o, t = 960 >},
correlations among sub-commands are not broken. To cope with the tricky attack, defenders can
improve the performance by mining correlations among more types of data, e.g., mining the linear
relationship between the number of opening pumps that output ingredient A and the number of
opening pumps that produce ingredient B. The numbers are equal in the normal situation, but the
relationship is broken under the above attacks and an alarm can be issued.

7. Conclusions

In this study, we focus on the command disaggregation attack and its detection method.
We describe three attack models to implement command disaggregation attacks in two kinds of
modes. The examples of the tank system and energy trading system demonstrate that command
disaggregation attacks in two modes can cause severe damage to physical process and an effective
detection method is necessary. We also provide a novel framework to detect command disaggregation
attacks. The framework utilizes the correlations between commands and sub-commands to identify
anomalies. The two cases demonstrate that our detection framework can identify undetected
command disaggregation attacks by the existing detection methods with high accuracy if there exist
corresponding correlations among commands and sub-commands. Besides that, our method can
identify anomalies before a fault occurs. In future, we will strengthen the detection framework to
detect command disaggregation attacks in more complex IIoTs.

Acknowledgments: The authors would like to thank support from the National Natural Science Foundation of
China under Grant No. 61572514 and Grant No. 61402527.

Author Contributions: Peng Xun and Pei-dong Zhu contributed to the overall study design and analysis,
and writing of the manuscript. Yi-fan Hu and Peng-shuai Cui simulated two cases and validated the effectiveness
of our methods. Yan Zhang contributed to the overall writing of the manuscript. All of the authors approved the
final version of the manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

Sensors 2017, 17, 2408 22 of 23

References

1. Fraga-Lamas, P.; Fernández-Caramés, T.M.; Castedo, L. Towards the Internet of Smart Trains: A Review on
Industrial IoT-Connected Railways. Sensors 2017, 17, 1457.

2. Min, B.; Varadharajan, V. Cascading Attacks Against Smart Grid Using Control Command Disaggregation
and Services. In Proceedings of the 31st Annual ACM Symposium on Applied Computing, Pisa, Italy,
4–8 April 2016; pp. 2142–2147.

3. Taft, J.D. Control Command Disaggregation and Distribution within A Utility Grid. U.S. Patent
20120310435, 2012.

4. Remmersmann, T.; Schade, U.; Schlick, C. Supervisory control of multi-robot systems by disaggregation and
scheduling of quasi-natural language commands. In Proceedings of the 2012 IEEE International Conference
on Systems, Man, and Cybernetics (SMC), Seoul, Korea, 14–17 October 2012; pp. 315–320.

5. Zhao, C.; Topcu, U.; Low, S.H. Optimal Load Control via Frequency Measurement and Neighborhood Area
Communication. IEEE Trans. Power Syst. 2013, 28, 3576–3587.

6. Hu, J.; Cao, J.; Guerrero, J.M.; Yong, T.; Yu, J. Improving Frequency Stability Based on Distributed Control of
Multiple Load Aggregators. IEEE Trans. Smart Grid 2017, 8, 1553–1567.

7. Sargolzaei, A.; Yen, K.; Abdelghani, M. Delayed inputs attack on load frequency control in smart grid.
In Proceedings of the Innovative Smart Grid Technologies Conference (ISGT), Washington, DC, USA,
19–22 February 2014; pp. 1–5.

8. Mitchell, R.; Chen, I.R. Modeling and Analysis of Attacks and Counter Defense Mechanisms for Cyber
Physical Systems. IEEE Trans. Reliab. 2016, 65, 350–358.

9. Amini, S.; Mohsenian-Rad, H.; Pasqualetti, F. Dynamic load altering attacks in smart grid. In Proceedings of
the 2015 IEEE Power Energy Society Innovative Smart Grid Technologies Conference (ISGT), Washington,
DC, USA, 18–20 February 2015; pp. 1–10.

10. Liu, Y.; Ning, P.; Reiter, M.K. False Data Injection Attacks Against State Estimation in Electric Power Grids.
In Proceedings of the 16th ACM Conference on Computer and Communications Security, Chicago, IL, USA,
9–13 November 2009; pp. 21–32.

11. Yi, P.; Zhu, T.; Zhang, Q.; Wu, Y.; Li, J. A denial of service attack in advanced metering infrastructure network.
In Proceedings of the 2014 IEEE International Conference on Communications (ICC), Sydney, Australia,
10–14 June 2014; pp. 1029–1034.

12. Asri, S.; Pranggono, B. Impact of Distributed Denial-of-Service Attack on Advanced Metering Infrastructure.
Wirel. Pers. Commun. 2015, 83, 2211–2223.

13. Gacia, L.A.; Brasser, F.; Cintuglu, M.H.; Sadeghi, A.R. Hey, My Malware Knows Physics Attacking PLCs with
Physical Model Aware Rootkit. In Proceedings of the Network & Distributed System Security Symposium,
San Diego, CA, USA, 26–28 February 2017; pp. 1–15.

14. Vu, Q.D.; Tan, R.; Yau, D.K.Y. On applying fault detectors against false data injection attacks in cyber-physical
control systems. In Proceedings of the IEEE INFOCOM 2016—The 35th Annual IEEE International
Conference on Computer Communications, San Francisco, CA, USA, 10–14 April 2016; pp. 1–9.

15. Vuong, T.P.; Loukas, G.; Gan, D.; Bezemskij, A. Decision tree-based detection of denial of service and
command injection attacks on robotic vehicles. In Proceedings of the 2015 IEEE International Workshop on
Information Forensics and Security (WIFS), Rome, Italy, 16–19 November 2015; pp. 1–6.

16. Li, W.; Xie, L.; Deng, Z.; Wang, Z. False sequential logic attack on SCADA system and its physical impact
analysis. Comput. Secur. 2016, 58, 149–159.

17. Quarta, D.; Pogliani, M.; Polino, M.; Maggi, F. An Experimental Security Analysis of an Industrial Robot
Controller. In Proceedings of the 2017 IEEE Symposium on Security and Privacy (SP), San Jose, CA, USA,
22–26 May 2017; pp. 268–286.

18. Tan, R.; Nguyen, H.H.; Foo, E.Y.S.; Dong, X. Optimal False Data Injection Attack against Automatic
Generation Control in Power Grids. In Proceedings of the 2016 ACM/IEEE 7th International Conference on
Cyber-Physical Systems (ICCPS), Vienna, Austria, 11–14 April 2016; pp. 1–10.

19. Li, B.; Lu, R.; Wang, W.; Choo, K.K.R. Distributed host-based collaborative detection for false data injection
attacks in smart grid cyber-physical system. J. Parallel Distrib. Comput. 2017, 103, 32–41.

Sensors 2017, 17, 2408 23 of 23

20. Wang, J.K.; Peng, C. Analysis of Time Delay Attacks Against Power Grid Stability. In Proceedings of the 2nd
Workshop on Cyber-Physical Security and Resilience in Smart Grids, Pittsburgh, PA, USA, 18–21 April 2017;
pp. 67–72.

21. Guo, Y.; Ten, C.W.; Hu, S.; Weaver, W.W. Modeling distributed denial of service attack in advanced metering
infrastructure. In Proceedings of the 2015 IEEE Power Energy Society Innovative Smart Grid Technologies
Conference (ISGT), Washington, DC, USA, 18–20 February 2015; pp. 1–5.

22. Hu, F.; Lu, Y.; Vasilakosb, A.V.; Hao, Q.; Ma, R.; Patila, Y.; Zhang, T.; Lua, J.; Lia, X.; Xiong, N.N. Robust cyber
physical systems: Concept, models, and implementation. Future Gener. Comput. Syst. 2016, 56, 449–475.

23. Cheng, W.; Zhang, K.; Chen, H.; Jiang, G. Ranking Causal Anomalies via Temporal and Dynamical
Analysis on Vanishing Correlations. In Proceedings of the 22nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 805–814.

24. Momtazpour, M.; Zhang, J.; Rahman, S.; Sharma, R.; Ramakrishnan, N. Analyzing Invariants in
Cyber-Physical Systems Using Latent Factor Regression. In Proceedings of the 21th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, Sydney, Australia, 10–13 August 2015;
pp. 2009–2018.

25. Luo, C.; Lou, J.G.; Lin, Q.; Fu, Q.; Ding, R. Correlating Events with Time Series for Incident Diagnosis.
In Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, New York, NY, USA, 24–27 August 2014; pp. 1583–1592.

26. Melnyk, I.; Banerjee, A.; Matthews, B.; Oza, N. Semi-Markov Switching Vector Autoregressive Model-Based
Anomaly Detection in Aviation Systems. In Proceedings of the 22nd ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 1065–1074.

27. Wang, J.; Tu, W.; Hui, L.C.K.; Yiu, S.M.; Wang, E.K. Detecting Time Synchronization Attacks in Cyber-Physical
Systems with Machine Learning Techniques. In Proceedings of the 2017 IEEE 37th International Conference
on Distributed Computing Systems (ICDCS), Atlanta, GA, USA, 5–8 June 2017; pp. 2246–2251.

28. Budalakoti, S.; Srivastava, A.N.; Otey, M.E. Anomaly Detection and Diagnosis Algorithms for Discrete
Symbol Sequences with Applications to Airline Safety. IEEE Trans. Syst. Man Cybern. Part C (Appl. Rev.)
2009, 39, 101–113.

29. Lim, H.K.; Kim, Y.; Kim, M.K. Failure Prediction Using Sequential Pattern Mining in the Wire Bonding
Process. IEEE Trans. Semicond. Manuf. 2017, 30, 285–292.

30. Ouaddah, A.; Elkalam, A.A.; Ouahman, A.A. FairAccess: A new Blockchain-based access control framework
for the Internet of Things. Secur. Commun. Netw. 2017, 9, 5943–5964.

31. Liu, B.; Yu, X.L.; Chen, S.; Xu, X.; Zhu, L. Blockchain Based Data Integrity Service Framework for IoT Data.
In Proceedings of the 2017 IEEE International Conference on Web Services (ICWS), Honolulu, HI, USA,
25–30 June 2017; pp. 468–475.

32. Renganathan, K.; Bhaskar, V. Observer based on-line fault diagnosis of continuous systems modeled as Petri
nets. ISA Trans. 2010, 49, 587–595.

33. Rahmani-andebili, M.; Shen, H. Cooperative distributed energy scheduling for smart homes applying
stochastic model predictive controla. In Proceedings of the 2017 IEEE International Conference on
Communications (ICC), Paris, France, 21–25 May 2017; pp. 1–6.

34. Zhou, Y.; Ci, S.; Li, H.; Yang, Y. A new framework for peer-to-peer energy sharing and coordination in
the energy internet. In Proceedings of the 2017 IEEE International Conference on Communications (ICC),
Paris, France, 21–25 May 2017; pp. 1–6.

35. Jiang, M.; Munawar, M.A.; Reidemeister, T.; Ward, P.A.S. Efficient Fault Detection and Diagnosis in
Complex Software Systems with Information-Theoretic Monitoring. IEEE Trans. Dependable Secur. Comput.
2011, 8, 510–522.

36. Sharma, A.B.; Chen, H.; Ding, M.; Yoshihira, K.; Jiang, G. Fault detection and localization in distributed
systems using invariant relationships. In Proceedings of the 2013 43rd Annual IEEE/IFIP International
Conference on Dependable Systems and Networks (DSN), Budapest, Hungary, 24–27 June 2013; pp. 1–8.

c© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work and Our Contribution
	Related Work
	Our Contribution

	Command Disaggregation Attack
	System Model
	Two Kinds of Attack Modes and the Attack Models
	Wrong Command Allocation
	False Command Sequence

	Detection Framework Based on Correlations among Two-Tier Command Sequences
	Detection Framework
	Correlation Mining and Exception Detection
	Correlation between a Command and Sub-Commands
	Correlation among Executed Sub-Commands

	Case Study
	Scenarios
	Scenario 1:3-Tank System
	Scenario 2: Energy Trading System in the Smart Grid

	Attack Cases
	Attack Impact
	Case 1
	Case 2
	Case 3
	Case 4–Case 6

	Effectiveness of Our Detection Framework

	Discussion of Detection Framework Enhancement
	Conclusions

