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Abstract: The paradigm of multisensor data fusion has been evolved from a centralized
architecture to a decentralized or distributed architecture along with the advancement in sensor
and communication technologies. These days, distributed state estimation and data fusion has been
widely explored in diverse fields of engineering and control due to its superior performance over the
centralized one in terms of flexibility, robustness to failure and cost effectiveness in infrastructure
and communication. However, distributed multisensor data fusion is not without technical challenges
to overcome: namely, dealing with cross-correlation and inconsistency among state estimates
and sensor data. In this paper, we review the key theories and methodologies of distributed
multisensor data fusion available to date with a specific focus on handling unknown correlation and
data inconsistency. We aim at providing readers with a unifying view out of individual theories and
methodologies by presenting a formal analysis of their implications. Finally, several directions of
future research are highlighted.
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inconsistent estimates; spurious data; unknown correlation

1. Introduction

Multisensor data fusion refers to the process of utilizing additional and complementary data from
multiple sources to achieve inferences that are not feasible/possible from an individual data source
operating independently. More specifically, multisensor data fusion is to obtain a more meaningful
and precise estimate of a state by combining data from multiple sensors and model-based predictions.
These days, multisensor data fusion has been widely adopted in diverse fields of application including
manufacturing and process control, autonomous navigation (SLAM) [1,2], robotics, remote sensing [3],
medical diagnosis, image processing and visual recognition [4–7], fault-tolerant control [8] etc.,
beyond traditional application domain in the military field [9].

The architecture of multisensor data fusion can be broadly categorized into two, depending on the
way raw data are processed: (1) Centralized fusion architecture [10], where raw data from multiple
sources is sent directly to and fused in the central node for state estimation and (2) Distributed
fusion architecture [10–12], where data measured at multiple sources is processed independently
at individual nodes to obtain local estimates before they are sent to the central node for fusion.
Although centralized fusion can yield theoretically optimal solutions, it is not scalable to the number
of nodes, i.e., processing all sensor measurements at a single location is either ineffective or infeasible
as the number of nodes increases due to communication overhead and reliability degradation.
The distributed fusion, on the other hand, is robust to failures and has the advantage of lower
infrastructure and communication costs.

However, distributed fusion needs to take the correlations among local estimates
into consideration. This is due to the fact that local estimates can be dependent due to double
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counting, i.e., sharing prior information or data sources [9,13] and that distributed sensors observe
data with definite physical relationships existing among their observations [14,15]. In a centralized
architecture where the assumption of statistical independence is applicable, the Kalman filter (KF) [16]
provides an optimal estimate in the sense of minimum mean square error (MMSE). On the other hand,
in a distributed architecture where the assumption of statistical independence is not applicable,
filtering without taking the cross-correlation into account may lead to divergence due to the
inconsistency in fused mean and covariance [9]. In the case of known cross-correlations among
data sources, the Bar-Shalom Campo (BC) formula [17,18] provides consistent fusion results for a pair
of data sources. A generalization to more than two data sources with known cross-correlations is given
in References [19–22].

However, it is difficult to estimate the cross-correlation among the data sources, especially with a
distributed fusion architecture. For a large distributed sensor network [23], even taking account of all
cross-correlations may be too expensive to carry out for fusion. Unfortunately, simply neglecting the
cross-correlations results in a conservative fused mean and covariance [24]. Various methods have been
proposed to cope with the problem of fusion under unknown correlations in a distributed architecture.
Depending on the way that unknown cross-correlations are handled, these methods can be categorized
into three groups, including (1) Data Decorrelation, where the input data sources are decorrelated
before fusion based on the measurements reconstruction [25,26] or explicit elimination of double
counting [27,28]; (2) Modeling Correlation, where fused solutions are obtained based on some
knowledge and modeling of the unknown correlation [29–32]; and (3) Ellipsoidal Methods (EM),
under the assumption of bounded cross-correlation, these methods attempt to provide a suboptimal
but consistent fused solution by approximating the intersection among individual data sources
without any knowledge of cross-correlation. The EM include, Covariance Intersection Method (CI)
and its derivatives [33–35], Largest Ellipsoid Method (LE) [36], Internal Ellipsoidal Approximation
(IEA) [37,38] and Ellipsoidal Intersection Method (EI) [39].

Another issue in sensor fusion is that sensors frequently provide spurious measurements that
are difficult to predict and model. Fusion methodologies assume that the sensor measurements are
affected by Gaussian noise only, and thus the covariance of the estimate provides a good approximation
of all disturbances affecting the sensor measurements. However, sensors may produce inconsistent
and spurious data due to unmodeled faults, including permanent sensor failures, sensor glitches,
short duration spike faults, slowly developing failures due to sensor elements, etc. [40–42]. Fusion of
inconsistent sensor data with correct data can lead to severely inaccurate results [43]. For example,
when exposed to abnormalities and outliers Kalman filter would easily diverge [44]. Hence, a data
validation scheme is required to identify and eliminate the inconsistencies/faults/outliers before
fusion in a distributed fusion architecture.

Multisensor data fusion in the presence of inconsistent and spurious sensor data can be broadly
classified into the following three categories: (1) Model based approaches, where inconsistencies are
identified and excluded based on a comparison of sensor data against a reference, obtained through a
mathematical model of the system [45,46]; (2) Redundancy based approaches, where multiple sensors
provide an estimate of a quantity of interest and then identify and remove the inconsistent estimates
by consistency checking and majority voting [40,47]; and (3) Fusion based approaches, where the fuse
covariance is enlarged to cover all local means and covariances in such a way that the fused estimate is
consistent under spurious data [48,49].

This paper systematically reviews the key theories and methodologies of distributed multisensor
data fusion with a specific focus on fusion under unknown correlation and fusion in the presence of
inconsistent and spurious sensor data. While several general reviews of data fusion [9,50–52] and data
inconsistency [46,53,54] exists; this paper is intended to provide readers with the methodology of fusion
under unknown correlation and data inconsistency in the context of distributed data fusion. The rest
of the paper is organized as follows. In Section 2 centralized and distributed fusion architectures are
explained along with the causes of correlation in distributed sensor systems. Section 3 provides an
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overview of the Kalman filter framework and fusion in the case of known cross-correlation. In Section 4,
various methods for fusion under the assumption of unknown correlation are analyzed. In Section 5,
fusion of spurious and inconsistent sensor data is reviewed. Finally, the paper is concluded and several
future directions of research in distributed data fusion are highlighted.

Preliminaries: R and R+ respectively define the set of real and non-negative real numbers. We denote
A ∈ Rn×m as a matrix with n rows and m columns. Similarly, I denotes an identity matrix. The inverse
and transpose of matrix A are denoted as A−1 and AT respectively. Given positive semidefinite
matrices A, B ∈ Rn×n, that is, A, B ≥ 0, then A ≥ B means A− B ≥ 0 (A− B is positive semidefinite).
Let x̂ = E[x] and P = E[xxT ] − E[x]E[xT ] denote the mean and covariance of the random vector
x ∈ Rn respectively. Where the notation E [*] denotes the expectation. The cross-covariance between
two random vectors x1, x2 ∈ Rn is represented as P12 = E[x1x2

T ]− E[x1]E[x2
T ]. Furthermore, due to

positive semi definiteness of the covariance matrix, P12 = P21. We denote the Gaussian distribution as
x ∼ N(x̂, P), with mean x̂ and covariance P. Furthermore, the Gaussian distribution N(x̂, P), can be
represented by an ellipsoid ε(x̂, P), as ε(x̂, P) = {x ε Rn| (x− x̂)T P−1(x− x̂) ≤ 1}.

2. Fusion Architectures

In a data fusion framework, multiple sensors provide additional and complementary data to a
fusion center, where the data is combined to obtain a precise and more meaningful information about
the underlying states of an object. Based on the availability and processing of raw data, the fusion
architectures can be divided into Centralized and Distributed fusion architectures.

2.1. Centralized Fusion Architecture

In a Centralized fusion architecture, raw data from multiple sensors is directly sent to a
central fusion node, which computes state estimates and makes decisions as shown in Figure 1.
Although, local sensors may pre-process the data before transmitting it to the central node, the term
‘raw data’ signify sensor measurements or pre-processed data without filtering or local fusion.
Each sensor observes and provides measurements to the central system where data is filtered
and fused. If the data is correctly aligned and associated, and there is no constraint on the
communication bandwidth, then the centralized fusion architecture yields a theoretical optimal
solution to state estimation. However, processing all the information at a central node poses
various issues, such as a large computational load on the central node, large communication
bandwidth requirement, the possibility of failure (due to failure of the central node) and inflexibility to
changes in architecture [50,52,55].
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Figure 1. Centralized fusion architecture.

2.2. Distributed Fusion Architecture

Advances in sensor and communication technologies mean that each sensor node can
independently process its sensor data to compute local state estimates. In most applications, the raw
information is used to compute the state estimates of some quantity of interest in the form of the
mean and covariance. These estimates are then communicated among sensor nodes and to the central
node to form a global state estimate as depicted in Figure 2. Compared to a centralized architecture,
a distributed network of sensors is superior in many settings, that is, an outstanding potential to
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solve the problems in a cooperative fashion, coverage of large area, and considerable increase in
spatial resolution to name a few [12,52,55,56]. Furthermore, local processing of the data means
a low processing load on each node due to the distribution of load, lower communication cost,
flexibility to changes and robustness to failure. Still, another fusion architecture is the Decentralized
one where nodes operate independently, share information with each other without any central
fusion node [14,55]. Different from a distributed architecture, the decentralized architecture lacks
any central node, rather each node computes the underlying system states and communicates with
each other. The reason for dependencies in decentralized and distributed architectures are the same.
Thus, these two architectures are categorized as one in this paper.
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In general, a decentralized or distributed network of sensors cannot achieve the estimation
quality of a centralized system but is inherently more flexible and robust to failure. The local sensor
estimates in a distributed architecture may be correlated because observations from distributed sensors
can be affected by the same process noise [15] and local estimates can be dependent due to double
counting [9,13]. A distributed fusion algorithm should take into account the cross-correlation to
ensure optimality and consistency. In some situations, sensor measurements may also be affected by
unexpected uncertainties, that is, spike faults, permanent failure or slowly developing failure [40,49,52].
Thus, the estimates provided by sensors may be spurious and inconsistent. Hence, a data validation
scheme is required to identify and eliminate inconsistent sensor estimates before the fusion process.

2.3. Causes of Correlation

A common reason for the dependencies of local estimates in a distributed sensor network is the
data incest/rumor propagation/double counting of the data [9,13]. Double counting is a situation
in which data is unknowingly used multiple times. This may be caused by either recirculation of
the information through cyclic paths or the same information taking several paths from another
sensor to the fusion node [9,55], as depicted in Figure 3. For instance, two sensor nodes A and B
that are initialized with the same prior estimate x̂P on the sates, i.e., x̂A = x̂P and x̂B = x̂P have
correlated errors, i.e., E[(x̂A − x)(x̂B − x)] = PA = PB = PP. The separation of common sensor data
from independent data become more difficult as the data is further processed along the communication
paths and network topology [55], and the source of the common data become unknown. Fusing the
local sensor estimates without accounting for the common information results in an underestimated
error covariance. Another reason for interdependencies is the common process noise [14,35]. A typical
example of this is the decentralized monitoring system for chemical processes [14]. The temperature
measured from the pressure information combined with a reaction model and the temperature
measured directly from the temperature nodes are dependent. Similarly, a KF estimating position and
another KF maintaining the orientation of a vehicle using the same sensor information results in a
dependent position and orientation error [14].
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3. Distributed Data Fusion

This section focuses on various data fusion algorithms. First, a Kalman filter and its
variants are overviewed, and this is followed by fusion of multiple data sources under exactly
known cross-covariance.

3.1. Kalman Filter

Kalman filter (KF) [16] is a fundamental tool that can be used to analyze and solve a broad class
of estimation problems. It has been extensively used for various purposes, including estimation,
tracking, sensor fusion etc. The KF framework consists of a prediction based on the system matrix of
the underlying state vectors, followed by an update provided by sensor measurements. Consider a
linear dynamic system with the following system model and measurement equation,

x̂k = Ak x̂k−1 + Bkuk−1 + wk (1)

zk = Hk x̂k + vk (2)

where k represents the discrete-time index, Ak is the system matrix, Bk the input matrix, uk−1 the
input vector, and x̂k−1 the process states. The process noise wk and measurement noise vk are white,
zero mean, uncorrelated Gaussian with covariance Qk and Rk respectively. The Kalman filter prediction
of the state estimate and its error covariance is given as [57],

x̂−k = Ak x̂k−1 + Bkuk−1 (3)

P−k = AkPk−1 AT
k + Qk (4)

The predicted estimate x̂−k and error covariance P−k are then combined with the received sensor
measurement zk with covariance Rk to obtain an updated estimate and error covariance matrix,

x̂k = x̂−k + Kk(zk − Hk x̂−k ) (5)

Pk = (I − Kk Hk)P−k (I − Kk Hk)
T + KkRkKT

k (6)

where Kk is the Kalman gain and calculated as, Kk = P−k HT
k (HkP−k HT

k + Rk)
−1. Figure 4 depicts the

prediction and update cycle of the KF. The KF has been further modified as an Extended Kalman
Filter (EKF) [58] and Unscented Kalman Filter (UKF) [59,60] to address the issue of non-linearity
in the state estimation. The EKF and UKF are often employed in the field of robotics for tracking
and navigation. In References [61,62], an information theoretic approach to KF has been proposed.
The Information filter (IF) is a KF that estimates the information state vector, y, defined as y = P−1x,
where x is the state vector and P its covariance. The inverse covariance matrix P−1 is equal to
the Fisher information matrix and maximizing the Fisher information about the state is related to
MMSE estimation. The representation of KF as an IF is beneficial when the state vector is larger than
the measurement vector [24,62]. Furthermore, a KF implementation for the update stage become very
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complex when the cross-correlation between observation innovations are accounted for. The simple
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3.2. Fusion under Known Correlation

One simplification in distributed estimation is the assumption of conditional independence
of estimates. However, ignoring the cross-correlation in a distributed architecture leads to
inconsistent results, which can result in a divergence of fusion algorithm [9,24]. Various methods have
been devised to incorporate known cross-correlation for state estimation and fusion. A well-known
result is the Bar-Shalom Campo (BC) formula [17], which is given as,

Pf = P1 − (P1 − P12)(P1 + P2 − P12 − P21)
−1(P1 − P21) (7)

x̂ f = (P2 − P21)(P1 + P2 − P12 − P21)
−1 x̂1 + (P1 − P12)(P1 + P2 − P12 − P21)

−1 x̂2 (8)

The BC formula provides a consistent fusion result in the sense of Maximum Likelihood [18]
for a pair of redundant data sources. A generalization to more than two data sources with known
cross-correlations is given in References [19–22]. A unified fusion rule for centralized, distributed and
hybrid fusion architectures with complete prior information was proposed in References [20,64].
A fusion method for discrete multi-rate independent systems based on multi-scale theory was
proposed in Reference [65], where the sampling rate ratio between the local estimates is assumed as a
positive integer. Distributed fusion estimation for the case of asynchronous systems with correlated
noises was studied in References [66–68]. Some authors have also explored learning based approaches
for multisensor data fusion [4,6,7,69–71]. While Kalman filter and Bayesian formulation rely on known
statistics for data fusion, learning based approaches learn the statistical model of the uncertainty
from incoming data. In Reference [7], multi-feature fusion method is used for visual recognition
in a multimedia application. A fusion framework for multi-rate multisensor linear systems based
on a neural network was proposed in Reference [69]. The framework reformulates the multi-rate
multiple systems into a single multisensor system with the highest sampling rate and effectively
fuse the local estimates using neural network. A neural network based multisensor data fusion
is compared with conventional methods in References [72,73] with superior fusion performance.
However, learning based approaches are limited with the requirement of a large amount of data
for training. Interested readers can refer to References [50,52] for more general perspectives and
approaches to multisensor data fusion.

Given n sensor estimates (x̂1, P1), (x̂2, P2), . . . , (x̂n, Pn) with exact cross-correlation
Pij, i, j = 1, . . . , n, the fused mean and covariance can be written as [19–22],

x̂ f = (HT P−1H)−1HT P−1 x̂ (9)

Pf = (HT P−1H)−1 (10)
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with

x̂ =


x̂1

x̂2
...

x̂n

, P =


P1 P12 . . . P1n

PT
12
...

PT
1n

P2
...

. . .

. . .
. . .
. . .

...

...
Pnn

, H =


IN1

IN2
...

INn


where the dimensions of x̂, P and H are Nn× 1, nN × nN and nN × N, respectively. n is the number
of sensors and N corresponds to the dimension of the state vector. With full prior information,
these fusion rules are proven to be unbiased and optimal in the sense of MMSE. If the estimates are
assumed to be independent, that is, Pij = 0, i, j = 1, 2, . . . , n, then the fused result can be obtained as,

Pf = (
n

∑
i=1

P−1
i )−1 (11)

x f = Pf (
n

∑
i=1

P−1
i x̂i) (12)

In order to employ the fusion rule of (9) and (10), the computation of the cross-covariance Pij
is needed. The cross-covariance among local sensor estimates can be calculated as [19,21,22,74],

Pij = [I − Ki Hi]
[

APk−1
ij AT + BQBT

][
I − Kj Hj

]T (13)

where Ki is the Kalman gain of ith local filter and Pk−1
ij represents the cross covariance of the

previous cycle. As seen from (13), the calculation of the cross-covariance needs internal details
of the estimator, like the Kalman gain, which may not be available in some cases. An approximation of
the cross-covariance in terms of the correlation coefficient can be obtained in such cases [75],

Pij = ρ
√

PiPj (14)

An approximation of the cross-covariance in terms of the different correlation components for
different components of the state can be computed as,

Pnm
ij = ρnm

√
Pnm

i Pnm
j (15)

where n, m = 1, . . . , Nx with Nx as the state dimension. A Monte Carlo simulation can be used to
numerically compute the correlation coefficient ρ offline for a specific setup. Figure 5a,b illustrates
the effect of the independence assumption on fused covariance and fused mean of two correlated
sensor estimates respectively. The optimal fused solution ε(xo, Po) is obtained using (7) and (8) by
incorporating a known cross-correlation. As shown, when KF is employed by assuming zero correlation
between the sensor estimates, an underestimated fused covariance and mean is obtained as compared
to the optimal fused solution. This severely hampers the accuracy of estimated states and sometimes
results in filter divergence.

It is worth noting that the KF/IF provides optimal results in a centralized architecture because the
assumption of independence is true. In a distributed fusion architecture, optimality can be achieved by
computing and incorporating the exact cross-correlation. Furthermore, addressed fusion algorithms
can either be applied independently or jointly to solve complex fusion problems according to fusion
architectures and practical demands.
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by ignoring cross-correlation.

4. Fusion under Unknown Correlation

There are various sources of correlation affecting the state estimation and fusion process in
a distributed architecture. Failing to consider the cross-correlation leads to overconfident results
and even divergence of the fusion algorithm [9,24]. Nonetheless, due to double counting and the
unavailability of internal parameters, it is very difficult to exactly estimate the cross-correlation in a vast
distributed sensor network. In some applications, such as in map building, weather forecasting etc.,
the process model could use hundreds and thousands of states [35]. Maintaining and taking
care of cross-correlation is expensive, and it scales quadratically with the number of updates [23].
Therefore, various suboptimal strategies have been devised to provide a fused solution from multiple
data sources without the need of an actual cross-correlation. The analysis of fusion under unknown
correlation is carried out according to the categorization of Figure 6.
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4.1. Data Decorrelation

A common cause of cross-correlation in distributed architecture is data incest/rumor
propagation/double counting. Double counting happens when the same data follows different
or cyclic paths to reach the fusion node [9,13]. An effective way to avoid the data incest issue is to
keep the record of estimate updates. References [27,28] propose a method to remove the correlation
by explicitly eliminating double counting. The idea is to resolve remote measurements from state
estimates of other sensor nodes, store them and use them to update its own state estimate. This way
the double counted data is removed before the data is fused. This method assumes a specific network
topology to avoid the correlation due to double counting. In References [76,77], a more general solution
using graph theoretic algorithms is proposed, which is viable for arbitrary network topologies with
variable time delays. However, this is neither scalable nor practical for a large network of sensors [78].
Another approach for decorrelation is measurement reconstruction [25,26,79], where the system noise
is artificially adjusted by reconstructing the measurements so that correlation between the sequence of
measurements is removed. The remote measurements are reconstructed at the fusion node based on the
local sensor estimates. This method is further developed for tracking in clutter [80], Out-of-sequence
filtering [81] and non-Gaussian distributions with Gaussian mixture models [82]. However, internal
information like Kalman gain, association weights and sensor model information etc. are required
to exactly reconstruct the measurements [74,75]. The decorrelation methods result in a compromised
fusion performance due to their dependency on empirical knowledge and special analysis for a
particular real system. Furthermore, with an increase in the number of sensors, these methods become
highly inefficient and impractical.

4.2. Modeling Correlation

Although an exact cross-correlation between local estimates in a distributed architecture is
difficult to obtain, the properties of the joint covariance matrix put some restriction on the possible
cross-correlation. Furthermore, certain applications may provide prior knowledge and constraints
on the degree of correlation such that we may infer whether the local estimates are strongly or
weakly correlated. In fact, the estimates provided by multiple sensors are neither independent
nor exactly dependent, meaning that the cross-correlation is not completely unknown. Thus, the
information and knowledge regarding unknown cross-correlations can be exploited to improve the
accuracy of the fused solution under unknown correlation. Given two sensor estimates (x̂1, P1)

and (x̂2, P2), the joint covariance matrix can be written as,

P =

[
P1 P12

P21 P2

]
(16)

where P12 = PT
21 is the cross-correlation between the two estimates. The joint covariance matrix P is

positive semidefinite if and only if there is a contraction matrix C such that [83],

P12 = P1/2
1 CP1/2

2

where a contraction matrix C is a matrix with the largest singular value less than or equal to unity.
In the case of scalar-valued estimates, the cross-correlation can be computed as,

P12 = ρ
√

P1P2 (17)

where (17) is a function of known individual covariances and a correlation coefficient ρ in the range
[−1, 1]. Based on the correlation model (17) an analytic analysis of the BC formula is carried out to give
an exact solution for fusion under unknown correlation [29]. A closed-form equation for scalar-valued
fusion and an approximate solution for vector valued fusion based on a uniformly distributed
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correlation coefficient is proposed in Reference [30]. In Reference [84], a tight upper bound for the joint
covariance matrix is obtained from individual covariances P1, P2 and the constrained correlation
coefficient ρ. Based on bounded correlations, a general method was proposed as the Bounded
Covariance Inflation (BCInf) [85] with upper and lower bounds on cross-correlation. The method
exploits the available information regarding known independence in the sensor network. The BCInf
method was further developed as an Adaptive Bounded Covariance Inflation (ABCInf) by probabilistic
and deterministic approaches [86]. An approximate correlation model is adopted for two data sources
in high dimensions as [32],

P12 = ρC1CT
2 (18)

where ρ is the correlation coefficient and C1 is the cholesky decomposition satisfying P1 = C1CT
1 . It is

illustrated in Reference [32] that the proposed model ensures the positive semi definiteness of the joint
covariance matrix P and agrees with the Canonical Correlation Analysis of multivariate correlation [87].
Based on the correlation model (18), a track association and fusion is carried out in the Maximum
Likelihood sense in Reference [31]. In Reference [32], the Cholesky decomposition model of unknown
cross-correlation is applied to BC formula, and the fused solution is iteratively approximated based on
min-max optimization function for unknown correlation coefficient ρ. Furthermore, a conservative
fusion solution is also obtained under the assumption of a uniform distribution of correlation
coefficient ρ. In Reference [29], the correlation model (18) was used in BC formula to analytically
estimate the maximum bounds of the unknown correlation in track-to-track fusion. The multisensor
estimation problem with the assumption of norm-bounded cross-correlation is studied in [88],
where the worst-case fused MSE is minimized for all feasible cross-covariances. To utilize some
prior information of the cross-covariance, a formulation named allowance of cross-covariance is
proposed in Reference [89]. Based on the proposed model an optimal fusion method in the sense of
minimizing the worst-case fused MSE by semidefinite programming (SDP) is derived.

For scalar-valued two sensor estimates, the cross-covariance P12 is well-defined by the correlation
coefficient ρ. Yet, the number of correlation coefficients increases with the number of sensors and the
closed-form solution for even scalar-valued estimates becomes difficult. For instance, in the case of
three data sources in R1 the joint covariance matrix can be written as,

P =

 P1 ρ12
√

P1P2 ρ13
√

P1P3

ρ12
√

P1P2 P2 ρ23
√

P2P3

ρ13
√

P1P3 ρ23
√

P2P3 P3


Three correlation coefficients can now be noted to represent the dependency among the three data

sources and optimizing any function of P in terms of correlation coefficients becomes a daunting task.
In general, it is difficult to interpret cross-correlation for more than two data sources in high dimensions.
It should also be noted that the general correlation analysis techniques like canonical correlation
analysis (CCA) [87] and multivariate linear regression (MLA) [90] have limited use in connection
with the cross-correlation among multiple data sources. Since these techniques assess the correlation
property when given a vast set of data points. The joint covariance matrix of the multiple data sources,
on the other hand, is a block covariance matrix that represents the relationships among the individual
states of the sensor and among different sensors.

4.3. Ellipsoidal Methods

Suppose that we have two Gaussian sensor estimates N(x̂1, P1) and N(x̂2, P2) of the true state
x in R2. The two data sources are assumed to be correlated with cross covariance matrix P12.
From (7) and (8), we can observe that the underlying fused covariance and mean of the two data
sources is dependent on the unknown cross-covariance P12. The given sensor estimates can be
represented using an ellipsoid ellipsoid ε(x̂1, P1) and ε(x̂2, P2). Figure 7 depicts the zero mean ellipsoids
ε(0, P1) and ε(0, P2), where the length of ellipsoid axes corresponds to the eigenvalues of the respective
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covariance matrix and the eigenvectors define its orientation. The possible cross covariances between
the data sources are bounded [14,33–35], which in turn, restricts the possible outcomes of the fused
covariance to a bounded set. As shown in Figure 7, for different choices of cross-covariance P12,
the fused covariance Pf will lie inside the intersection of the individual data sources. The goal of the
Ellipsoidal Methods (EM) is to find a bounding covariance PEM such that,

PEM ≥ Pf (P12) (19)

for any choice of cross-covariance matrix P12. The Ellipsoidal Methods (EM) attempt to provide a
fused estimate by approximating the intersection region of the individual ellipsoids. The EM can
be further classified into the Covariance Intersection Method (CI), Largest Ellipsoid Method (LE),
Internal Ellipsoidal Approximation (IEA) and Ellipsoidal Intersection Method (EI). The three methods,
LE, IEA and EI aim for a maximum ellipsoid inside the intersection region of individual ellipsoids,
and are termed here as the Maximum Ellipsoidal Methods (ME). The EM are analyzed one by one here.
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4.3.1. Covariance Intersection Method

Covariance Intersection Method (CI) [35] was proposed by Julier and Uhlman for fusion under
unknown correlation in a decentralized network. Given two sensor estimates x̂1 and x̂2 of the true
state x with corresponding covariance matrices P1 and P2, the CI method can be viewed as a weighted
form of the simple convex combination of individual estimates. The algorithm is given by [14,35],

xCI = ωPCI P1
−1 x̂1 + (1−ω)PCI P2

−1 x̂2 (20)

PCI
−1 = ωP1

−1 + (1−ω)P2
−1 (21)

where ω ∈ [0, 1] is a weighting parameter, determined numerically in such a way that the determinant
or trace of PCI is minimized. The CI method obtains a consistent fused result without computing
the cross-correlation. Figure 8 shows two zero mean estimates as ellipsoids ε(0, P1) and ε(0, P2).
Since, for any possible cross-correlation the fused result lies inside the intersection region of the
individual ellipsoids, CI method provides a consistent solution by enclosing the region of the
intersection of individual ellipsoids, as depicted in Figure 8.

Since its inception, the CI method has received much attention, and some improvements have
been made to enhance the capabilities of the methodology itself while others have focused on its
applications in various fields [2,33,34,49,91–106]. For example, the CI method is generalized as a split
CI method [100] to fuse independent as well as dependent information with an unknown degree
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of correlation. In Reference [97], the CI method is examined with a Chernoff fusion rule, and it is
noted that the CI method is suitable for fusing any distributions, and is not limited to Gaussian
density function. Meanwhile, CI is used for a non-linear estimation in [107], where the distributions are
represented as pseudo-Gaussian densities, while a closed form optimization of CI for low-dimensional
matrices was proposed in Reference [103]. In References [108,109], the CI method is studied for
track-to-track fusion with memory and without memory. Furthermore, a comparative analysis of
CI with different optimal fusion rules is presented in Reference [98]. The CI method is applied in
many applications, namely, localization [110–112], target tracking [113,114], simultaneous localization
and mapping (SLAM) [1,2], image integration [99], NASA MARS rover [101] and spacecraft state
estimation [114,115].
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Although state-of-the-art CI method has its own disadvantages including: (1) requirement
of a nonlinear iterative optimization and (2) it overestimates the intersection region of
individual covariances, resulting in a degradation of the estimation performance. For the sake of
computational efficiency, approaches to directly compute the weights based on the determinants of
individual covariances have been proposed [91,92] at the expense of further performance degradation
without taking the relative orientation of individual covariances into account. Different optimization
criteria for weight computation based on information theory [93,94] as well as set theory [95] have
been proposed for computational efficiency. To avoid the computational cost of the CI method for more
than two sensors, a sequential covariance intersection (SCI) [96] is presented. The SCI method reduces
the multidimensional non-linear optimization problem of CI into many one-dimensional non-linear
functions by sequentially applying the CI method of two sensors to n sensors. A proof that CI
method results in a minimum consistent covariance bound for two sensors is given in Reference [104].
Recently an Inverse Covariance Intersection (ICI) [105] method based on the common information of
two sensors was proposed, which results in a tighter estimate than with the CI method.

4.3.2. Maximum Ellipsoidal Methods

Contrary to the CI method which yields a minimum overestimation of the intersection region
of individual covariances, the Maximum Ellipsoidal Methods (ME), that is, LE [36], IEA [37,38] and
EI [39] sought a maximum ellipsoid inside the intersection region of individual covariance ellipsoids as
shown in Figure 9. Since the fused covariance for any possible choice of cross-correlation lies inside the
intersection of individual ellipsoids, the ME methods attempt to obtain a maximum ellipsoid inside the
region of the intersection. Although aiming for a common objective, the ME methods follow different
approaches from each other, thus resulting in subtle differences in the computation of the fused mean
and covariance. The ME methods are analyzed one by one below.
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Largest Ellipsoid Method

To avoid an overestimation of the CI, the Largest Ellipsoid Method [36] provides the largest
ellipsoid inside the intersection of two individual ellipsoids by manipulating their orientation.
Assuming two estimates x̂1 and x̂2 with covariances P1 and P2 respectively. The two covariances
are transformed by a transformation matrix Tr as,

Pr
1 = Tr P1TT

r , Pr
2 = Tr P2TT

r

where Tr =
[
eT

1 , eT
2 , . . . , eT

n
]T is the eigenvector matrix of P1. A second scaling transformation is

performed by Ts as,
Psr

1 = TsPr
1 TT

s = Ts Tr P1TT
r TT

s

with

Ts = diag(1,

√
λ11

λ12

, . . . ,

√
λ11

λ1n

)

where λ1i is the ith eigenvalue of Pr
1 . This scaling operation transform the ellipsoid P1 into a sphere

with all eigenvalues of Psr
1 being equal. Similarly, the second ellipsoid is transformed as,

Psr
2 = Ts Tr P2TT

r TT
s

The intersection of the two ellipsoids Psr
1 and Psr

2 in the transformed space is computed as,

Esr = EDET

where E =
[
eT

1 , eT
2 , . . . , eT

n
]T is the eigenvector matrix of Psr

2 and D = diag(k1, k2, . . . , kn) with
ki = min(λ1i , λ2i ). The corresponding largest ellipsoid is transformed back to original space by an
inverse transformation as,

PLE = T−1
r T−1

s EsrT−T
s T−T

r (22)

The fused mean xLE of the two data sources is calculated using the simple convex equation of KF,

P−1
K xLE = P−1

1 x̂1 + P−1
2 x̂2 (23)

where P−1
K = P−1

1 + P−1
2 .

Although, the LE method for fused covariance results in the largest ellipsoid inside the intersection
of the individual ellipsoids, the computation of the fused mean is incorrect. Because calculation of the
fused mean is based on the independence assumption of KF and does not consider the cross-correlation,
which may lead to inconsistent results. To ensure the consistency and optimality in multisensor
data fusion, the fused covariance, as well as the correct calculation of the fused mean, is important.
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Internal Ellipsoidal Approximation

To fill the gap in the LE Method, an Internal Ellipsoidal Approximation Method (IEA) [37,38,116]
was proposed which provides an internal approximation of the region of intersection of the
individual ellipsoids. The fused mean and covariance of the algorithm are written as,

xIEA = (ω1P1
−1 + ω2P2

−1)−1(ω1P1
−1 x̂1 + ω2P2

−1 x̂2) (24)

PIEA = (1− x̂T
1 P1
−1 x̂1 − x̂T

2 P2
−1 x̂2 + x̂T

IEAPIEA
−1 x̂IEA)(ω1P1

−1 + ω2P2
−1)−1 (25)

where

ω1 =
1−min(1, β2)

1−min(1, β1)min(1, β2)
(26)

ω2 =
1−min(1, β1)

1−min(1, β1)min(1, β2)
(27)

where 0 ≤ ω1, ω2 ≤ 1 and β1 and β2 are computed based on the optimization of the Quadratic
programming problem as follows,

β1 = min
xT P2

−1x=1
xT P1

−1x (28)

β2 = min
xT P1

−1x=1
xT P2

−1x (29)

Nonlinear optimization methods like Newton or Lagrange multipliers can be used to compute
the values of β1 and β2. By additional manipulation, the Quadratic Constrained Quadratic Problem
(QCQP) of (28) and (29) can be transformed to a much simpler form, resulting in a direct computation
of unknown variable x. Based on the definition of P1 and P2 as positive semidefinite matrices we
can write,

P2 = ED1/2D1/2ET

where D is the eigenvalue matrix and E is the respective eigenvector matrix. Using y = D−1/2ETx,
we can rewrite (28) in terms of y as,

β1 = min
‖y‖2

2=1
yT(D

1
2 ET P1

−1ED
1
2 )y (30)

Hence,
yT(D

1
2 ET P1

−1ED
1
2 )y ≥ λmin(D

1
2 ET P1

−1ED
1
2 )‖y‖2

2

Then ymin, the normalized eigenvector corresponding to the minimum eigenvalue of
(D

1
2 ET P1

−1ED
1
2 ) is a solution to (30). Subsequently, x can be obtained as,

x = ED1/2ymin

The value of x can be used in (28) to obtain β1. A similar approach can be followed to calculate β2.
The computed values of β1 and β2 can then be used in (26) and (27) to compute the weights ω1 and ω2.
Based on the values of β1 and β2, the IEA method provides a relationship between two ellipsoids
as [37,116],

1. If β1 ≥ 1, β2 ≤ 1, then ω1 = 1, ω2 = 0, ε(0, P1) ⊆ ε(0, P2) and ε(xIEA, PIEA) = ε(x1, P1)

2. If β1 ≤ 1, β2 ≥ 1, then ω1 = 0, ω2 = 1, ε(0, P1) ⊇ ε(0, P2) and ε(xIEA, PIEA) = ε(x2, P2)

3. If β1 ≤ 1, β2 ≤ 1, then 0 < ω1, ω2 < 1, ε(0, P1) ∩ ε(0, P2) 6= φ

Although the IEA method aims for an approximation of the intersection region of
individual ellipsoids, the method lacks a strong mathematical foundation and is based on heuristics.
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Ellipsoidal Intersection Method

Ellipsoidal Intersection (EI) Method [39] solves the problem of fusion under unknown correlation
by computing the fused mean and covariance based on the mutual and exclusive information of
two data sources. Given two sensor estimates (x̂1, P1) and (x̂2, P2), it is assumed that they can be
represented by three mutually uncorrelated estimates (â, A), (b̂, B) and (Υ, Γ) as [117],

P1 = (A−1 + Γ−1)−1, x̂1 = P1(A−1 â + Γ−1Υ) (31)

P2 = (B−1 + Γ−1)−1, x̂2 = P2(B−1b̂ + Γ−1Υ) (32)

Hence, both sensor estimates share the common estimate (Υ, Γ). By using mutual and
exclusive information, the fused mean and covariance of the algorithm is written as,

PEI = (P1
−1 + B−1)

−1
, xEI = PEI(P1

−1 x̂1 + B−1b̂) (33)

Substituting the results of (32) in (33) gives the fused covariance PEI and fused mean xEI as,

PEI = (P1
−1 + P2

−1 − Γ−1)−1 (34)

xEI = PEI(P1
−1 x̂1 + P2

−1 x̂2 − Γ−1Υ) (35)

The formulation of (34) and (35) implies that first the estimates (x̂1, P1) and (x̂2, P2) are fused,
followed by subtraction of the common estimate (Υ, Γ). The mutual covariance Γ is chosen such that
the mutual information between the two data sources is maximized. Using eigenvalue decomposition,
we can write,

P1 = E1D1E1
T , and Q2D2Q2

T = D−0.5
1 ET

1 P2E1D−0.5
1

Then, the maximum mutual information can be calculated as,

Γ = E1D0.5
1 Q2DΓQ2

TD0.5
1 E1

−1 (36)

where

(DΓ)ij =

{
max(D2, 1) i f i = j

0 i f i 6= j

Similarly, the mean value of the mutual information can be computed as,

Υ = (P1
−1 + P2

−1 − 2Γ−1 + 2η I)−1((P2
−1 − Γ−1 + η I)x̂1 + (P1

−1 − Γ−1 + η I)x̂2) (37)

where the term η is added such that (Pi
−1 − Γ−1) should be positive definite rather than positive

semi-definite. The value of η is selected as follow,

η =

{
0 i f |H| 6= 0

s� λ+(H) i f |H| = 0

where H is defined as H = P1
−1 + P2

−1 − 2Γ−1 and λ+(H) ∈ R+ is defined as the smallest non-zero
eigenvalue of H.

A relation between the cross-covariance P12 and mutual information Γ of P1 and P2 is given as [105],

P12 = P1Γ−1P2 (38)
Based on (38), a decentralized fused solution for two sensor estimates known as inverse covariance

intersection (ICI) is proposed in Reference [105]. This method provides a tighter solution than CI for
all admissible common information Γ. The concept of common information is also used in the channel
filter [12] and its nonlinear counterpart [118]. In Reference [119], the performance of the EI method is
assessed for various real-life scenarios like the absence of observability, non-linearity of the process
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model and situations where the computational requirement is different for different nodes. For fusion
of scalar-valued estimates, the fused solution provided by EI is equal to that of CI method.

Example. Consider an illustrative example for comparative analysis of EM with the following two
sensor estimates,

x̂1 =

[
1
2

]
, P1 =

[
4 1.8

1.8 3.5

]
, x̂2 =

[
0.8
1.3

]
, P2 =

[
4.5 0.5
0.5 2.7

]

The weights of the CI method are determined by minimizing the determinant of the
fused covariance, that as, min

ω+(1−ω)=1
det(PCI). The Matlab function ‘fminbnd’ is used to compute

the weights and are then used in (20) and (21) to compute the fused mean and fused covariance of the
CI method. For IEA, the parameters β1 and β2 are computed using (30) and subsequently, the weights
ω1 and ω2 are computed from (26) and (27) respectively. The weights are then used to compute the
fused result. The fused covariance and mean of the LE and EI method are calculated using (22), (23) and
(34), (35) respectively. The eigenvalue decomposition of the ME methods is done using the standard
‘eig’ function of Matlab. Table 1 summarizes the computed fused mean and covariance of different EM.
The average computation time of each method for 10,000 runs is also given in Table 1. Figure 10a,b
depicts the fused covariance ellipsoids of the different EM. The CI method can be noted to provide
a minimum overestimate of the intersection region of the individual data sources. The IEA method
chooses the first sensor estimate as the fused result despite the fact that ε(0, P1) * ε(0, P2). The LE and
EI result in a maximum covariance ellipsoid inside the intersection region. Although aiming for the
same goal, the three ME methods differ from each other. For instance, the fused covariance provided
by EI and LE is exactly the same while the fused covariance provided by IEA differ from LE and
EI methods in this case. On the other hand, the fused mean provided by all three ME methods are
different as noted from Figure 10b and Table 1.

Table 1. Fused result and average computation time of different ellipsoidal methods.

CI LE IEA EI

Fused Result
xCI =

[
0.899 1.80

]T xLE =
[

0.82 1.60
]T xIEA =

[
1 2

]T xEI =
[

0.52 1.41
]T

PCI =

[
3.97 1.48
1.48 3.23

]
PLE =

[
3.33 0.98
0.98 2.49

]
PIEA =

[
4 1.8

1.8 3.5

]
PEI =

[
3.33 0.98
0.98 2.49

]
det(PCI) = 10.663 det(PLE) = 7.365 det(PIEA) = 10.76 det(PEI) = 7.365

Time (ms) 1.1668 0.1514 0.2879 0.2353
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The CI method provides a consistent fused solution for two estimates based on (19), that is,
PCI − Pf is always positive semi-definite. This can also be observed from Figure 10a, where CI
method generate a tight bound on the intersection region, thus ensuring consistency for any choice of
cross-correlation. Although consistent, the CI results are conservative with the possibility of much less
informative fused estimates. On the other hand, the LE and EI methods result in a largest ellipsoid
inside the region of intersection. However, the methods may become inconsistent with PLE, PEI � Pf ,
for some choices of known cross-covariance P12. The EI method yields less conservative results than
CI and may perform better when the local sensor estimates are weakly correlated.

It can be observed from Table 1 that the CI method incurs high computational cost as compared
to the other methods. To observe the effect of data dimension on the computation time of EM methods,
we randomly generated data with different dimensions for evaluation. Figure 11 depicts the average
computation time for 10,000 runs of each method for fusing two data sources of increasing dimension.
Although, the ME methods perform efficiently for low dimensions of data, these methods may become
inefficient with the increase in the dimensions of data sources as seen from Figure 11.
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4.3.3. Analysis of Ellipsoidal Methods for Three Sensors

In some situations, more than two sensors may provide an estimate of a particular state in a
distributed sensors system. The role of the data fusion framework is to provide a consistent and
minimum variance fused solution when more than two sensors are involved. The framework of all the
three ME methods are devised for fusing two sensors only. Conservative solutions can be achieved for
fusion of more than two sensors by sequentially applying the ME methods in a decentralized fashion
similar to SCI [96]. The CI method, on the other hand, provides a generalization to n sensors [49].
The CI method computes an estimate PCI for n sensors by combining the individual covariances

Pi, i = 1, . . . , n with scalars ωi, such that,
n
∑

i=1
ωi = 1 is retained. The fused mean and covariance

estimate for n sensor estimates are then obtained as,

xCI = PCI(ω1P−1
1 x̂1 + ω2P−1

2 x̂2 + . . . + ωnP−1
n x̂n) (39)

PCI = (ω1P−1
1 + ω2P−1

2 + . . . + ωnP−1
n )−1 (40)

However, a simple example reveals that the minimum overestimate of CI for more than two
sensors does not hold.

Example. Consider an illustrative example with the following three sensor estimates,

x̂1 =

[
0
0

]
, P1 =

[
0.5 0
0 8

]
, x̂2 =

[
0
0

]
, P2 =

[
6.1250 3.2476
3.2476 2.3750

]
, x̂3 =

[
0
0

]
, P3 =

[
6.1250 −3.2476
−3.2476 2.3750

]
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Figure 12 depicts the corresponding covariance ellipsoids of the three sensors. The fused
covariance of the three sensors for different values of correlation lies inside the hexagonal intersection
area of the three ellipsoids. By definition, the CI method should provide a tight overestimation of
the hexagonal intersection region as shown in Figure 12 as ε(0, PA

CI). However, trace minimization

of PCI = (
n
∑

i=1
ωiP−1

i )−1 leads to a larger overestimate than the actual one. This means that the

generalization of CI as a minimum tight overestimate for more than two sensors must be different
than as proposed in [49]. Figure 13 shows the fused results provided by sequentially applying the
ME methods to three sensors. First, the two sensor estimates are fused together, followed by fusion
of the third estimate. The fused covariance ellipsoid for three sequences, that is, P123, P132 and P231

are depicted. Consequent of ME methods definition, the fused result for three sensors must be a
maximum ellipsoid inside the intersection region ε(0, PA

EM) as shown in Figure 13. However, the ME
methods provide underestimated fused solutions as depicted in Figure 13. It can also be noted that
different sequence of fusion result in different fused ellipsoid.
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Remarks. The choice of a fusion method under the assumption of unknown cross-correlation depend on the
underlying fusion problem. The data decorrelation methods remove the correlation before fusing the estimates
but are limited to small network topologies. It is always preferable to use exact cross-correlation in a distributed
fusion architecture to achieve optimality. As such, if there is some prior knowledge of the extent of the correlation,
then using that information can improve the estimation accuracy. The CI method can be used to consistently
fuse data with unknown correlation. However, the CI results are conservative with the possibility of a much
lower accuracy. The EI method can be used to obtain a less conservative solution. Table 2 summarizes the
characteristics of various methods for fusion under unknown correlation.
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Table 2. Summary of various algorithms for fusion under unknown correlation.

Framework Algorithms Characteristics

Data
Decorrelation

Double counting
removal [27,28,76,77]

• Tracking and explicitly removing the double counting
• Assumes a particular network topology
• Neither scalable nor practical solution for a large network

of sensors

Measurement
reconstruction [25,26]

• Decorrelating the sequence of measurements by
reconstructing the measurements at fusion node

• Internal information like Kalman gain, association weights,
and sensor model information etc. are required to
reconstruct the measurements

• Inefficient and impractical for large distributed
sensor networks

Modeling Correlation [29–32,84]

• Approximate the unknown cross-covariance based on a
function of correlation coefficient

• A closed form solution for scalar-valued and approximate
solution for fusion of vector-valued two estimates

• Improved fusion performance by incorporating knowledge
of cross-correlation

• Difficult to interpret cross-correlation for
multiple estimates

Ellipsoidal
Methods

Covariance Intersection
Method [14,33–35]

• Provides a consistent and minimum bound for two
data sources

• Does not provide a tight overestimate for more than two
data sources

• Computationally demanding

Largest Ellipsoid
Method [36]

• Provides a less conservative estimate of fused covariance
than CI

• Fused mean value is based on the independent assumption
of KF

Internal Ellipsoidal
Approximation [37,38]

• Approximate the fused covariance by an internal
maximum ellipsoid

• Based on heuristics

Ellipsoidal Intersection
Method [39]

• The fused mean and covariance is calculated based on
mutual and exclusive information of the two data sources

• Less conservative than CI but may provide inconsistent
fused results in some cases

• Limited to the fusion of two data sources

5. Fusion of Inconsistent and Spurious Data

The distributed fusion methodologies discussed above assume that input sensor mean and
covariance estimates are consistent. In other words, the covariance provides a good approximation
of all disturbances affecting the sensor measurements. However, in reality, uncertainties in sensor
measurements may not only come from noise but also from unexpected situations, such as short
duration spike faults, sensor glitches, permanent failure or slowly developing failure due to sensor
elements [40–42]. Since these types of uncertainties are not attributable to the inherent noise, they are
difficult to model. Subsequently, the estimates provided by a sensor node in a distributed sensor
network may be spurious and inconsistent. Fusing such inconsistent estimates with correct estimates
can lead to severely inaccurate results [43]. Hence, a data validation scheme is required to identify
and eliminate the sensor inconsistencies before fusion in a distributed architecture. Various methods
exist in the literature to tackle the issue of data inconsistency and can be broadly categorized into three
groups based on their approach to the problem. These groups of methods are overviewed one by
one here.
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5.1. Model Based Approaches

The model-based approaches, also known as analytical redundancy approaches [45,46] identify
functional relationships among the measured states through a mathematical model that can either be
developed from the underlying physics or derived directly from the measurements. A residual rk is
then generated between the actual sensor output yk and estimated modeled output ŷk, i.e.,

rk = yk − ŷk

A zero-mean residual, that is, E[rk] = 0 mean no fault and deviation of the mean from zero
signify presence of fault. In Reference [120], a Nadaraya-Watson statistical estimator and a priori
observations are used to validate the sensor measurements. In References [121–123], residuals or
innovations generated by Kalman filter (KF) were used for faults detection. The faults are identified
by statistical tests on the whiteness, mean and covariance of the residuals. A failure detection
approach for GPS integrity monitoring system based on KF was proposed in Reference [123].
The idea is to process subsets of the measurements by a bank of auxiliary KFs and use the generated
estimate as a reference for failure detection. In Reference [124], the KF prediction was used as
a reference to detect inconsistencies in sensor measurements. An adaptive sensor/actuator fault
detection and isolation scheme based on KF for an Unmanned Aerial Vehicle (UAV) was proposed in
Reference [125]. The method detects faults in the system by applying statistical test on the innovation
covariance of KF. The method then adapt the process and measurement noise accordingly to avoid
the deterioration of state estimation due to inconsistencies. This method is used in Reference [126]
for improving the accuracy of personal positioning systems for outdoor environment. Common tools
for evaluating the statistical characteristics of the residuals are generalized likelihood ratio test [127],
chi-square test [128] and multiple hypothesis test [46]. Some authors have also proposed Extended KF
(EKF) [129,130] and Unscented KF (UKF) [131] based approaches with the advantage of inconsistencies
detection in non-linear systems. Multisensor data fusion with fault detection and removal based
on Kullback-Leibler Divergence (KLD) for multi-robot system was proposed in Reference [132].
The method computes the KLD between the a priori and posteriori distributions of the Information
Filter (IF) and uses Kullback-Leibler Criterion (KLC) thresholding to detect and remove the spurious
sensor data.

Some researchers have also used fuzzy logic [133,134], knowledge-based [135] and neural
network (NN) [136–139] based approaches to identify sensor inconsistencies. In Reference [135] a
knowledge-based machine learning approach is used to solve the interference and drift problem
caused by sensor aging in E-nose. A probabilistic NN for sensor validation of jet engines was
presented in Reference [136]. The network was trained on comprehensive data of faulty and healthy
situations generated from an engine performance model. A turbo fan engine was used to evaluate
the performance of the network with high success rate of faults identification. As compared to
the conventional model based approaches which require bank of estimators for sensor validation,
an efficient AI based method was proposed in Reference [137] for fault detection. The method employed
a single NN estimator and achieved the same performance as the group of parallel estimators but with
much lower computational cost. In Reference [140], the residual of a recurrent neural network (RNN)
was used to identify faults in sensor and actuator of non-linear systems. A NN for fault detection
in aircraft sensors and actuators was proposed in Reference [139], where EKF was used to update
the weights of the neural network. The use of EKF for tuning the weights of neural network result
in a fast convergence rate of learning. The method was found to be more accurate and efficient than
conventional NN based approach in faults detection.

The model based approaches can be used by individual sensor nodes in a distributed architecture
to validate their own estimates before transmitting it to the fusion center. In addition, it can be also
employed at the central node for validating the incoming multisensory data. The disadvantage of
the model based approaches is the requirement of explicit mathematical model and prior information
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for sensor validation which may not be available in some cases. The learning based approaches
ease this requirement by learning the statistical characteristics of the system from training data.
However, learning based approaches need a large amount of data for training and depend on the
accumulated experience and data history of the target system.

5.2. Redundancy Based Approaches

In data/hardware/sensor redundancy based approaches, two or more sensors measure the same
critical state and then detect as well as isolate the faulty sensors by consistency checking and majority
voting [45]. For instance, voter-based fault detection system for multiple sensors subsystems of GPS,
inertial navigation system (INS) and Doppler attitude and heading reference system (DAHRS) was
presented in Reference [47]. The method is based on the overlap of Gaussian confidence regions
of two local sensor estimates in a decentralized system. A sensor voter algorithm to manage three
redundant sensors was presented in Reference [141]. Inconsistency detection for hypersonic cruise
vehicles (HCVs) based on redundant multisensor navigation systems was proposed in Reference [142].
The system consists of two blocks, where the first block consists of complementary sensors of inertial
navigation system (INS) and GPS, and the second block comprises of INS and celestial navigation
system (CNS). The method uses chi-square test and sequential probability ratio test (SPRT) to detect
inconsistencies in the local sensor estimates of each block before their data is sent to the central
node for obtaining a global estimate. Fault detection and isolation application on redundant aircraft
sensors based on fuzzy logic and majority voting were proposed in References [143,144], respectively.
Without any prior information, a method to detect spurious sensor data based on Bayesian framework
was proposed in Reference [40,41]. The method adds a term to the Bayesian formulation which has the
effect of increasing the posterior distribution when measurement from one of the sensors is inconsistent
with respect to the other. Gaussian likelihood function of a state X in the presence of measurements z1

and z2 from a pair of sensors can be written as,

p(Z = zn|X = x ) =
1

σn
√

2π
e
{−(x−zn)2

2σ2
n
}
n = 1, 2 (41)

The posterior fused mean and covariance can be computed as,
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The method developed a modified Bayesian (MB) formulation as,

p(X = x|Z = zn ) ∝
1
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√

2π
e
− (x−z1)

2
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1 f × 1
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− (x−z2)
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2 f (42)

where f =

{
m2

m2−(z1−z2)
2

}
and m represent the maximum expected difference between the

sensor readings. The factor f depends on the squared difference between the measurements
and has the effect of increasing or decreasing the variance of the posterior fused distribution as
compared to individual sensor variances. Thus, the MB framework is capable of determining if
fusing two measurements would lead to an increase or decrease in posterior distribution variance.
Subsequently, a decision to fuse or not can be made based on an increase or a decrease in the
posterior variance. In References [43,145], the MB framework along with Kalman filtering is applied to
improve the accuracy of robotic position estimation in the presence of inconsistencies. In Reference [8],
a fault-tolerant multisensor perception system was presented for mobile robot localization with
redundant parallel blocks. Where each block consists of duplicate sensors and fusion block. The idea
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is to compare sensors measurements of the redundant sensors from each block as well as the KF fused
result of individual block to detect inconsistencies.

Redundancy based approaches may fail if multiple sensors could fail simultaneously. This is
possible due to the fact that redundant sensors operate in the same working environment and thus tend
to have similar usage life expectations. In Reference [146], a combination of model based approach
and majority voting is used to remove modeled and unmodeled faults in a target tracking scenario.
Similarly, a hybrid of data redundancy and analytic redundancy based on unscented and extended
Kalman filter is proposed in References [147,148] respectively.

5.3. Fusion Based Approaches

Some authors also explored fusion of inconsistent sensor estimates within the Bayesian
probabilistic framework. For instance, Uhlman proposed a Covariance Union (CU) [49] to consistently
fuse spurious data coming from multiple sources. The CU method unifies two or more sensor estimates
that are inconsistent. Given n local estimates (x̂1, P1), (x̂2, P2) . . . (x̂n, Pn), the CU method provides a
unioned estimate (x̂u, Pu), which is consistent with all of the estimates as long as one of the estimate
(x̂i, Pi) is consistent. The CU constraint is,

Pu ≥ P1 + (u− x̂1)(u− x̂1)
T Pu ≥ P2 + (u− x̂2)(u− x̂2)

T ...Pu ≥ Pn + (u− x̂n)(u− x̂n)
T (43)

For a pair of estimates, a close form representation of CU fused covariance can be obtained.
Define:

P1 = E1D1ET
1

Then
I = TP1TT and P′2 = TP2TT = E2D2ET

2

where T = D−1/2
1 ET

1 and I is the identity matrix. Then, we can write

Pu = E1D1/2
1 E2max(D2, I)ET

2 D1/2
1 ET

1

where max is the element wise maximum value of D2 and I matrices. Figure 14 shows the merging
of two coincident estimates by CU. The union fused result for multiple sensor estimates can be
obtain by solving the CU constraints of (43) by numerical optimization [149]. In References [51,150],
the CU method is explored to consistently fuse more than two sensor estimates. To ensure consistency
for more than two estimates, the CU method should be collectively applied rather than pairwise
recursively [150]. Furthermore, an implementation of the CU algorithm in MATLAB and C is developed
in Reference [150]. However, the implementation incurs a high computational cost and is not practical
for real-time applications. Proof that the CU method provides a minimum enclosing ellipsoid for
fusion of local estimates is given in Reference [151]. A Generalized Covariance Union (GCU) to merge
multiple hypotheses in tracking applications is presented in Reference [48]. The GCU method provides
tighter estimates than CU by exploiting the hypothesis probability bounds. The method reduces to
CU when hypothesis probability is absent and to standard mixture reduction (SMR) methods when
the hypothesis probability is exactly known. The CU method is studied for navigation [152] and in
comparison with other track-to-track fusion algorithms [129], and is shown to perform well in the
presence of inconsistencies. A hybrid of the CI and CU method for network-centric data fusion is
shown to be highly flexible and resilient against corrupted sensor data [153]. However, the CU method
incurs a high computational cost and results in an inappropriately large conservative fused solution.

Remarks. It should be noted that, to ensure consistency in distributed data fusion, the effect of spurious
data needs to be taken into consideration in addition. To this end, methods for identifying spurious data and
managing consistency under spurious data, either by removing spurious data or enlarging fused covariance
are introduced. The choice of fault-tolerant methods for distributed data fusion depends upon the underlying
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problem and availability of system information. A suitable model-based approach can be employed by local
sensors for sensor validation, whenever prior information regarding the system model is available. Without any
prior information, the redundancy of a distributed architecture can be exploited to identify any inconsistency
in the fusion pool. However, redundancy based approaches may fail in the case in which multiple sensors
simultaneously provide inconsistent data. The CU method can be used to consistently fuse spurious data
coming from multiple sources. Yet, the method is computationally expensive and results in inappropriately
large conservative fused results. The fault-tolerant methods can also be jointly applied to improve the fusion
performance in the presence of inconsistencies and solve complex fusion problems according to practical demands.
Table 3 summarizes the characteristics of fusion approaches for inconsistent data sources.
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Table 3. Overview of the methodologies for inconsistent and spurious data sources.

Approaches Characteristics

Model based approaches
[121,122,125,132,135,137,139]

• Identification and subsequent removal of inconsistent and
abnormal data

• Uses residuals generated between the modeled outputs and
actual sensor measurements to identify inconsistency

• Need prior information and limited to specific failure model(s)

Redundancy based approaches
[40,41,43,47,141,143,144]

• Uses consistency checking and majority voting to identify
inconsistency among multiple sensor estimates of the
same state

• Identification of corrupted sensor estimates without
prior information

• May fail if inconsistent estimates are provided by multiple
sensors simultaneously

Fusion based approaches [48,49]

• Provides a consistent fused result as long as one estimate
is consistent

• May results in inappropriately conservative fusion solution
• Computationally demanding

6. Conclusions and Future Directions

In this paper, we reviewed and analyzed the theories and approaches for multisensor data fusion
in a distributed architecture. The reasons for the dependencies of local sensor estimates are discussed
and various fusion algorithms for correlated data sources are summarized. Both classic results
and recent developments in distributed multisensor data fusion with the assumption of unknown
correlation are analyzed. Several fault-tolerant approaches for identification and removal/fusion of
inconsistent sensor data are also reviewed. The appropriateness of the fusion technique depends on
the underlying problem and the established assumptions of each method. Based on literature review,
future directions are summarized here:
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• The algorithms for fusion under unknown correlation in literature are mostly devised for the
two-sensor case. A general fusion framework for more than two data sources under unknown
correlation is still an open research question.

• A major limitation of the distributed fusion methods is that almost all the methods described are
based on the traditional KF framework. Investigating these methods within a more powerful
framework, such as particle filter, may be an interesting topic.

• While some research has been done on an explicit characterization of correlation for
low-dimensional data sources, a general description and mathematical model for unknown
correlation of multiple data sources is still an open question.

• Another interesting topic is the use of neural network for estimating the unknown correlation
among multiple sensors in distributed architecture.

• Detection and removal of inconsistent and spurious sensor estimates in a distributed fusion
architecture under unknown correlation is also an interesting problem.

• Examining the distributed fusion algorithms for network of nonlinear systems under unknown
uncertainties may be an open and challenging research direction.

• Lack of a standard evaluation framework to assess the performance of distributed fusion
algorithms is another issue. Most of the fusion algorithms are either tested on simulated data
with arbitrary assumptions or applied to a specific real-world problem.
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