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Abstract: Dynamic accurate heart-rate (HR) estimation using a photoplethysmogram (PPG) during
intense physical activities is always challenging due to corruption by motion artifacts (MAs).
It is difficult to reconstruct a clean signal and extract HR from contaminated PPG. This paper
proposes a robust HR-estimation algorithm framework that uses one-channel PPG and tri-axis
acceleration data to reconstruct the PPG and calculate the HR based on features of the PPG and
spectral analysis. Firstly, the signal is judged by the presence of MAs. Then, the spectral peaks
corresponding to acceleration data are filtered from the periodogram of the PPG when MAs exist.
Different signal-processing methods are applied based on the amount of remaining PPG spectral
peaks. The main MA-removal algorithm (NFEEMD) includes the repeated single-notch filter and
ensemble empirical mode decomposition. Finally, HR calibration is designed to ensure the accuracy
of HR tracking. The NFEEMD algorithm was performed on the 23 datasets from the 2015 IEEE
Signal Processing Cup Database. The average estimation errors were 1.12 BPM (12 training datasets),
2.63 BPM (10 testing datasets) and 1.87 BPM (all 23 datasets), respectively. The Pearson correlation
was 0.992. The experiment results illustrate that the proposed algorithm is not only suitable for HR
estimation during continuous activities, like slow running (13 training datasets), but also for intense
physical activities with acceleration, like arm exercise (10 testing datasets).

Keywords: photoplethysmography; motion artifacts; heart rate estimation; intense physical activities;
the single notch filter; EEMD

1. Introduction

Photoplethysmography (PPG) is a kind of popular optical measurement technique that can be
used to detect blood volume changes in the micro-vascular bed of tissue [1]. Because of its simplicity
and low-cost advantages, PPG has become the new technique for wearable measurement instead of
the conventional electrocardiography (ECG) technique. The pulsatile “AC” physiological waveform
can be obtained due to cardiac synchronous changes in blood volume with the heartbeat. Due to this
property, PPG can be a source of real-time heart rate (HR) information calculation [2]. Ear, finger and
wrist are all optional PPG measurement sites. However, in measurement sites, noise interference
produced by motion artifacts (MAs) and cardiac arrhythmia is inevitable. Due to human movement,
relative motion may occur between the sensor and skin so that the principle component of true HR
information is weakened. The quality of the PPG sensor signal is especially susceptible to motion
artifacts. In other words, the accuracy of heart rate estimation depends on the quality of the PPG.
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Therefore, it is essential to minimize the influence of motion artifacts in order to improve the accuracy
of heart rate estimation.

Several methods are usually used to recover or reconstruct a clean PPG signal from a corrupted
one before HR is extracted. Generally speaking, there are five kinds of these MA-removal algorithms:
classical digital filters [3]; adaptive filters [4]; time-frequency analysis (wavelet decomposition [5],
singular value decomposition [6], and empirical mode decomposition [7]); spectrum analysis;
and bland signal processing [8].

Those algorithms mentioned above can be applied to the signals which are corrupted slightly
when motion artifacts are not strong. However, these techniques cannot figure out the precise heart
rate estimation when intense physical exercise such as boxing occurs. So, people would always prefer
to use complex algorithms when extracting HR from the corrupted PPG signals, rather than a single
technique. When the motion artifacts are strong, heart-rate information can be mostly masked by the
noise component. Thus, the removal of MAs in intense exercise from the PPG is always challenging.
Fukushima et al. [9] and Zhang et al. [10] argue that acceleration data are also helpful for removing
MAs. In this paper, tri-axis acceleration data play an important role in MA removal.

Recently, some study groups have concentrated on the solution of strong MA removal and have
made progress. Therefore, many state-of-the-art algorithms are proposed. Zhang et al. [11] put forward
the TROIKA framework which consists of three key parts, namely signal decomposition, sparse signal
reconstruction, and spectral peak tracking. In this framework, signal decomposition using singular
spectrum analysis is applied to cancel partial MAs. Sparse PPG signal reconstruction puts the sparse
signal into a high-solution spectrum so that the true peak corresponding to the heart rate is found.
Then, Zhang et al. proposed an improved algorithm JOSS [10] with the help of acceleration data.
The spectra of PPG signals and simultaneous acceleration signals are jointly estimated using the
multiple measurement vector (MMV) model in sparse signal recovery. This algorithm shows the effect
of acceleration data on the accuracy of heart-rate estimation from the PPG. However, on the one hand,
the sparse signal reconstruction entails high computational complexity and will take a long time in
practical use. On the other hand, all sliding windows in the two methods mentioned above must
experience every step, which can result in a complex algorithm and a high computational cost. In order
to save computational cost, for windows that indicate MAs are not too significant an influence upon
finding the true peak of the HR with acceleration data, there is no need to go through every step.

The SpaMA algorithm [12] proposed by Salehizadeh et al. combines the PPG signal and
acceleration data. Its key idea is to calculate the power spectral density of both PPG and acceleration
data, and the related frequency peaks resulting from MAs can be distinguished from the PPG spectrum.
This method performs better in the first 12 datasets, but the off-track error is large in other datasets
that have stronger MAs during intense arm movements. Another algorithm named CNAFSD [13]
proposed a hybrid-motion artifacts-removal method, which combines non-linear adaptive filtering
and signal decomposition (singular spectrum analysis). Sun et al. proposed SPECTRAP [14] using a
new spectrum-subtraction algorithm. Another algorithm, WFPV [15], uses a Wiener filter to suppress
MAs and a phase vocoder to improve the HR estimate. The algorithms mentioned above apply every
step for all sliding windows so that the calculation and run time are relatively large. Therefore, it is
essential to make multilevel decisions according to the different features of the PPG.

In this paper, a new approach combining the single notch filter and improved EEMD (NFEEMD)
is proposed to estimate HR, during intense exercise, from the PPG. Acceleration data are adopted to
detect if MAs exist and provide several reliable spectral peaks corresponding to MAs. The proposed
algorithm framework determines the different signal-processing methods for different PPG signals
by designing multiple decisions. Two binary decisions related to acceleration data and two ternary
decisions related to the number of spectral peaks are applied to the NFEEMD algorithm. Our proposed
algorithm is different from the previous one, which uses sequential execution for every sliding
window. This approach consists of three stages (Figure 1). Stage 1 aims to find out whether the
original PPG signal is seriously corrupted by MAs and then chooses one way to estimate the HR by a
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precise binary-decision algorithm. When there are no significant MAs, HR can be obtained from the
pre-processed signal spectrum peaks. When there are significant MAs, then stage 2 appears to work.
Stage 2 removes the corresponding MA spectrum peaks from pre-processed signal spectrum peaks
and then goes through the next step combined with the single notch filter and the improved EEMD by
a ternary-decision algorithm. Every step has one kind of HR tracking method. With the purpose of
avoiding spectrum peak loss to keep tracking valid, stage 3 will calibrate the value of HR.
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The main contribution of this algorithm has two aspects: (1) The different signal processing
methods with high estimation accuracy are proposed according to different PPG features instead of
using the sequential execution mode for every sliding window. (2) The running time in real-time HR
estimation is greatly reduced, due to reduced computational complexity.

This paper is organized as follows: Section 2 discusses various conditions where there is very
strong MAs so that HR estimation is difficult. Section 3 introduces the proposed algorithm framework
to deal with the problem mentioned above. Section 4 illustrates the experimental results using
23 datasets and compares these with other framework algorithms in this field, with corresponding
discussions. Moreover, all datasets used in this paper will be available at Zhilin Zhang’s homepage:
https://sites.google.com/site/researchbyzhang/ and the related paper is [11].

2. Materials and Methods

In this section, the complete NFEEMD algorithm framework will be mentioned and the
corresponding details of the proposed algorithm will be given. The overall flowchart of NFEEMD
could be shown in Figure 1.

The framework of HR estimation during intense physical exercise is presented in Figure 1, then the
signal-processing method in every case will be illustrated. For this algorithm, one-channel raw PPG
and tri-axis acceleration data are needed. This framework includes two binary decisions and two
ternary decisions.

Initialization: In the initialization stage, the system can enter into a stable heart-rate tracking state
if HR can be estimated by choosing only one spectrum peak from the raw PPG periodogram. Before the
stable heart-rate tracking state, the estimated HR values can be discarded, since the contaminated PPG
with many spectral peaks may provide wrong prior HR information initially. It is known that the HR
value cannot change rapidly in a short time [16], therefore correct prior HR information is essential to
maintain continuous HR tracking. Once stable tracking starts, the first HR value is obtained. Then the
main algorithm uses the previous HR estimation bpm_prev as its base. It should be noted that we
identify the spectral peaks if they are larger than 30% of the maximum amplitude in the periodogram.

Pre-processing: It is necessary for raw PPG to be pre-processed in order to highlight the HR
information. The repeated moving average filter [3] is applied to obtain the signal component of
0.5–3 Hz. The pre-processing signal is used in two cases: (1) in the HR tracking when there are no MAs;
(2) in the first ternary decision for finding the number of PPG spectral peaks when there are MAs.

Binary Decision 1: This step aims to determine if there are MAs through the amplitude of the
acceleration periodogram. MAs exist when the spectral amplitude of every axis acceleration data
is greater than 0.1 (power spectral density). Of course, there are other algorithms for determining
the existence of MAs, such as the correlation coefficient (CC) [17]. Through the comparison of three
methods, the resulting judgement can be described in Figure 2.
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It is known that there must be motion artifacts in the running state. Moreover, PPG and MAs may
overlap when MAs are very strong. From Figure 2, it is obvious that our method is more suitable for
the experiment than the CC algorithm.

Case 1: When MAs do not exist, an HR-estimation process is proposed. bpm_track (the final
estimated HR value) depends on the highest spectral peak of pre-processed PPG. If |bpm_track −
bpm_prev| > th_pass (a constant threshold), bpm_track is equal to bpm_prev.

HR Calibration 1: According to the calculation rules above, an HR-calibration mechanism is
designed in order to prevent the correct spectral peak being lost due to over-reliance on the past heart
rate values. If two consecutive heart-rate values are dependent on the past, the HR Calibration 1
algorithm will start when MAs do not exist. In this condition, bpm_track will be recalculated through
the original PPG signal. Meanwhile, if |bpm_track − bpm_prev| ≤ th_pass, the value of bpm_track will
be replaced by the bpm_prev’s.

Binary Decision 2: The purpose of this step is to determine whether the accelerometer signal
is reliable and whether the frequency component associated with motion artifacts can be accurately
provided during strenuous exercise. It is known that the spectrum of tri-axis acceleration data is too
messy to accurately extract the MA component by exploring the acceleration data. If the number of
spectral peaks in any axis accelerometer data exceeds th_acc_peaks (a constant), then we consider the
acceleration data of this window to be unreliable.

Case 2: At this time, bpm_track will be replaced by past HR value.
After Binary Decision 2, if the acceleration data is reliable, then we will remove the spectral peaks

(absolute value less than or equal to 8) associated with the tri-axis acceleration from the spectral peaks
of pre-processed PPG. The number of remaining spectral peak is then counted. Ternary Decision 1
divides the situation into three categories: the remaining zero (the peak corresponding to HR cannot
be detected), the remaining one, leaving more than one. For the second case, a Ternary Decision 2
was designed by counting the peak number with a difference of th_pass BPM compared to bpm_prev.
This ternary decision also divides the situation into three categories: the remaining zero, the remaining
one, leaving more than one. As shown in Figure 1, the same situation undergoes the same treatment.

Case 3: (the remaining zero): This is the main part of the algorithm used to remove motion
artifacts. The repeated single notch filter and improved EEMD algorithm are adopted herein.

(1) Single notch filter

A second-order IIR filter is used to implement the single notch filter here, whose amplitude
response is zero at a certain frequency. It is usually used to eliminate a particular frequency component,
such as the removal of 50 Hz power-line interference. In this paper, the single notch filter is applied to
the motion artifacts’ removal from the PPG signal spectrum peaks based on the tri-axis acceleration
signal spectrum peaks. The system function of the single notch filter is defined in Equation (1)
as follows:

H(z) =
1− (2 cos w0)z−1 + z−2

1− (2 cos w0)rz−1 + r2z−2 (1)

where w0 = 2π f0/ fs is the notch digital frequency (rad); f0 is notch frequency (Hz); fs is sampling
frequency; and r is a constant (r = 0.96). The single notch filter can be applied when the MAs
of the original signal exist after the binary decision. According to the tri-axis acceleration data,
several frequencies corresponding to MAs are identified through the periodogram. Then, the related
frequencies in the original PPG signal are removed, and the reconstructed, clean signal is obtained.

Figure 3 shows a flowchart depicting the removal of MAs to reconstruct the PPG signal for accurate
HR evaluation. It should be noted that |bpm_track_NF − bpm_prev| > th_NF_1 (a constant threshold)
and |bpm_track_EEMD − bpm_prev| > th_EEMD_1 after the Ternary Decision 1, |bpm_track_NF
− bpm_prev| > th_NF_2 (a constant threshold) and |bpm_track_EEMD − bpm_prev| > th_EEMD_2
after the Ternary Decision 2. th_NF and th_EEMD are the empirical values obtained from the first
12 experiments.
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It should be noted that the usage number of the repeated single notch filter is different in a
different signal window. On the one hand, this number depends on all spectral peaks detected in
the tri-axis acceleration signal spectrum. If there is a repeated value, it is recorded as one. On the
other hand, if the number does not exceed three, then this number is the times the single notch filter is
applied, and the frequencies of the notch are the detected peaks. If the number exceeds three, then a
spectral peak value is found from the spectrum of each axis acceleration data; that is, the number of
times the single notch filter is used is up to three. The purpose of limiting the number of application
times is to retain the component corresponding to heart rate of the original signal as much as possible.
Figure 4 shows an example of case 3.

From Figure 4, it is known that the final heart rate estimation after the NFEEMD algorithm is
164.8 BPM. The true HR value by ECG is 163.2 BPM. The absolute error is 1.6 BPM. In fact, we can find
the only spectral peak, 172.1 BPM, in the periodogram of the original PPG signal. However, this value
is quite different from the true HR. It is the effect of strong motion artifacts that results in a large error in
HR estimation. It is worth noting that MAs are superimposed on the PPG signal closely in this example,
so that the true HR information is covered by MAs. Although MAs conceal the true HR information,
the tri-axis motion acceleration data accurately reflects the frequency components of motion artifacts.
After removing the MAs by the single notch filter, the estimated HR value calculated from the final
reconstructed signal is 164.8 BPM, which is very close to the true heart rate value. It is shown that
using the periodogram directly may lead to a large error and lost HR tracking. This example also
demonstrates that the repeated use of the single notch filter can accurately remove the MA components
without affecting the nearby real HR components, and the HR-value resolution is high.
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Figure 4. An example of HR estimation using the single notch filter on dataset 12. (a) Original
acceleration data; (b) the periodogram of acceleration data; (c) the original PPG signal; (d) the
periodogram of the PPG; (e) the reconstructed signal after the first single notch filter at 1.43 Hz
(86.06 BPM); (f) the periodogram of the output signal 1 by filtering; (g) the final reconstructed signal
after the second single notch filter at 2.87 Hz (172.1 BPM); (h) the periodogram of the output signal 2
by filtering.

(2) Improved Ensemble Empirical Mode Decomposition

Empirical mode decomposition (EMD) is a kind of non-linear and non-stationary signal
decomposition algorithm proposed by Professor Huang, which aims to decompose any complicated
time-series signal into a number of “intrinsic mode functions” [18]. However, its drawbacks are
obvious. End effect and mode mixing are the primary factors that can limit the development of EMD.
On the basis of EMD, Wu et al. proposed a noise-assisted data analysis method, Ensemble Empirical
Mode Decomposition (EEMD) [19]. In this algorithm, mirror continuation is used to remove end effect,
and its key idea is that the mode-mixing phenomenon can be weakened by adding white Gaussian
noise. Zhang et al. [17] and Khan et al. [20] have proven that EMD or the EEMD algorithm performance
well in the analysis of biomedical signals.

In the EMD approach, the given original signal x(n) is decomposed into the IMF components
and a residue. Each IMF component should satisfy two conditions: (1) the number of extrema and
the number of zero-crossings must either be the same or differ at most by 1; and (2) the mean value
of the upper envelope and lower envelope must be zero at any positions in the signal. EMD uses a
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“sifting process” to obtain the local zero-mean until an IMF and residue are found. The “sifting process”
includes several steps as described follows: (1) identifying all extremes of x(n); (2) interpolating the
upper envelope of maxima and the lower envelop of minima; (3) computing the mean of upper and
lower envelope m(n); (4) extracting the detail c(n) = x(n)−m(n) and the residual; (5) iterating on the
residual until c(n) satisfies the IMF conditions and then c(n) will be an IMF component; (6) repeating
on the residual using sifting process (1)–(5) until the residual component is a monotonic function.
The final decomposition result is described as follows:

x(n) =
N

∑
j=1

cj(n) + r(n) (2)

The updated EEMD algorithm adds an ensemble of Ne signals into the given signal x(n) by
adding white Gaussian noise wp(n)(p = 1, 2 . . . Ne) which has the same variance. The equation can be
described as follows:

x̃(n) = x(n) + wp(n), p = 1, 2 . . . Ne (3)

Then, the EMD algorithm is applied to each of the new signals with noise, and the decomposition
results can be described as follows:

x̃(n) =
N

∑
j=1

cpj(n) + rp(n), p = 1, 2 . . . Ne (4)

Then, the optimum choice of IMFs is obtained by computing the average of an ensemble of Ne

signals of the EMD algorithm:

cj =
1

Ne

Ne

∑
p=1

cpj(n), j = 1, 2 . . . Ne (5)

The basic principle of EEMD based on noise-assisted analysis is that the time-frequency space is
composed of different scale components divided by the filter group when the additional white noise is
evenly distributed over the entire time-frequency space. Of course, EEMD cannot eliminate the effect
of mode mixing completely due to the additional noise, especially when the parameter Ne is small.

To make the reconstructed signal derived from EEMD cleaner, singular spectrum analysis
(SSA) [11] is combined with EEMD to extract the usable reconstructed signal. SSA generates a
trajectory matrix from the original signal by a sliding window of length L. The trajectory matrix is
approximated using singular value decomposition (SVD). The last step is to reconstruct the series.

In this paper, SSA is applied to each IMF component after EEMD, and then the signal is
reconstructed by only the first eigenvalue which corresponds to the most principal component over
the whole signal. Finally, the only IMF whose frequency is closest to the previous heart rate frequency
is chosen as the reconstructed signal.

Selecting which IMF belongs to the constructed signal is crucial. In this paper, the cycle of each
IMF is first estimated. Then the IMF signal whose cycle is closest to the bpm_prev is chosen as the
constructed signal.

In the example above, although the PPG signal is contaminated by MAs, the HR information is
still obtained by the single notch filter. However, it is almost impossible to extract the HR information
by the single notch filter when the PPG coincides with the motion artifacts (the spectral peak of the
PPG is completely overlapped by the MA component.) (Figure 5e,f). So EEMD is another proposed
method in this case.

Figure 5 gives an example of HR estimation using EEMD instead of using the single notch filter.
The final HR estimation value is 153.8 BPM, showing that EEMD is an effective method. It should
be noted that the signal which has high signal quality in Figure 5g is the reconstructed one after the
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EEMD algorithm. From Figure 5, compared to the bpm_prev, the estimated HR by EEMD is closer to
the true value, which shows the effectiveness of EEMD. On the other hand, there is a high-frequency
resolution of estimation using EEMD, for example, Figure 6. The final estimated HR is 159.3 BPM,
which is different from the spectral peak of the original PPG, 161.1 BPM.
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Figure 5. An example of HR estimation using EEMD on dataset 12. (a) Acceleration data; (b) the
periodogram of acceleration data; (c) the original PPG signal; (d) the periodogram of PPG; (e) the output
signal after two single notch filters at 1.28 Hz (76.9 BPM) and 2.56 Hz (153.8 BPM); (f) the periodogram
of the output by filtering; (g) the reconstructed signal (IMF2) after EEMD (bpm_prev = 155.6 BPM);
(h) the periodogram of the reconstructed signal.

Case 4: (the remaining one): The reason why this situation is carried out alone is that in this
case the remaining frequency component is the most reliable. Therefore, if the absolute value of the
heart-rate value corresponding to the remaining one and bpm_prev is less than th_pass, this value
is considered acceptable. In other words, bpm_track = bpm_prev. According to experience, it is not
necessary to use the above complex algorithm due to the low probability of it not being accepted in
this case.

Case 5: (leaving more than one): In this circumstance, the heart rate (bpm_track) closest to the
absolute value of the past is found. If |bpm_track − bpm_prev| < th_pass, then the value is accepted.
Or bpm_track = bpm_prev.

HR Calibration 2: This is similar to the HR Calibration 1 mechanism. In fact, there is often a lack
of tracking as the heart rate continues to rise. Therefore, HR calibration is employed mainly to solve
this problem. On the one hand, the heart-rate value prediction of the current window is obtained
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through gray system prediction (GM (1, 1)) of the first 30 values when MAs exist. If the absolute value
of the predicted value and the past value is greater than 12, then the next condition will be checked.

On the other hand, three consecutive heart-rate values are dependent on the past. As long
as these two conditions occur, the HR Calibration 1 algorithm will start when MAs exist to avoid
losing track of spectral peaks. Then, a new bpm_track is calculated by the repeated single notch filter.
If |bpm_track − bpm_prev| < 40, it is considered that bpm_track can be accepted. In order to better verify
the effectiveness of the HR Calibration 2 model, we have done a set of comparative experiments to
perform our algorithm in conditions using both HR Calibration 2 and not using it. Figure 7 illustrates
the corresponding result, which shows that the HR-tracking trajectory (the blue curve) deviates from
normal orbit when there is no calibration model. In contrast, the estimated HR (the black curve) can
reflect the correct heart beat changes.
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Figure 6. An example of HR estimation using EEMD on dataset 4. (a) Acceleration data; (b) the
periodogram of acceleration data; (c) the original PPG signal; (d) the periodogram of the PPG;
(e) the output signal after two single notch filters at 1.34 Hz (80.57 BPM) and 2.69 Hz (161.1 BPM);
(f) the periodogram of the output signal by filtering; (g) the reconstructed signal (IMF4) after EEMD
(bpm_prev = 159.3 BPM); (h) the periodogram of the reconstructed signal.
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Figure 7. The algorithm performance with HR Calibration 2 and without HR Calibration 2 compared
to the true HR by ECG.

Additionally, the final output HR value of the current window is the average value of the previous
windows by the cyclic moving average filter [16]. By virtue of the moving average filter with different
windows, the final output result will be smooth.

3. Results

3.1. Database Introduction

To promote the development of HR estimation using PPG signals corrupted by intense motion
artifacts, the IEEE Signal Processing Society has already organized an algorithm contest (IEEE Signal
Processing Cup). Their datasets in the contest are also used in [10–15,17,21] and our NFEEMD
algorithm also applies the same datasets. There are 23 datasets in total. It should be noted that the first
12 datasets are considered as the training data, and the last 11 datasets are considered as the test data
in the following experiments.

Each of the first 12 training datasets (running on the treadmill) records two-channel PPG signals,
three-axis acceleration signals, and one-channel ECG signals from subjects aged from 18 to 35. The last
11 test datasets (including wrist-intense exercise) record subjects aged from 19 to 58. For each subject,
the PPG signals were recorded from the wrist by two pulse oximeters with green LEDs (wavelength:
515 nm). Their distance (from center to center) was 2 cm. The acceleration signal was also recorded
from the wrist by a three-axis accelerometer. Both the pulse oximeter and the accelerometer were
embedded in a wristband, which was comfortably worn. The ECG signal was recorded simultaneously
from the chest using wet ECG sensors. All signals were sampled at 125 Hz and sent to a nearby
computer via Bluetooth. Three types of activities were used in the experiments. T0 requires each
subject to run on a treadmill with changing speeds. For datasets with names containing ‘TYPE01’,
the running speeds changed as follows:

rest (30 s)→8 km/h (1 min)→15 km/h (1 min)→8 km/h (1 min)→15 km/h (1 min)→rest (30 s)

For datasets with names containing ‘TYPE02’, the running speeds changed as follows:

rest (30 s)→6 km/h (1 min)→12 km/h (1 min)→6 km/h (1 min)→12 km/h (1 min)→rest (30 s)

For the exercise type T1, the subject performed many actions including various forearm and upper
arm exercises (e.g., shake hands, stretch, push, and so on, which are common in arm rehabilitation
exercise), running, jumps, and push-ups. For the exercise type T2, the subject mainly performed intense
forearm and upper arm movements (e.g., boxing). In each of this kind of datasets, heart rate is estimated
in each time window of 8 s. Two successive time windows overlap by 6 s. Detailed experimental
conditions follow in Table 1.
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Table 1. 23 Datasets from IEEE Signal Processing.

ID Dataset Activity Type 1 Yrs Weight/Height Sex Body Status

1 DATA_01_TYPE01 T0 18–35 y None M Healthy
2–12 DATA_02_TYPE02–DATA_12_TYPE02 T0 18–35 y None M Healthy
13 DATA_S04_T01 T1 20 y 64 kg/162 cm M Healthy
14 TEST_S01_T01 T1 29 y 70 kg/169 cm M Healthy
15 TEST_S02_T01 T1 21 y 77 kg/188 cm M Healthy
16 TEST_S02_T02 T2 21 y 77 kg/188 cm M Healthy
17 TEST_S03_T02 T2 19 y 54 kg/174 cm M Healthy
18 TEST_S04_T02 T2 20 y 64 kg/162 cm M Healthy
19 TEST_S05_T02 T2 20 y 57 kg/174 cm M Healthy
20 TEST_S06_T01 T1 19 y 70 kg/180 cm M Healthy
21 TEST_S06_T02 T2 19 y 70 kg/180 cm M Healthy
22 TEST_S07_T02 T2 21 y 73 kg/180 cm M Healthy
23 TEST_S08_T01 T1 58 y 70 kg/156 cm F Unhealthy 2

Activity type 1: T0 including resting/walking/running on a treadmill; T1 including arm rehabilitation exercise;
T2 including intense arm movements (e.g., boxing); Unhealthy 2: Unhealthy means that the subject has abnormal
heart rhythm and blood pressure.

3.2. Performance Metrics

In this paper, the ground-truth HR from the simultaneous recorded ECG signal given by the
database in each time window is chosen for comparison with the algorithm results. To evaluate the
performance of the NFEEMD algorithm, two measurement indices which were also used in [10,11]
are computed.

• AAE (Average Absolute Error)

AAE =
1
N

N

∑
i=1
|BPMest(i)− BPMtrue(i)| (6)

where BPMest(i) denotes the ground-truth HR value in the i-th time window; and BPMtrue(i)
denotes the estimated HR using the NFEEMD algorithm.

• AEP (Absolute Error Percentage)

AEP =
1
N

N

∑
i=1

|BPMest(i)− BPMtrue(i)|
BPMtrue(i)

× 100% (7)

In addition, the Bland–Altman plot is given to show the agreement between the ground-truth HR
values and the estimated HR values. LOA (Limit of Agreement) is also calculated, which is defined
by [µ− 1.96σ,µ+ 1.96σ]. The last evaluation index is the Pearson correlation coefficient between the
ground-truth HR and estimation.

3.3. Parameter-Setting and Experimental Results

In the NFEEMD algorithm, we set the number of FFT points of the periodogram to 4096, and apply
a rectangle window. The sampling rate of PPG and ACC is 125 Hz. The ratio of the standard deviation
of the added noise in EEMD is 0.05, and Ne is 5. The window length of SSA is 150. th_acc_peaks
is 5. th_NF_1 is 15 and th_EEMD_1 is 15 after Ternary Decision 1. th_NF_2 is 10 and th_EEMD_2
is 10 after ternary decision 2. th_off (a constant threshold) is 30 in case 3. th_pass is 8 in this paper.
These thresholds are empirical values derived from the first 12 datasets.

In Table 2, the NFEEMD algorithm is compared with the other six recently-developed algorithms:
TROIKA [11], JOSS [10], SpaMA [12], CNAFSD [13], SPECTRAP [14], and WFPV [15], via the average
absolute error (AAE) and average absolute percentage (AEP).
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Table 2. AAE and AEP results on 23 datasets of compared to other algorithms.

ID Activity Type
TROIKA

[11] JOSS [10] SpaMA [12] CNAFSD
[13]

SPECTRAP
[14]

(Offline)
WFPV [15] [21] NFEEMD

(This Paper)

AAE AEP% AAE AEP% AAE AEP% AAE AEP% AAE AEP% AAE AEP% AAE AEP% AAE AEP%

1 2.29 2.18 1.33 1.19 1.23 1.14 1.66 1.42 1.18 1.04 1.25 1.15 1.72 1.50 1.43 1.19
2 2.19 2.37 1.75 1.66 1.59 1.30 1.56 1.44 2.42 2.33 1.41 1.30 1.33 1.30 1.15 1.03
3 2.00 1.50 1.47 1.27 0.57 0.45 0.65 0.53 0.86 0.66 0.71 0.59 0.90 0.75 0.75 0.59
4 2.15 2.00 1.48 1.41 0.44 0.31 1.48 1.51 1.38 1.31 0.97 0.88 1.28 1.20 1.24 1.12
5 2.01 1.22 0.69 0.51 0.47 0.31 0.77 0.60 0.92 0.74 0.75 0.57 0.93 0.69 0.91 0.68
6 T0 2.76 2.51 1.32 1.09 0.61 0.45 1.12 0.90 1.37 1.14 0.92 0.75 1.41 1.20 1.25 0.99
7 1.67 1.27 0.71 0.54 0.54 0.40 0.72 0.60 1.53 1.36 0.65 0.50 0.61 0.50 0.79 0.60
8 1.93 1.47 0.56 0.47 0.40 0.33 0.91 0.80 0.64 0.55 0.97 0.83 0.88 0.80 0.63 0.53
9 1.86 1.28 0.49 0.41 0.40 0.42 0.42 0.36 0.60 0.52 0.55 0.48 0.59 0.50 0.58 0.56

10 4.70 2.49 3.81 2.43 2.63 1.59 2.35 1.45 3.65 2.27 2.06 1.29 3.78 2.40 2.48 1.48
11 1.72 1.29 0.78 0.51 0.64 0.42 1.45 0.94 0.92 0.65 1.03 0.68 0.85 0.60 0.89 0.58
12 2.84 2.30 1.04 0.81 1.20 0.86 0.78 0.60 1.25 1.02 0.99 0.70 0.71 0.50 1.37 0.91
13 - - - - 3.41 4.25 - - - - 3.54 4.08 - - 3.20 3.59
14 T1 6.63 8.76 8.07 10.9 7.29 9.80 7.71 10.6 4.89 6.29 9.59 12.2 - - 8.64 11.3
15 1.94 2.56 1.61 2.01 2.73 2.21 1.62 2.02 1.58 1.98 2.57 3.16 - - 1.98 2.57
16 1.35 1.04 3.10 2.69 3.18 2.11 3.10 2.68 1.83 1.49 2.25 1.87 - - 1.47 1.14
17 T2 7.82 4.88 7.01 4.49 3.01 2.52 7.00 4.49 3.05 2.00 3.01 1.99 - - 1.95 1.10
18 2.46 2.00 2.99 2.52 4.46 3.23 2.99 2.52 1.62 1.36 2.73 2.29 - - 2.34 1.95
19 1.73 1.27 1.67 1.23 3.58 3.98 1.67 1.23 1.24 0.92 1.57 1.15 - - 1.47 1.08
20 T1 3.33 3.90 2.80 3.46 1.94 1.66 2.45 3.00 2.04 2.23 2.10 2.41 - - 3.22 3.66
21

T2
3.41 2.43 1.88 1.32 2.56 2.02 1.81 1.26 2.49 1.81 3.44 2.45 - - 3.54 2.49

22 2.69 2.12 0.92 0.74 3.12 3.28 0.92 0.74 1.16 0.92 1.61 1.26 - - 1.16 0.93
23 T1 0.51 0.59 0.49 0.57 1.72 1.97 0.49 0.57 0.66 0.79 0.75 0.88 - - 0.53 0.62

M
ean
±

SD

T0 AAE 2.34 + 0.83 1.28 + 0.90 0.89 + 0.60 1.16 + 0.55 1.50 + 0.86 1.02 + 0.41 1.25 + 0.87 1.12 + 0.51
1–12 AEP% 1.82 + 0.53 1.01 + 0.61 0.67 + 0.44 0.93 + 0.42 1.12 + 0.61 0.81 + 0.29 1.00 + 0.56 0.86 + 0.31

T1–T2 AAE - - 3.36 + 1.51 - - 3.01 + 2.34 - 2.68 + 2.19
13–23 AEP% - - 3.36 + 2.30 - - 3.07 + 3.17 - 2.76 + 3.01
Test AAE 3.19 + 2.32 3.05 + 2.52 3.53 + 1.48 2.98 + 2.45 2.13 + 2.77 2.96 + 246 - 2.63 + 2.30

14–23 AEP% 2.96 + 2.41 3.00 + 3.04 3.28 + 2.40 2.91 + 2.95 2.04 + 3.01 2.97 + 3.32 - 2.68 + 3.16
1–12 AAE 2.78 + 1.67 2.09 + 1.99 2.01 + 1.70 1.98 + 1.90 1.79 + 1.87 1.90 + 1.91 - 1.81 + 1.73

14–23 AEP% 2.34 + 1.73 1.92 + 2.27 1.85 + 2.09 1.83 + 2.20 1.52 + 1.22 1.79 + 2.44 - 1.68 + 2.27
All AAE - - 2.07 + 1.69 - - 1.97 + 1.90 - 1.87 + 1.71

1–23 AEP% - - 1.96 + 2.10 - - 1.89 + 2.43 - 1.77 ± 2.26

4. Discussion

From Table 2, the NFEEMD algorithm performs better compared to the others. For the first
12 of 23 datasets, the average absolute error (AAE) is 1.12 + 0.51 (mean ± standard deviation) BPM,
and AAE is 2.68 + 2.19 BPM for the remaining 11 datasets. For all 23 datasets, an average absolute
error of 1.87 BPM and standard deviation of 1.79 BPM are recorded using the NFEEMD framework
under intense physical activities.

It should be noted that the most obvious difference between the first 12 datasets and the last
11 datasets is the severity of motion. The activities of sample set T0 on the treadmill have a certain
regularity, and the activities of sample set T1 and sample set T2 including arm movements are intense
and random. In Table 2, the average absolute error of the last 11 datasets (2.68 BPM) by using
NFEEMD is significantly larger than the first 12 datasets (1.12 BPM). This result is consistent with
the severity of the state of motion, so the intenser the movements, the larger the HR-estimation error
obtained. Although the errors are a bit larger for the last 11 datasets, HR estimates do not get derailed,
which indicates that the direction of the HR estimates is correct. If the HR estimates get derailed for
some reason in the process of estimation, our HR-calibration section could work (Figure 7, for example).
As the results of comparisons in Table 2 show, the NFEEMD algorithm could obtain the most accurate
results on HR estimates for the last 11 datasets, as well as the second most accurate results on HR
estimates for the first 12 datasets. Compared with the SPECTRAP algorithm, the accuracy of the
NFEEMD algorithm is slightly lower than the SPECTRAP for 22 datasets (except dataset 13). In a word,
the results in Table 2 indicate that the NFEEMD algorithm can adapt to more intense circumstances
like boxing in the last 11 recordings and our algorithm is more robust.

The Bland–Altman plot is given in Figure 8 to test agreement between the ground-truth HR values
and the estimation HR values, in order to show our algorithm’s better performance. From Figure 8,
we can see that more than 95% of estimated HR values are incorporated in the limit of agreement (LOA)
expressed by [µ− 1.96σ, µ+ 1.96σ] where the absolute value of mean µ = 0.02 BPM and standard
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deviation σ = 3.79 BPM. The difference error is large when the real HR values are between 50 and
80, which indicates that several HR estimations using NFEEMD do not work well when the subject is
in a stationary state except for intense arm exercise like boxing. The algorithm works well when HR
is increasing continually, which indicates that the MA-removal method and the heart-rate tracking
method are valid when the subject is in a sustained exercise state like running.

In addition, Figure 9 gives the scatter plot of 23 recordings between the ground-truth HR values
and the estimated HR values, where the Pearson correlation coefficient is 0.992 and the fitted line is
y = 1.0101x− 1.2454 (x is the ground-truth HR values and y is the estimated HR value). In Figure 9,
the high Pearson coefficient and the small absolute value of mean indicate the NFEEMD algorithm’s
better performance.Sensors 2017, 17, 2450 14 of 17 
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In order to verify the performance of the NFEEMD algorithm on HR tracking during intense
physical exercise, we applied the proposed algorithm along with the same set of parameters to a new
dataset where the subject performed intensive running and upper arm movements. The sampling
frequency is 100 Hz. The results are given in Figure 10. It should be noted that the true HR
values are obtained by the heart-rate monitor made by Decathlon and there would be errors in data
obtained between this monitor and the ECG. From Figure 10, the average absolute error is 3.72 BPM,
which indicates that the proposed algorithm performs well during intensive physical activities and the
algorithm could be available for PPG derived from other platforms.Sensors 2017, 17, 2450 15 of 17 
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Figure 10. Performance of the NFEEMD algorithm for a new dataset collected by the wearable
heart-rate monitoring equipment which is developed independently by our lab.

To examine in more detail the performance of the NFEEMD algorithm with a change in sampling
frequency, we experimented in 25 Hz sampling frequency using the same algorithm for one channel
PPG and three-channel ACC. The corresponding AAE results for all datasets are listed in Table 3,
which demonstrates that the NFEEMD algorithm performs better in 125 Hz sampling frequency than
in 25 Hz. In other words, more detailed information can be recorded at a high sampling frequency so
that the HR-estimation accuracy can be improved.

Table 3. The AAE results of 23 datasets at 25 Hz sampling frequency.

Dataset 1 2 3 4 5 6 7 8

AAE(BPM) 1.79 1.52 0.82 1.45 1.09 1.35 1.20 0.51
Dataset 9 10 11 12 13 14 15 16

AAE(BPM) 0.74 1.95 1.00 1.77 3.39 10.99 3.10 1.94
Dataset 17 18 19 20 21 22 23 Mean ± SD

AAE(BPM) 3.62 2.69 1.94 2.80 4.65 2.44 0.50 2.32 + 2.17

Moreover, the signal sparsification technique through the M-FOCUSS in TROIKA and JOSS
is applied on the HR estimation algorithm, which involves extensive computational complexity.
For example, for the sampling frequency of 125 Hz, TROIKA takes about 3.5 h to estimate HR
for the first 12 datasets on a computer equipped with Intel Core-i7 4790 at 3.6 GHz, 8-GB RAM,
Windows 7 64 bit, and MATLAB 2013a. The algorithm proposed by Khan [20] takes 668 s on the same
computer. The NFEEMD algorithm takes 229 s for calculation of the first 12 datasets and 476 s for all
23 datasets using the same computer configuration. In addition, our proposed algorithm takes 86 s for
the first 12 datasets and 191 s for all 23 datasets when the sampling frequency is 25 Hz. JOSS takes 300 s
for all the datasets at 25 Hz sampling frequency. It is obvious that our algorithm has the advantage of
low computational complexity and short running time.

Of course, our algorithm also needs to be improved. On the one hand, Figure 8 shows that
the difference error is large when the real HR values are between 50 and 80. The subjects tend to
be in the rest state, or a critical state between rest and movement, when this circumstance occurs.
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In fact, HR estimation during running may be easier sometimes than in the rest or critical states,
since in the latter process, there are large MA peaks and these peaks are actually scattered all over
the spectrum. At this moment, there is no effective method to solve this problem. What is more,
two-channel compared PPG signals can improve the algorithm performance and the correct HR
peak can be determined with more confidence. On the other hand, high-frequency resolution and
accuracy are obtained after using the repeated single notch filter advanced in this paper. Of course,
an adaptive filter is also an option, although computation is increased. This research will be continued
in future work.

5. Conclusions

This paper has proposed the NFEEMD HR estimation algorithm for intense physical exercises.
One-channel PPG signal and tri-axis acceleration data are combined to generate a complex
HR-estimation method. When MAs do not exist, only the spectrum of PPG is used to find the
peak corresponding to HR information. However, the single notch filter and EEMD are applied to track
the true HR value when MAs are strong. Finally, it is necessary to use the HR-calibration algorithm
to avoid HR values heading into a runaway situation, so that the off-track errors can be decreased
to a minimum. Tests on all of the 23 datasets of IEEE Signal Processing Society showed that the
NFEEMD algorithm could comprehensively obtain higher accuracy than others, especially during
intense physical activities. The measurement metrics illustrate that the NFEEMD algorithm is more
robust and stable. This dynamic HR-estimation algorithm has many potential uses in wearable devices.
People can monitor the real-time heart rate at home with wearable devices, or monitoring of long-term
HR-tracking values can be undertaken for disease diagnosis.
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