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Abstract: In this study, we present the Ensemble Convolutional Neural Network (ECNN),
an elaborate CNN frame formulated based on ensembling state-of-the-art CNN models, to identify
village buildings from open high-resolution remote sensing (HRRS) images. First, to optimize and
mine the capability of CNN for village mapping and to ensure compatibility with our classification
targets, a few state-of-the-art models were carefully optimized and enhanced based on a series of
rigorous analyses and evaluations. Second, rather than directly implementing building identification
by using these models, we exploited most of their advantages by ensembling their feature extractor
parts into a stronger model called ECNN based on the multiscale feature learning method. Finally, the
generated ECNN was applied to a pixel-level classification frame to implement object identification.
The proposed method can serve as a viable tool for village building identification with high accuracy
and efficiency. The experimental results obtained from the test area in Savannakhet province, Laos,
prove that the proposed ECNN model significantly outperforms existing methods, improving overall
accuracy from 96.64% to 99.26%, and kappa from 0.57 to 0.86.

Keywords: Ensemble Convolutional Neural Networks; remote sensing; building detection; village
mapping; multiscale feature learning

1. Introduction

Given that accurate building maps are often unavailable or are outdated in undeveloped
village areas, building identification in such areas has become a significant research field in remote
sensing [1]. Insufficient building information in village leads to inconvenience and has several negative
consequences [2]. First, in the event of a catastrophe, building maps are indispensable [3]. For instance,
during catastrophic events such as the aftermath of the 2011 Tōhoku earthquake and tsunami [4],
land conditions change rapidly with secondary disasters such as landslides, tsunamis, and continual
aftershocks [5]. To save victims and provide disaster relief in a convenient way, it is important
to swiftly update the locations of residential buildings and information about other land features.
Furthermore, in village planning, which aims to benefit village inhabitants, public facilities need
to be developed based on information about the distribution of residential buildings [6]. In this
study, we define village buildings as any settlement spread out over a length of 2 km. In contrast
to densely packed urban buildings, village buildings have distinct characteristics, for instance, they
are sparsely scattered, change arbitrarily owing to the lack of regulation, and do not have distinct
architectural features. Moreover, village buildings are usually mixed with complex and diverse land
features such as agricultural lands, mountains, and rivers [7]. Such complexity of spatial and structural
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patterns makes village building identification a fairly challenging problem, and the usage of building
maps ensures that the tools used for building identification provide rapid, accurate, efficient, and
time-sequenced results.

With the rapid development of remote sensing satellite imaging techniques in recent years,
a considerable number of highly spatially resolved images are available [8–10]. Owing to the high
price–performance ratio, many remote sensing image classification studies are performed using open
high-resolution remote sensing (HRRS) data [11–13]. In this study, three-band HRRS images from
Google Earth (GE) [14] and Bing Maps [15] are used as the data source and applied to village building
mapping in a large rural region.

Recently, deep convolutional neural networks (CNN) have been successfully applied to many
pattern-recognition tasks [16]. Compared with most existing classification methods, which can only
generate low- or middle-level image features with limited representation ability, CNN does not
require prior manual feature extraction [17,18]. A large volume of abstract features can be extracted
automatically based on gradient descent and back propagation algorithms, thus resulting in higher
accuracy and efficiency [19,20].

CNN-based pixel-level classification is one of the most important and popular topics in the
geoscience and remote sensing community, and it can be used to efficiently identify individual land
features in greater detail, and significant progress to this end has been achieved in recent years [21–23].
Related works have been introduced in our previous work [24]. In this study, we focus on the use of
CNN for pixel-level [25] classification via HRRS images according to our previous work, according to
which, pixel-level village building identification is implemented based on a shallow CNN structure
that can achieve relatively high accuracy when using GE images compared to other machine learning
methods. Although the previous CNN structure proved to be very useful for exploring features and
classification, the unstable performance in some study areas indicates that it might be inadequate for
exploiting the full potential capability of CNN.

Identification performance depends highly on the structure of the CNN model [26]. To adapt
CNN for village building identification with high accuracy, we can apply state-of-the-art models such
as AlexNet [27], VGGNet [28], GoogLeNet [29], SqueezeNet [30] achieved in ImageNet [31] Large-Scale
Visual Recognition Challenge (ILSVRC) [26]. The high feasibility of applying the aforementioned
models has been proven by many studies in different fields [32–36]. To make the most
of these mentioned state-of-the-art models and to ensure compatibility with our experiment,
we optimized and enhanced their architectures into four self-designed structures named AlexNet-like,
VGGNet-like, GoogLeNet-like and SqueezeNet-like via rigorous experiment while fully considering
the characteristics of the input HRRS images and identification targets. The identification capability
of an individual optimized CNN model is limited. To make the most of the single feature extraction
capability, a promising solution would be to create an ensemble of several CNN models. In this study,
we employ multiscale feature learning [37] to achieve the goal.

Multiscale feature learning schemes such as recurrent neural networks (RNNs) [38] and scene
parsing using CNNs [39] have been showing tremendous capabilities in different tasks. In multiscale
feature learning, several paralleled CNN models of varying contextual input size are implemented
to extract features, and thereafter, the output of each CNN is ensembled and concatenated into
a classifier. In practice, Martin et al. [40] implemented multi-class land feature classification by
using four stacked CNN models. To improve and smooth semantic image segmentation, Marmanis
et al. [41] and Farabet et al. [42] implemented multi-scale segmentation-based parallel CNN architectures.
Richard et al. [43] and Pedro et al. [44] achieved multiscale feature learning by stacking multiple shallow
networks with tied convolution weights on top of each other. Ding et al. [45] combined deep CNN with
multiscale feature for intelligent spindle bearing fault diagnosis. In the case of medical image processing,
Kiros et al. [46] utilized stacked multiscale feature learning for massive feature extraction and Tom et al. [47]
for a deep 3D convolutional encoder. Many studies have used RGB-D images to implement classification
and segmentation, [48–51], rather than inputting a four-dimensional image into a single CNN in a
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directed way; features of information in RGB and depth bands are usually extracted based on well
designed parallel CNNs respectively. Finally, the obtained features are merged in a fully-connected
layer for implementing different tasks. The multiscale feature learning method can be used effectively
not only in the computer vision field but also in other fields such as recommender systems [52],
in which different features of data types such as text, image, social relationship, and user information
are extracted using parallel CNNs; the final recommendation is provided based on classification of the
ensembled features [53–55].

In this study, we present an elaborate formulated CNN model called Ensemble Convolutional
Neural Networks(ECNN). Different from related works, ECNN achieves multiscale feature learning
by ensembling the feature extractor part of four optimized state-of-the-art models, and we apply it to
implement the pixel-level village building identification task.

The main contributions of this study can be summarized as follows:

• We explored how to construct CNN architecture that can adapt to the village building
identification task based on insightful and in-depth analysis.

• We optimized state-of-the-art CNN models by using rigorous principles to explore their potential
for pixel-level building identification via HRRS images.

• We presented a novel CNN frame called ECNN based on multiscale feature learning by
emsembling parallel optimized state-of-the-art CNN models.

• We implemented the proposed method for village building identification and found that it
outperforms the existing state-of-the-art methods, achieving an overall accuracy and kappa
coefficient of 99.26% and 0.86 respectively.

The remainder of this paper is organized as follows. In Section 2, we describe the study area and
the experimental dataset. Details about the methods are presented in Section 3. In Section 4, we present
the experimental results and discuss the capability of the proposed method in comparison to existing
methods. Finally, we present our conclusions and a few proposals for future work in Section 5.

2. Data Source

2.1. Study Area

To test the feasibility of the proposed method in different regions and by using different data
sources, we selected rural areas in developing countries such as Laos and Kenya. One of the study areas
is located in Kaysone, Savannakhet province in Laos. Its longitude and latitude range from E104◦47′22′′

to E104◦49′54′′ and from N16◦34′28′′ to N16◦36′26′′, respectively, and it measures approximately
12.08 km2. The study area was a complex rural region with many different types of landscape, including
abundant natural components such as mountains, rivers, and vegetation cover, as well as artificial
areas such as villages, roads, and cultivated land, which are typical of rural areas. The other study area
was Kwale, a small town in the capital of Kwale County, Kenya. It is located at around S4◦10′28′′ and
E39◦27′37′′, 30 km southwest of Mombasa and 15 km inland, and it measures approximately 30.20 km2.
The area was mainly covered by forest and other desolate landscapes, and the buildings were rather
scattered. A few samples from the study area are shown in Figure 1.



Sensors 2017, 17, 2487 4 of 22

(a) (b)

Figure 1. Study area example (a), located in Savannakhet Province, Laos, shows abundant land
features; Study area example (b), located in Kwale Province, Kenya, with relatively desolate land
features. The resolution of all images is 1.2 m.

2.2. Data

The remote top-view RGB image of Kaysone and Kwale, both with a resolution of 1.2 m,
were captured from Google’s satellite map in February 2016 and Bing Maps in January 2016,
respectively. As the training dataset for Laos, we deliberately selected a few typical village/non-village
areas from the data source. In village areas, the training dataset mainly showed land features such
as buildings, roads, rivers, and cultivated lands, while in non-village areas, mountains, forests, and
vegetation cover are the main features. The ground truth map of the village buildings was manually
drawn beforehand by using a polygon-based interaction tool. This ground truth map contained
accurate information of the land categories and was chiefly used for sampling and result detection.
Similar to Laos, the training dataset in Kenya was also selected considering the characteristics and
the diversity of the landscape. The test dataset contained the entire testing area of Laos and Kenya,
and several different types of landscape were shown; the land features in different countries and areas
showed distinctive characteristics. As shown in Figure 1, land features in Laos (Figure 1a) are more
abundant than those in Kenya (Figure 1b). The diversity and complexity of the images also makes
the identification task difficult. This, in turn, warrants that the classification model incorporate all
these conditions.

3. Methods

Figure 2 shows details of the workflow employed in our experiment. First, as introduced in
Section 2.2, the training dataset in our experiment contains two parts: three-band RGB HRRS images
and the corresponding ground truth labels. Importantly, both the complexity and characteristics of
the identification target, and the diversity of land features need to be considered when preparing the
dataset [56]. Second, to optimize and mine the capability of CNN for rural environmental building
identification and ensure compatibility with our classification targets, a few state-of-the-art CNN
structures were carefully optimized and enhanced based on a series of rigorous testing results. Then, we
generated the ECNN model from the ensembling based on the identification capability of the CNN
models. Third, depending on the back propagation and the gradient descent algorithms, the proposed
ECNN structure can learn from the training dataset patterns that map the variables to the target
and output a trained ECNN model that captures these relationships and can identify buildings in
rural environments. Thereafter, cross validation [57] was implemented to verify the feasibility and
performance of the CNN models; here, to evaluate the accuracy and reliability of the result, we used
the confusion matrix [58], kappa coefficient [59] and overall accuracy. Finally, the generated ECNN
model was applied to the prepared testing HRRS dataset to identify village buildings.
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Figure 2. Workflow.

3.1. Convolutional Neural Networks

The CNN method is more robust and yields better performance than other machine learning
methods in image pattern recognition owing to its capability in mining deep representative information
from low-level inputs [28]. A single CNN model performs the steps of convolution [60], non-linear
activation [61], and pooling [62]. With multilayer networks trained by gradient descent and
back propagation algorithms, CNN can learn complex and nonlinear mapping from a high- to
low-dimensional feature space [63].

In this experiment, the input dataset x ∈ Rh×w×c refers to multichannel HRRS images, where each
dimension represents the height, width, and number of channels. The output classification result
y ∈ Rh′×w′×c′ generated by y = H(x, Θ), where Θ denotes a set of parameters called kernels.

In the convolution layer, the input x with bias α ∈ Rc′ is computed by convolutional kernels
Θ ∈ Rh̃×w̃×c̃×c′ . This computation can be formulated as follows:

yi′ j′k′ = H

(
αk′ +

h̃

∑
i=1

w̃

∑
j=1

c

∑
d=1

Θijdk′ × xi′+i,j′+j,d

)
(1)

where H(·) denotes a nonlinear function to generate the hypothesis; instead of saturated activation
methods, here, we use the rectified linear unit (ReLU):

yijk = max{0, xijk} (2)

To implement the subsampling operation, the max-pooling layer [64], which computes the
maximum response of each image channel in a h̃× w̃ subwindow, is used, and it is calculated as follows:

yi′ j′k = max
1<i<h̃,1<j<w̃

xi′+i,j′+j,k (3)

Finally, the classification result can be generated using the softmax function [65]:

yijk =
exp(xi,j,k)

∑c
d=1 exp(xijd)

(4)
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3.2. Model Optimization

In our previous study [24], the identification task was implemented using a simple CNN structure,
in which, the sample window size was 18 × 18, and two convolutional layers followed by average
pooling were implemented with 6 and 12 filters, respectively. Compared with other machine learning
methods, although the preceding CNN structure is very feasible for the purposes of feature exploration
and classification, it might not be effective for mining the complete capability of CNN. In this section,
we aim to optimize the CNN model to achieve better results.

ILSVRC is an annual competition held by ImageNet since 2010, in which research teams
submit programs that classify and detect objects and scenes. It is important to note that in 2012,
AlexNet reduced the error rate to 16% from the previous best of 25%, and in the next couple of years,
more accurate pattern recognition results were obtained using popular models such as GoogLeNet,
VGGNet, SqueezeNet and ResNet [66].

To make the most of these aforementioned state-of-the-art models, we optimized their
architectures by considering the characteristics of the input HRRS images and our identification
targets. Here, we propose self-designed structures called AlexNet-like, GoogLeNet-like, VGGNet-like
and SqueezeNet-like based on rigorous experiments and theories; thereafter, we ensemble these CNN
models into ECNN.

The principle of optimizing CNN architecture is highly based on analyzing the learning curves of
both the training and the cross validation results [67]. In addition to accuracy, two other important
indexes need to be pointed out: bias and variance [68].

In this experiment, both bias and variance lead to severe problems. High bias can cause an
algorithm to miss the relevant relationships between features and target outputs. Here are some ways
to solve this challenge:

• Optimize the accuracy of the input training data. This means the training HRRS images and the
corresponding labels of buildings and other land features must be as accurate as possible.

• Decrease the regularization coefficient λ [69], because doing so can solve
under-fitting-related problems.

• Add number of features, such as implementation of higher-level CNN structures, which could
extract more features

When facing high variance, which leads to over-fitting [70], the problem can be solved by:

• Adding more training samples would be helpful. Data augmentation such as adding more
training HRRS images to the dataset considering the diversity.

• Increase the regularization coefficient λ, which can solve over-fitting problems.
• Decrease the number of features, by using a method such as Dropout [71].

Here, we optimize our model based on the preceding principles. We take the VGGNet-like
(introduced in Section 3.4) structure as an example to explore how to configure the CNN architecture
based on the characteristics of VGGNet. The final promising structure is generated by gradually
enhancing and optimizing a simple initial CNN. Considering the experimental requirement, the three
parameters to be evaluated in our experiment are number of filters, depth of architecture, and input
sample window size. These parameters are connected in a way that determines the total number of
units and the weight values of the entire structure.

The initial architecture is based on the basic CNN model utilized in our previous work. To enhance
the architecture, the number of filters is configured by multiplying the original number of filters by
f = [3 9 25 100 200]. The number of added convolutional layers is donated by y, and it ranges from 2
to 12 in steps of 2; the window size s is the area surrounding the pixel to be classified and is set to
be between 14 and 50 with an interval of 2. We evaluated the effects of each parameter in terms
of accuracy, efficiency, and learning curve; then, we integrated all the optimal settings to obtain a
promising VGGNet-like architecture.
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3.2.1. Influence of Filter

In general, the greater the number of filters, the greater the number of features that can be extracted.
Here, we gradually increase the number of features from the original to f = [3, 9, 25, 100, 200] times in
each convolutional layer. As shown in Table 1, when the number of filters reaches 25 times, the best
training and testing results can be generated, and the model can achieve 98.98% and 0.83 in terms of
testing accuracy and kappa value, respectively. Moreover, from the learning curve (Figure 3), until
200 and 300 times, the model does not encounter the challenge of over-fitting, which means that the
number of features has not saturated yet. Upon adding more filters, the model tends to converge faster.
However, when considering both accuracy and efficiency, the number of filters that can obtain a good
enough result would be suitable.

Table 1. Relationship between number of filters and accuracy.

Training Testing

Structure Para Acc (%) Kappa Epoch (s) Total (min) Acc (%) Kappa Total (s)

Ori 1669 95.31 0.86 1.41 7.06 97.29 0.60 1.59
×3 11917 98.94 0.97 1.57 7.85 98.15 0.72 1.93
×9 97957 99.19 0.98 2.29 11.46 98.22 0.73 3.31
×25 0.73M 99.73 0.99 7.09 35.44 98.98 0.83 10.16
×100 11.57M 99.69 0.99 83.09 415.46 98.79 0.80 88.00
×200 46.18M 97.54 0.92 299.06 1459.27 98.14 0.70 5.67

Although high accuracy could be achieved, the model continued to suffer from unstable
convergence, and it was not stable even after adding 200 times the original number of filters.
The influence of depth of architecture will be explored in the next section.

Figure 3. Influence of number of filters.
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3.2.2. Influence of Depth

CNNs constitute a very important branch of deep learning. The preponderance of CNNs is highly
based on the depth of architecture. By mining deeper and more abstract features and information from
an identification target, usually, a very deep network can achieve higher accuracy. In recent years,
owing to the improvement in the computational capability and hardware, it has become possible to
construct and compute very deep networks. Recent state-of-the art architectures such as VGGNet and
ResNet make the most of this principle.

In this experiment, to explore the effect of depth on the CNN model for identification of buildings
in rural environments, we increased the number of convolutional layers from the original 2 to 14 in
steps of 2. Both the training testing settings and the results are shown in Table 2.

Table 2. Relationship between depth and accuracy.

Training Testing

Structure Para Acc (%) Kappa Epoch (s) Total (min) Acc (%) Kappa Total (s)

Ori 1669 93.02 0.79 1.49 74.29 94.58 0.42 1.73
+2 Conv 4891 96.30 0.89 2.06 103.16 96.84 0.58 2.60
+4 Conv 8133 96.21 0.88 2.73 136.93 98.06 0.68 3.55
+6 Conv 11,335 97.45 0.92 3.44 172.09 98.18 0.70 4.65
+8 Conv 14,557 97.54 0.92 4.16 208.19 98.14 0.70 5.67

+10 Conv 17,779 97.80 0.93 4.94 247.03 97.67 0.65 6.73
+12 Conv 21,001 78.97 0.00 6.18 308.87 97.53 0.00 7.81

At the outset, model accuracy increases as the network depth increases. However, when the
number of convolutional layers is higher than 12, the network becomes stocked and even loses
its identification capability. After rigorous analysis, we found that this problem is caused by
gradient vanishing [72]. As we know, CNN is based on gradient descent and back propagation.
When implementing the gradient descent algorithm, the input signal will be activated by activation
function in the saturated or diverged region. Thereafter, with propagation processing, this phenomenon
will be propagated in the entire model and will cause the corresponding gradient to vanish and explode.

This challenge can be overcome in several ways. For instance, we can use unsaturated activation
such as Relu to relieve the problem to a certain degree. Moreover, the batch normalization [73] method,
in which feature scaling is performed after convolution can be used; with this method, the result falls
into the vanishing and exploding region can be avoided. In this experiment, we selected the simplest
solution of adding depth to the most suitable degree, which can yield promising results while avoiding
the gradient vanishing problem. Considering efficiency and accuracy, here, we added six convolutional
layers into the original structure; as a result, we obtained testing accuracy and kappa value of 98.18%
and 0.70 respectively.

3.2.3. Influence of Window Size

The size of the input sample is a very significant factor that influences identification capability.
Considering the image resolution and the characteristics of village buildings, the ideal window
size must be slightly bigger than that for ordinary buildings, while information about a building’s
surroundings must be included as well. The input window size of our original basic architecture
is 18 × 18, which might be too small to extract enough valuable features.

Herein, we change the window size from 14 to 50 with intervals equal to 2; the parameter amount
increases along with the increasing window size. For comparison, the experiment is conducted using a
basic and a complex CNN structure, which is constructed based on the previous optimization principle.
In particular, we focus on comparing the effect of window size on multiple relations, such as size 14
with 28, 16 and 32, etc., because a double-sized window contains the same information as a small one.



Sensors 2017, 17, 2487 9 of 22

From the testing result (Figure 4a), by implementing a simple structure, a double-sized window
could yield better results, because it contains more abundant information that a small-sized window.
However, if we implement a complex structure, although a double-sized window contains more
information, we cannot always obtain better results (Figure 4b).

(a) (b)

Size Size

Figure 4. Window size in multiple relations. (a) with a simple structure; (b) with a complex structure.

With the same CNN structure, bigger window size can obtain more features and parameters,
but other methods such as adding filters and depth can also increase the amount of features. If the
feature extraction capability of the model is weak, the big-size samples would help it to obtain more
information than small-size ones, which would lead to good results. However, when we use a complex
structure which can extract sufficient features, bigger window size can no longer yield good results,
and extremely big window size might yield redundant and useless features, which lead to bad results.
In this experiment, we choose a window size that is 50% bigger than in the ordinary architecture,
with an adaptive number of kernels and depth. If the model suffers from over-fitting, herein, we also
implement Dropout to address the problem.

In conclusion, to take full advantage of state-of-the-art CNN models, we optimized and enhanced
them into new ones that match the village building identification task based on rigorous principles and
experiments. Furthermore, we also visualized the representation of each layer to evaluate the feasibility
of the model; here, take features extracted by VGGNet-like as an example. In later sections, we will
introduce the self-designed models: AlexNet-like, VGGNet-like, GoogLeNet-like, and SqueezeNet-like.

3.3. AlexNet-Like

AlexNet is a revolutionary CNN architecture [27]. The parallel and merged structure of this
architecture makes it suitable for extracting two sets of features while sharing information between
the two sets. Deep CNN can be formulated elaborately with very high accuracy. Moreover, by
running the model on GPUs implemented in CUDA, it becomes feasible to train the CNN model on
large-scale datasets.

There are a few tricks of AlexNet in terms of both structure and processing. First, image
preprocessing is conducted by only subsampling and feature scaling. Then, instead of the saturated
activation method, AlexNet implements Relu, which is very efficient and six times faster than tanh [74],
and it can avoid gradient vanishing and exploding to a certain degree. Third, given its parallel structure,
AlexNet can be efficiently trained on multiple GPUs, and every GPU shares half kernels. To reduce
over-fitting, AlexNet also employs tricks such as data augmentation, Dropout, and overlapping pooling
structure. Finally, the stochastic gradient descent (SGD) method [75] is used with configurations such
as weight decay, and gradually reducing momentum and learning rate.

In this experiment, we rigorously optimized AlexNet into the AlexNet-like architecture as shown
in Figure 5. To this end, we reduced the input size to 30 × 30, and optimized internal settings such
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as quantity of filter and kernel size based on the optimization principle, which increased the model’s
efficiency by reducing the total number of parameters from about 60 million to 67,665.
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Figure 5. AlexNet-like architecture.

3.4. VGGNet-Like

VGGNet is short for Very Deep Convolutional Networks. As its name suggests, VGGNet addresses
the important aspect of CNN architecture design. The depth of this architecture makes it suitable for
mining very deep and abstract features [28]. The architecture steadily increases the depth of networks
by adding convolutional layers, and the quantity of filters gradually increases from the start to the end.
Very small convolutional filters of size 3 × 3 are used in all layers, and the 1 × 1 filter can be seen as a
linear transformation of the input channels. Other layers such as Zeroppading, Maxpooling, Flatten,
Dense and Dropout also increase its identification capability. To avoid over-fitting, we must eliminate
redundant features by using Dropout.

We propose the VGGNet-like architecture (Figure 6) in this experiment, which is very effective for
identifying buildings in rural environments based on HRRS images. VGGNet-like is optimized by
decreasing the depth quantity and filter size while retaining its original architecture. After optimization,
the number of parameters decreases from 140 M to 70,453, which makes the model easy to train.
The detailed settings are shown in Table 3.
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Figure 6. Very Deep Convolutional Network (VGGNet)-like architecture.
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Table 3. VGGNet-like architecture

Layer Output Shape Kernel Size Scale Para Connect to

Input (30, 30, 3) - - - -
Conv 1 (30, 30, 10) (5, 5) - 760 Input
Conv 2 (30, 30, 10) (5, 5) - 2510 Conv 1
Conv 3 (26, 26, 10) (5, 5) - 2510 Conv 2

Pooling 1 (13, 13, 10) - 2,2 0 Conv 3
Conv 4 (13, 13, 18) (4, 4) - 2898 Pooling 1
Conv 5 (13, 13, 18) (4, 4) - 5202 Conv 4
Conv 6 (10, 10, 18) (4, 4) - 5202 Conv 5

Pooling 2 (5, 5, 18) - 2, 2 0 Conv 6
Flatten (648) - - 0 Pooling 2
Output (1) - - 649 Flatten

Total Parameters: 19,731

To intuitively understand the CNN activations for village buildings, we visualize the
representations of each layer by reconstructing features from simple patterns to complex ones with the
technique proposed in [76] using VGGNet-like, shown in Figure 7.

Original Conv1 Conv2 Conv3 Pool1 Conv4 Conv5 Conv6 Pool2

Figure 7. Reconstruction of Convolutional Neural Network (CNN) activations from different layers of
VGGNet-like.

Due to the limitation of resolution, the external characteristics of village buildings cannot be shown
clearly in some regions. However, the features extracted by convolutional layers still characterize
village buildings well and can be reconstructed to images similar to the original image with more
abstract information and blurriness as one progresses toward deeper layers. The visualization results
also indicate the feature extraction capability of our self-designed models.

3.5. GoogLeNet-like

The main innovation of GoogleNet is its use of an architecture called Inception [29]. In general,
Inception is a network in network structure, and the optimal local sparse structure of a vision network
is spatially repeated from the start to the end. Three Inception structures used in different circumstances
are introduced: typically, 1 × 1 convolution is used in Inception to compute reductions before the
expensive 3 × 3 and 5 × 5 convolutions.
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GoogleNet provides us with an inspiration of how to build a high-capability architecture. Most of
the identification capability progress relies not only on more powerful hardware, large datasets and
bigger models, but also and mainly on new ideas, algorithms, and improved network architectures.

By learning from GoogleNet, in this experiment, we built a GoogleNet-like structure as shown
in Figure 8. We established the Inception architecture, while optimizing the number and sequence of
layers and filters.
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Figure 8. GoogleNet-like architecture.

3.6. SqueezeNet-Like

Compared with other architectures, SqueezeNet has very few parameters while retaining similarly
high accuracy [30]. It can achieve AlexNet-level accuracy with 50 times fewer parameters and <0.5 MB
model size, in addition to identifying patterns by using very few parameters while preserving accuracy.
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Figure 9. SqueezeNet-like architecture.

There are some tricks associated with its structure. First is the structure called fire, which
appears like a fire blazing through a matchstick. Instead of the 3 × 3 convolutional core used in
GoogLeNet, SqueezeNet uses 1 × 1 filters in a few layers, because 1 × 1 filters have one-ninth the
number of parameters compared to 3 × 3 filters. The fire module comprises a squeeze convolution
layer (consisting of only 1 × 1 filters), and the aforementioned layer is fed into an expanded layer
comprising a mix of 1 × 1 and 3 × 3 convolutional filters. Then, the number of parameters can be
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decreased by decreasing the quantity of input channels. Third, downsampling is performed at a late
stage in the network so that convolutional layers can have larger activation maps, which leads to
higher classification accuracy. Finally, the output is directly generated by the pooling layer instead of
the fully-connected layer, which can decrease the number of filters dramatically. For instance, the final
convolutional layer obtains features of size 13 × 13 × 1000, and the pooling layer subsamples these
features into size 1 × 1 × 1000, yielding 1000 possibilities in the process.

In this experiment, we designed a SqueezeNet-like architecture (Figure 9) starting from a
standalone convolutional layer; then, we employed four fire modules. Emulating the original
SqueezeNet structure, we gradually increased the number of filters per fire module from the start to
end. Maxpooling (overlapping pooling) with stride was implemented after Conv1 and Merge2, and the
final average pooling layer divides the output into two categories, namely, building and non-building.

3.7. Ensemble Convolutional Neural Networks

Very deep CNN structures with strong feature extraction capability are typically used for larger
images measuring at least 200× 200 pixels [31]. In the case of pixel-level village building identification,
as analyzed in Section 3.2, small HRRS images are used to avoid redundant noise and information,
while very deep structures and a large number of filters are not suitable owing to the problems of
efficiency, accuracy, and robustness. Although the optimized state-of-the-art models can mine several
features, a few important ones are inevitably lost. The feature extraction capability of an individual
model is limited, and a promising solution is ensembling several CNN models into a stronger model
by using the multiscale feature learning method.

Here, we present ECNN, shown in Figure 10, an elaborate CNN frame formulated based on the
ensembling of optimized state-of-the-art CNN models, followed by three layers of neural networks and
softmax to implement classification. Instead of varying the contextual input size, multiscale feature
learning can be achieved by inputting HRRS images of the same size to all CNNs. This would also
help preserve integrated building information.

30

30

3

Input

5

5

100

FC1

OutputAlexNet-like

VGGNet-like

GoogLeNet-like

SqueezeNet-like

Feature Extractor

200

400

FC2
FC3

Merge

Figure 10. Ensemble Convolutional Neural Networks.

By taking full advantage of the different optimized state-of-the-art models’ feature extraction
capabilities, the proposed ECNN structure can achieve better classification results. Moreover, it can
solve the problem of remaining small input image size, while avoiding the serious problems caused by
very deep CNNs, such as gradient vanishing. To the best of our knowledge, there is no existing related
CNN structure to identify village buildings by using HRRS images, and the feasibility of ECNN will
be evaluated in the following sections.
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4. Result and Discussion

We defined the CNN model utilized in our previous study [24] as basic CNN structure, and it
cannot achieve a stable, high kappa value in many testing areas. Moreover, the building identification
capability of the corresponding model is relatively limited. As shown in the previous chapter, based
on the rigorous CNN model optimization and construction principle, we formulated four types of
self-designed structure by using state-of-the-art networks and ensembled them into the ECNN model.

In this chapter, to compare and discuss the village building identification capability of different
models, we first employ the same dataset and study area used in [24]. Thereafter, we use the models
to implement village building identification in practice. We discuss and evaluate the feasibility of
the model in terms of kappa coefficient, overall accuracy, confusion matrix, standard deviation, and
computation efficiency.

4.1. Comparison of Different Models

Here, we set the experimental parameters as follows: number of iterations = 300, window
size = 30× 30, learning rate = 0.03, activation Relu, and Softmax. In terms of dataset, 50,655 and 12,664
images were selected as the training and cross validation samples respectively. Because the land feature
information of non-building areas is much more abundant than building areas in villages, 13,319
are positive samples and 50,000 are negative samples. For the sake of comparison, we selected the
same testing area as in our previous study in Laos. The number of filters and depth information were
different for each architecture. The employed parameter details and the training results are listed
in Table 4.

Table 4. Training result by different CNNs.

Parameter Training

Structure Original New Acc (%) Kappa Epoch (s)

ECNN - 506,288 99.78 0.99 31.21
AlexNet-like 60.97 M 51,249 99.77 0.99 5.42
VGGNet-like 143.67 M 70,453 99.78 0.99 13.81

GoogLeNet-like 7.00 M 37,589 99.71 0.99 6.62
SqueezeNet-like 1.25 M 39,941 99.73 0.99 7.23

Basic - 4349 96.48 0.90 98.22

The training results show that all proposed self-designed CNN models outperformed the
basic ones and achieved very high accuracy of over 99% with much higher efficiency. Thereafter,
we implemented the trained models for testing, and the results in terms of overall accuracy, kappa
value, and confusion matrix are given in Table 5.

Table 5. Testing result by different CNNs.

Testing Confusion Matrix

Structure Acc Kappa Total (s) TN FP FN TP

ECNN 99.15 0.85 56.22 522,162 4519 56 13,263
AlexNet-like 98.95 0.82 16.72 521,048 5633 37 13,282
VGGNet-like 98.95 0.82 25.77 52,1058 5623 50 13,269

GoogLeNet-like 98.91 0.81 12.19 520,837 5844 63 13,256
SqueezeNet-like 98.89 0.81 17.93 520,713 5968 45 13,274

Basic 96.64 0.57 180.70 509,295 17,366 799 12,540

From the testing results, the self-designed models performed much better than the basic structure,
and the accuracy and kappa coefficient increased by about 2.5% and 0.3, respectively. The confusion
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matrix shows that TP and TN increased substantially, while FP and FN decreased, which means
misclassification in the cases of building and non-building areas was solved to a certain degree.
In particular, ECNN, which can achieve a kappa coefficient of up to 0.85, outperformed other methods.
The testing results indicate the feasibility of the model optimization method and the strong capability
of the proposed ECNN method, which is based on ensembling the feature extraction parts of the
state-of-the-art models for village building identification.

4.2. Implementation of CCNs

In this section, we present the building identification results obtained in the study areas in Laos
and Kenya. These results were obtained using the optimized state-of-the-art CNN models and ECNN.
In addition, we discuss their feasibility in terms of accuracy, stability, and efficiency.

To evaluate and compare the robustness of different CNN models, here, we deliberately selected
several representative and typical small-segment areas, where land features and buildings present
different characteristics in terms of color, external structure, and texture. The concrete numerical results
are presented in terms of kappa coefficient, standard deviation, and mean average overall accuracy,
while the intuitive classification results are presented in terms of different colors, where green refers
to true positive, that is, the actual buildings are classified correctly as buildings; blue indicates the
non-building areas that were incorrectly labeled as buildings; red indicates the buildings that were
marked incorrectly as non-buildings; and black indicates true negative, which denotes the correctly
classified non-building areas.

Because villages along river banks are representative of the landscape in many countries [77],
we selected a few related regions, as shown in the top row of Figure 11. Notably, the regular outline of
the bank in some regions is quite similar to buildings, which makes identification very challenging
in many cases. The testing result obtained using the proposed different CNNs (Figure 11, second
row to the final row) shows the models’ excellent identification capability in such regions, and the
majority of buildings are correctly identified, while other land features such as river bank are also
well classified. However, in Figure 11c,f,h, some regions with vegetation cover are misclassified
as buildings, and buildings near the boundary are marked as non-building areas by the optimized
state-of-the art models, while ECNN correctly classified these regions and identified buildings with
higher accuracy. In Figure 11b, there is a region where non-building areas are misclassified by ECNN;
after carefully analyzing the original image, we believe that this was caused by imperfect ground truth.

As shown in Table 6, the proposed ECNN model outperformed the other models, achieving an
average kappa of 0.82 and overall accuracy of 98.34% in regions (a–h). In terms of standard deviation,
ECNN is slightly better than a few other models, but the kappa can be relatively unstable when the
density of buildings is high in a given region.

Table 6. Testing results in bank regions with different CNNs.

Structure a b c d e f g h Mean Std Acc_Mean (%)

ECNN 0.86 0.76 0.83 0.91 0.76 0.78 0.86 0.84 0.82 0.05 98.34
AlexNet-like 0.72 0.74 0.80 0.79 0.73 0.73 0.82 0.69 0.75 0.04 98.06
VGGNet-like 0.74 0.73 0.82 0.76 0.73 0.77 0.81 0.53 0.74 0.08 98.00

GoogLeNet-like 0.80 0.76 0.83 0.80 0.76 0.76 0.84 0.77 0.79 0.03 98.30
SqueezeNet-like 0.69 0.68 0.65 0.63 0.68 0.70 0.82 0.61 0.68 0.06 97.49

The complex and mixed-type village regions that contain an abundance of terrestrial features
such as streams, pools, vacancies, vegetation, and crops were selected for conducting the comparison.
As shown in Figure 12, ECNN could identify buildings in all cases, and it yielded the least false positive
results compared to the other models.
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Figure 11. Identification results of eight small segments in bank regions.
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Figure 12. Identification results of eight small segments in mixed-type regions.
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The detailed results are given in Table 7. ECNN not only achieved the highest average kappa
of 0.77 and overall accuracy of 98.13%, but also the best standard deviation of 0.02. By contrast,
the individual optimized state-of-the-art models yield unstable performance with average kappa
values ranging from 0.67 to 0.74. This indicates that the proposed ECNN offers higher robustness and
better feasibility within complex testing regions compared to individual CNN models.

Table 7. Testing results in mixed-type regions with different CNNs.

Structure i j k l m n o p Mean Std Acc_Mean(%)

ECNN 0.79 0.81 0.75 0.73 0.76 0.76 0.77 0.78 0.77 0.02 98.13
AlexNet-like 0.79 0.79 0.72 0.69 0.74 0.75 0.74 0.75 0.74 0.03 98.00
VGGNet-like 0.70 0.72 0.62 0.67 0.64 0.70 0.71 0.67 0.68 0.03 97.25

GoogLeNet-like 0.63 0.74 0.68 0.67 0.67 0.66 0.68 0.65 0.67 0.03 97.63
SqueezeNet-like 0.74 0.79 0.65 0.70 0.72 0.71 0.70 0.66 0.71 0.04 97.50

As shown in Figure 13, finally, we selected typical areas containing plenty of human-built land
features such as roads, agricultural fields, and pounds. Owing to the similar textures and external
structures to the buildings, artificial land features are prone to misclassification, leading to decreased
accuracy of the results along with a large number of false positives. According to the testing results
in Figure 13 (second row to the final row), although ECNN can achieve better performance than
the other models, a few artificial land features such as roads and yards are inevitably identified as
buildings. It indicates that the ECNN model still needs to be enhanced by training it using a more
diverse training dataset.
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Figure 13. Identification results of eight small segments in artificial land regions.
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The results in Table 8 infer that in regions with complex artificial land features, ECNN can achieve
a very high kappa of 0.80 and overall accuracy of 98.38%, while the SqueezeNet-like model can achieve
a kappa of only 0.72.

Table 8. Testing results of different CNNs in artificial land regions.

Structure q r s t u v w x mean std Acc_mean

ECNN 0.84 0.78 0.87 0.84 0.81 0.76 0.78 0.79 0.80 0.04 98.38
AlexNet-like 0.82 0.70 0.81 0.75 0.75 0.75 0.73 0.72 0.75 0.04 98.25
VGGNet-like 0.81 0.78 0.75 0.78 0.72 0.75 0.76 0.77 0.77 0.03 98.32

GoogLeNet-like 0.81 0.74 0.77 0.78 0.73 0.73 0.77 0.75 0.76 0.03 98.04
SqueezeNet-like 0.77 0.65 0.81 0.72 0.69 0.68 0.70 0.70 0.72 0.05 98.30

It should be noted that a comparison of the models’ feasibility in all cases and other regions that
are not included in these study areas is very difficult because they differ in terms of resolution,
data acquisition methods, reference datasets, and class definitions. However, from the testing
results, it can be concluded that the optimized state-of-the-art models, especially ECNN, can achieve
comparably efficient village building identification results to the previous best result in the tested
study areas. Moreover, the proposed ECNN model has considerably better accuracy and robustness
than the individual optimized CNN model structure in the village building identification task.

5. Conclusions

In this study, we proposed a novel CNN frame called ECNN for village building identification
using HRRS images. First, we constructed four self-designed CNN structures based on state-of-the-art
CNN models and a rigorous optimization principle. Then, to extract most of their identification
capabilities, we ensembled the feature extractor parts of each individual optimized model and
concatenated them into ECNN based on the multiscale feature learning method. Finally, the generated
ECNN was applied to a pixel-level village building identification task in developing countries.

The experimental results show the potential and the capability of the proposed ECNN model
and the optimized state-of-the-art models in village building identification. The models achieved
considerably higher accuracy than the previous best methods. In particular, the proposed ECNN
model achieved considerably higher accuracy, and the kappa value improved from the previous best
of 0.57 to 0.86 and overall accuracy from 96.64% to 99.26%. It outperformed the individual optimized
CNN models as well, which indicates the feasibility of our proposed method.

More detailed exploration of the method is required in the future. First, to test the robustness of
the method, regions of different resolution, as well as various data acquisition methods and reference
datasets, need to be tested. Second, multi-class village landscape classification needs to be implemented
using the proposed method. Finally, in case there are any limitations in the training data source, transfer
learning [78] and the generative model [79] will be applied to enhance the proposed ECNN model.
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Abbreviations

The following abbreviations are used in this manuscript:

HRRS High Resolution Remote Sensing
GE Google Earth
CNN convolutional neural networks
ECNN ensemble convolutional neural networks
SGD Stochastic Gradient Descent
GIS Geographic Information System
SAR synthetic aperture radar
ILSVRC ImageNet Large Scale Visual Recognition Challenge
AlexNet CNN architecture developed by Alex Krizhevsky
VGGNet very deep CNN architecture developed by Simonyan
GoogLeNet CNN architecture developed by Christian Szegedy
SqueezeNet CNN architecture developed by Forrest
RNN recurrent neural networks
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