
sensors

Article

A Novel Evidence Theory and Fuzzy Preference
Approach-Based Multi-Sensor Data Fusion
Technique for Fault Diagnosis

Fuyuan Xiao

School of Computer and Information Science, Southwest University, No. 2 Tiansheng Road, BeiBei District,
Chongqing 400715, China; xiaofuyuan@swu.edu.cn

Received: 12 September 2017; Accepted: 27 October 2017 ; Published: 31 October 2017

Abstract: The multi-sensor data fusion technique plays a significant role in fault diagnosis and in
a variety of such applications, and the Dempster–Shafer evidence theory is employed to improve
the system performance; whereas, it may generate a counter-intuitive result when the pieces of
evidence highly conflict with each other. To handle this problem, a novel multi-sensor data fusion
approach on the basis of the distance of evidence, belief entropy and fuzzy preference relation
analysis is proposed. A function of evidence distance is first leveraged to measure the conflict
degree among the pieces of evidence; thus, the support degree can be obtained to represent the
reliability of the evidence. Next, the uncertainty of each piece of evidence is measured by means
of the belief entropy. Based on the quantitative uncertainty measured above, the fuzzy preference
relations are applied to represent the relative credibility preference of the evidence. Afterwards,
the support degree of each piece of evidence is adjusted by taking advantage of the relative credibility
preference of the evidence that can be utilized to generate an appropriate weight with respect to
each piece of evidence. Finally, the modified weights of the evidence are adopted to adjust the bodies
of the evidence in the advance of utilizing Dempster’s combination rule. A numerical example and a
practical application in fault diagnosis are used as illustrations to demonstrate that the proposal is
reasonable and efficient in the management of conflict and fault diagnosis.

Keywords: sensor data fusion; evidential conflict; evidence distance; belief entropy; variance of entropy;
fuzzy preference relations; Dempster–Shafer evidence theory; fault diagnosis

1. Introduction

The multi-sensor data fusion technique plays a significant role in fault diagnosis. Due to
the complexity of the targets, the report collected from a single sensor is insufficient in decision
making processes. Additionally, because of the impact of the environment, the data gathered from
multiple sensors may be unreliable or even wrong so that it can cause erroneous results in fault
diagnosis. Hence, multi-sensor data fusion technologies are required in various fields of practical
applications [1–9], especially in the area of data fusion using vibration data [10–15]. However, in the
practical applications, the data that are gathered from the multi-sensors are usually uncertain. An open
issue is how to model and handle such kinds of uncertain information. To address this issue, a variety of
theoretical methods has been exploited for multi-sensor data fusion, like the rough sets theory [16,17],
fuzzy sets theory [18–22], evidence theory [23–25], Z numbers [26,27], and D numbers theory [28–30],
evidential reasoning [31–34], and so on [35–38].

Dempster–Shafer evidence theory, which is an uncertainty reasoning tool, was firstly proposed
by Dempster [23]; then, it was developed by Shafer [24]. Because Dempster–Shafer evidence
theory is flexible and effective in modeling the uncertainty regardless of prior information,
it is widely applied to various areas of information fusion, like pattern recognition [39–41],
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decision making [42–47], supplier selection [48,49], optimization problems [50,51], risk analysis [52–54]
and fault diagnosis [55–60]. Although Dempster–Shafer evidence theory has many advantages,
it may generate counter-intuitive results, when fusing highly conflicting pieces of evidence [61,62].
To solve this problem, many methods have been proposed. They are divided into two types
of methodologies [63–67]. The first type involves modifying Dempster’s combination rule, while the
second type involves pre-processing the bodies of evidence. The main research works for the first type
include the unnormalized combination rule presented by Smets [68], the disjunctive combination rule
proposed by Dubois and Prade [69] and the combination rule presented by Yager [70]. Nevertheless,
the modification of the combination rule often destructs the good properties, like the commutativity and
associativity. Furthermore, if sensor failure results in the counter-intuitive results, such a modification
is regarded to be unreasonable. Therefore, many researchers pre-process the bodies of evidence to
resolve the problem of highly conflicting evidence, which falls into the second type. The main research
works for the second type include the simple average approach of the bodies of evidence proposed by
Murphy [71], the weighted average of the masses based on the evidence distance presented by Deng et
al. [72] and the cosine theorem-based method proposed by Zhang et al. [73]. Deng et al.’s weighted
average approach [72] overcomes the weakness of Murphy’s method [71] to some extent. Later on,
Zhang et al. [73] made an improvement based on [72] and introduced the concept of vector space to
handle the conflicting evidence. However, the effect of evidence’s uncertainty itself on the weight
was overlooked.

In this paper, therefore, a novel multi-sensor data fusion method is proposed, which is a hybrid
methodology in terms of the distance of evidence, belief entropy and fuzzy preference relation analysis.
The proposal considers the support degree among the pieces of evidence, the uncertainty measure
of the evidence and the effect of the relative credibility of the evidence on the weight, so that it can
obtain more appropriately weighted average evidence before using Dempster’s combination rule.
Specifically, the proposed method consists of the following procedures. First, in order to measure
the support degree between the pieces of evidence, the function of evidence distance is leveraged,
where the support degree represents the reliability of the evidence. After that, the relative credibility
preference of the evidence is indicated by taking advantage of the fuzzy preference relation analysis on
the foundation of the uncertainty of each piece of evidence measured by the belief entropy. Based on
that, the support degrees of the evidence are adjusted, which can be utilized to generate the appropriate
weights with regard to the evidence. Finally, the weighted average evidence can be obtained on the
basis of the modified weights of the evidence before using Dempster’s combination rule. A numerical
example and a practical application in fault diagnosis are used as illustrations to demonstrate that
the proposed method outperforms the related methods with respect to the conflict management and
fault diagnosis.

The remaining content of this paper is arranged below. Section 2 introduces the preliminaries of
this paper briefly. In Section 3, a novel multi-sensor data fusion approach with regard to fault diagnosis
is proposed. Section 4 gives a numerical example to illustrate the effectiveness of the proposal. Then,
the proposed method is applied to a practical application in fault diagnosis in Section 5. Finally,
Section 6 gives the conclusion.

2. Preliminaries

2.1. Dempster–Shafer Evidence Theory

Dempster–Shafer evidence theory [23,24] is extensively applied to handle uncertain information
that belongs to the category of artificial intelligence. Because Dempster–Shafer evidence theory is
flexible and effective in modeling the uncertainty regardless of prior information, it requires weaker
conditions compared with the Bayesian theory of probability. When the probability is confirmed,
Dempster–Shafer evidence theory degenerates to the probability theory and is considered as a
generalization of Bayesian inference [74]. In addition, Dempster–Shafer evidence theory has the
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advantage that it can directly express the “uncertainty” via allocating the probability into the set’s
subsets, which consists of multi-objects, instead of a single object. Furthermore, it is capable of
combining the bodies of evidence to derive new evidence. The basic concepts and definitions are
described as below.

Definition 1 (Frame of discernment). Let Θ be a nonempty set of events that are mutually-exclusive and
collectively-exhaustive, defined by:

Θ = {F1, F2, . . . , Fi, . . . , FN}, (1)

in which the set Θ denotes a frame of discernment.
The power set of Θ is represented as 2Θ, where:

2Θ = {∅, {F1}, {F2}, . . . , {FN}, {F1, F2}, . . . , {F1, F2, . . . , Fi}, . . . , Θ}, (2)

and ∅ is an empty set.
When A is an element of the power set of Θ, i.e., A ∈ 2Θ, A is called a hypothesis or proposition.

Definition 2 (Mass function). In the frame of discernment Θ, a mass function m is represented as a mapping
from 2Θ to [0, 1] that is defined as:

m : 2Θ → [0, 1], (3)

which meets the conditions below:
m(∅) = 0,

∑
A∈2Θ

m(A) = 1. (4)

The mass function m in the Dempster–Shafer evidence theory can also be called a basic probability
assignment (BPA). When m(A) is greater than zero, A as the element of 2Θ is named as a focal element
of the mass function, where the mass function m(A) indicates how strongly the evidence supports the
proposition or hypothesis A.

Definition 3 (Belief function). Let A be a proposition where A ⊆ Θ; the belief function Bel of the proposition
A is defined by:

Bel : 2Θ → [0, 1],

Bel(A) = ∑
B⊆A

m(B). (5)

The plausibility function Pl of the proposition A is defined by:

Pl : 2Θ → [0, 1],

Pl(A) = 1− Bel(Ā) = ∑
B∩A 6=∅

m(B), (6)

where Ā is the complement of A, such that Ā = Θ− A.

Apparently, the plausibility function Pl(A) is equal to or greater than the belief function Bel(A),
where the belief function Bel is the lower limit function of the proposition A, and the plausibility
function Pl is the upper limit function of the proposition A.
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Definition 4 (Dempster’s rule of combination). Let two basic probability assignments (BPAs) be m1 and
m2 on the frame of discernment Θ where the BPAs m1 and m2 are independent; Dempster’s rule of combination,
defined by m = m1 ⊕m2, which is called the orthogonal sum, is represented as below:

m(A) =


1

1−K ∑
B∩C=A

m1(B)m2(C), A 6= ∅,

0, A = ∅,
(7)

with:
K = ∑

B∩C=∅
m1(B)m2(C), (8)

where B and C are also the elements of 2Θ and K is a constant that presents the conflict between the BPAs m1

and m2.

Notice that Dempster’s combination rule is only practicable for the BPAs m1 and m2 under the
condition that K < 1.

2.2. Distance of Pieces of Evidence

Jousselme et al. [75] presented a distance function of the evidence to measure the distance among
the basic probability assignments (BPAs), which is defined as below.

Definition 5 (Distance between two BPAs). Let two basic probability assignments (BPAs) m1 and m2 be on
the same frame of discernment Θ, which contains N number of mutually-exclusive and collectively-exhaustive
propositions. The distance between the BPAs m1 and m2 is denoted as:

d(m1, m2) =

√
1
2
(−→m1 −−→m2)

T D(−→m1 −−→m2), (9)

where −→mi(i = 1, 2) is a 2N-dimensional column vector and D is a (2N × 2N)-dimensional matrix.
The elements of D that measure the conflict of the focal elements in the BPAs m1 and m2 can be

represented as:

D(A, B) =
|A ∩ B|
|A ∪ B| , (10)

where A ∈ 2Θ and B ∈ 2Θ. |A ∩ B| denotes the amount of objects in common between the elements A and B,
while |A ∪ B| represents the subset’s cardinality of the union elements A and B.

It can be stated that D(A, B) ∈ [0, 1]. Specifically, the value of |A ∩ B| is zero, when no common
items exist between the elements A and B, which means that the element A highly conflicts with
the element B so that the degree of similarity between the elements A and B is zero. Therefore, the
smaller the D(A, B) is, the less similarity between the elements A and B there is; whereas, D(A, B) = 1
indicates that the element A is identical to the element B.

2.3. Belief Entropy

A belief entropy, called the Deng entropy, was first proposed by Deng [43] and has been applied
in various fields [76]. As the generalization of the Shannon entropy [77,78], the Deng entropy is an
effective math tool for measuring the uncertain information, because the uncertain information can be
expressed by BPAs, so that it can be used in the evidence theory. In such a situation that the uncertainty
is expressed by the probability distribution, the uncertain degree measured by the Deng entropy
will be identical to the uncertain degree measured by the Shannon entropy. The basic concepts and
definitions are introduced below.
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Let A be a proposition of the basic probability assignment (BPA) m on the frame of discernment
Θ; the Deng entropy Ed(m) of the BPA m is defined as follows:

Ed(m) = − ∑
A⊆Θ

m(A) log
m(A)

2|A| − 1
, (11)

where |A| is the cardinality of the proposition A.
When the belief is only allocated to the single object, which means that |A| = 1, the Deng entropy

degenerates to the Shannon entropy, namely,

Ed(m) = − ∑
A∈Θ

m(A) log
m(A)

2|A| − 1
= − ∑

A∈Θ
m(A) log m(A). (12)

The larger the cardinality of the proposition is, the larger the Deng entropy of evidence is, so that
the evidence contains more information. When a piece of evidence has a big Deng entropy, it is
supposed to be better supported by other evidence, which represents that this evidence plays an
important part in the final combination.

2.4. Fuzzy Preference Relations

Fuzzy preference relations play a fundamental part in many decision-making processes, and they
were first presented by Tanino [79] in 1984. It is a kind of method that can construct the decision
matrices of pairwise comparisons by using the linguistic values that are provided by experts. The basic
concepts are introduced below.

Definition 6 (Fuzzy preference relations [79–82]). Let P be a fuzzy preference relation and
X = {A1, A2, . . . , Ak} be a set of alternatives, where X ⊆ Θ, then the fuzzy preference relation is defined
as follows:

P = (pij)k×k =


0.5 · · · p1i · · · p1k

...
...

...
...

...
pi1 · · · 0.5 · · · pik
...

...
...

...
...

pk1 · · · pki · · · 0.5

 , (13)

where pij ∈ [0, 1] (1 ≤ i 6= j ≤ k) represents the preference value for the alternative Ai over Aj, which meets
the conditions below:

pij + pji = 1 and pii = 0.5. (14)

It should be stated that pij = 0.5 represents the indifference between the alternatives Ai and Aj; pij = 1
represents that Ai is absolutely preferred by Aj; pij > 0.5 represents that Ai is preferred by Aj.

Whereas, the preference values may be inconsistent in the fuzzy preference relation, hence,
Tanino [79] proposed the concept of the additive consistency for the fuzzy preference relation
P = (pij)k×k as follows:

pir = pij + pjr − 0.5, (15)

where pii = 0.5 and pij + pji = 1 (1 ≤ i 6= j 6= r ≤ k).
After that, Lee [80] claimed that the complete fuzzy preference relation may not satisfy the

consistency of the order in certain cases. Hence, the consistency of the order in fuzzy preference
relations was presented by Lee [80] to solve this problem.

Definition 7 (The consistency matrix [80]). Let P∗ = (pij)k×k be a complete fuzzy preference relation,
in which pij represents the preference values for the alternative Ai over Aj, pij + pji = 1 and pii = 0.5
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(1 ≤ i 6= j ≤ k). The consistency matrix P can be constructed on the basis of the complete fuzzy preference
relation P∗, which is defined by:

P = (pir)k×k =

(
1
k

k

∑
j=1

(pij + pjr)− 0.5

)
k×k

. (16)

The consistency matrix P = (pir)k×k (1 ≤ i 6= r ≤ k) has the properties below:

(1) pir + pri = 1;
(2) pii = 0.5;
(3) pir = pij + pjr − 0.5;
(4) pir ≤ pis for all i ∈ {1, 2, . . . , k}, where s 6= i and s 6= r.

Let P = (pir)k×k be a consistency matrix; the ranking value of alternative Ai, denoted as RV(Ai),
is defined by:

RV(Ai) =
2
k2

k

∑
j=1

pij, (17)

where 1 ≤ i ≤ k and ∑k
i=1 RV(Ai) = 1.

3. The Proposed Method

In this paper, by considering not only the conflicts between pieces of evidence, but also the impact
of the evidence’s uncertainty itself, a novel multi-sensor data fusion approach is presented and applied
in fault diagnosis. The proposed method is a hybrid methodology that integrates the distance of
evidence, belief entropy and fuzzy preference relation analysis, which consists of the following parts.

The function of evidence distance is first leveraged for measuring the conflict degree among
the pieces of evidence, then the support degree resulting from the distance of the evidence is obtained
to denote the evidence’s reliability. When the evidence is well supported by other pieces of evidence,
it is supposed to have less conflict with other pieces of evidence, so that a big weight should be
allocated to this piece of evidence. Instead, when the evidence is poorly supported by other pieces of
evidence, it is regarded to highly conflict with other pieces of evidence so that a small weight should be
allocated to this evidence. Next, the information volume of the evidence is calculated by making use
of the belief entropy. Based on the calculated quantitative information volume, the fuzzy preference
relations analysis is applied to indicate the relative credibility preference in terms of the pieces of
evidence. Whereafter, the support degree of the evidence is adjusted by taking advantage of the relative
credibility preference of the pieces of evidence. Thanks to introducing the fuzzy preference relations
analysis based on the belief entropy, it can automatically construct the fuzzy preference relation matrix,
rather than being determined by experts, which decreases the epistemic non-determinacy in the
decision-making process. Finally, the adjusted weights of the pieces of evidence are applied to modify
the body of the pieces of evidence before utilizing Dempster’s combination rule. The flowchart of the
proposal is shown in Figure 1.
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Step 1-3: Calculate the support degree of the evidence. Step 2-3: Construct the fuzzy preference relation matrix.

Step 3-1: Adjust the normalised support degree of the evidence.

Step 3-2: Normalise the adjusted support degree of the evidence.

Step 3-3: Compute the weighted average evidence.

Step 1-1: Construct the distance measure matrix.

Step 1-3: Calculate the support degree of the evidence

Step 1-2: Construct the similarity measure matrix.

The body of the evidences

Step 2-1: Measure the information volume of the evidence.

Step 2-3: Construct the fuzzy preference relation matrix

Step 2-2: Normalise the information volume of the evidence.

Step 2-4: Construct the consistency matrix.Step 1-4: Normalise the support degree of the evidence.

Step 2-5: Calculate the credibility value of the evidence.

Step 3-4: Combine the weighted average evidence by utilising the Dempster’s rule of combination.

Figure 1. The flowchart of the proposed method.

3.1. Calculate the Support Degree of the Evidence

Step 1: The distance measure dij between the BPAs mi (i = 1, 2, . . . , k) and mj (j = 1, 2, . . . , k) can be
obtained by Equations (9) and (10); thus, a distance measure matrix DMM = (dij)k×k can be
constructed as follows:

DMM =



0 · · · d1i · · · d1k
... · · ·

...
...

...
di1 · · · 0 · · · dik
... · · ·

...
...

...
dk1 · · · dki · · · 0


. (18)

Step 2: The similarity measure Sij between the BPAs mi and mj can be obtained by:

Sij = 1− dij, 1 ≤ i ≤ k; 1 ≤ j ≤ k. (19)
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Then, the similarity measure matrix SMM = (Sij)k×k can be constructed as follows:

SMM =



1 · · · S1i · · · S1k
... · · ·

...
...

...
Si1 · · · 1 · · · Sik
... · · ·

...
...

...
Sk1 · · · Ski · · · 1


. (20)

Step 3: The support degree of the BPA mi is defined as follows:

Supi =
k

∑
j=1,j 6=i

Sij, 1 ≤ i ≤ k. (21)

Step 4: The support degree of the BPA mi is normalized as below, which is denoted as S̃upi:

S̃upi =
Supi

∑k
r=1 Supr

, 1 ≤ i ≤ k. (22)

3.2. Generate the Credibility Value of the Evidence

In the course of information fusion, it is important to identify the relatively credible evidence
in terms of the obtained pieces of evidence. Due to the increase of the uncertainty in the collection
of information, the degree of anarchy involved in the systems rises, which violates the necessary
condition to use Dempster’s rule of combination. Utilizing the ordered information can make the
technologies based on the Dempster–Shafer evidence theory more robust. Therefore, we take advantage
of the fuzzy preference relations analysis [79] based on the belief entropy [43] to indicate the relative
credibility preference among the pieces of evidence. The concrete steps are listed as follows:

Step 1: The belief entropy of the BPA mi (i = 1, 2, . . . , k) is calculated by leveraging Equation (11).

Because the belief entropy of the evidence may be zero in a certain case, in order to avoid
allocating zero weight to such kinds of evidence, we utilize the information volume IVi for
measuring the uncertainty of the BPA mi as below:

IVi = eEd(mi) = e
−∑A⊆Θ m(A) log m(A)

2|A|−1 , 1 ≤ i ≤ k. (23)

Step 2: The information volume of the BPA mi is normalized as below, which is denoted as ĨVi:

ĨVi =
IVi

∑k
r=1 IVr

, 1 ≤ i ≤ k. (24)

Step 3: The fuzzy preference relation matrix P = (pij)k×k, where pij ∈ [0, 1] can be constructed by
the following steps:

Step 3-1: According to Definition 6, the diagonal element pii is assigned to 0.5.
Step 3-2: If there are only two pieces of evidence, all of the off-diagonal elements pij and

pji will be assigned to 0.5, because we have no sufficient evidence to detect how
the pieces of evidence are preferred with respect to each other. Thus, the fuzzy
preference relation matrix P = (pij)k×k can be constructed by:

P = (pij)k×k =

[
0.5 0.5
0.5 0.5

]
. (25)
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Step 3-3: If there are more than two pieces of evidence, the variance of entropy for the
BPA mi (1 ≤ i ≤ k) will be calculated as follows:

Vari = Var({ ĨV1, ĨV2, . . . , ĨVi−1, ĨVi+1, . . . , ĨVk}). (26)

Step 3-4: The smaller the value Vari has, the more conflict the evidence has in the
decision-making system, so that a small preference value is supposed to be
assigned to this evidence. Otherwise, the bigger the value Vari has, the less
conflict the evidence has in the decision-making system, so that a big preference
value is supposed to be assigned to this evidence. On the basis of the above
variance of entropy, the off-diagonal elements pij and pji will be computed by
Equations (27) and (28) introduced in [79].

pij =
Vari

Vari + Varj
, (27)

pji =
Varj

Vari + Varj
, (28)

where 1 ≤ i ≤ k and 1 ≤ j ≤ k.

Step 4: Based on the obtained fuzzy preference relation matrix P = (pij)k×k, the consistency matrix
P can be constructed by Equation (16).

Step 5: With the consistency matrix P, the credibility value of the BPA mi is defined based on
Equation (17):

Crdi =
2
k2

k

∑
j=1

pij, 1 ≤ i ≤ k. (29)

We can notice that ∑k
i=1 Crdi = 1. Hence, the credibility value of each piece of evidence is

regarded as a weight that indicates the relative credibility preference in terms of the evidence.

3.3. Fuse the Weighted Average Evidence

Step 1: Based on the credibility degree Crdi, the normalized support degree of the BPA mi will
be adjusted, denoted as ASupi:

ASupi = Crdi × S̃upi, 1 ≤ i ≤ k. (30)

Step 2: The ASupi is normalized as below, denoted as ÃSupi, which is considered as the final weight
of the BPA mi.

ÃSupi =
ASupi

∑k
r=1 ASupr

, 1 ≤ i ≤ k. (31)

Step 3: On the basis of the final weight ÃSupi, the weighted average evidence WAE(m) can be
obtained as follows:

WAE(m) =
k

∑
i=1

(ÃSupi ×mi), 1 ≤ i ≤ k, (32)

where k denotes the number of BPAs and mi represents the i-th BPA, which are modeled
from the sensor reports.

Step 4: The weighted average evidence WAE(m) is combined through Dempster’s combination rule,
namely Equation (7), by k− 1 times, if there are k number of pieces of evidence. Then, the final
combination result of multiple pieces of evidence can be obtained.

4. Experiment

In this section, to demonstrate the effectiveness of the proposal, a numerical example is illustrated.
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Example 1. Consider a target recognition problem based on multiple sensors associated with the sensor reports
that are collected from five different types of sensors. These sensor reports that are modeled as the BPAs are
given in Table 1 from [72], where the frame of discernment Θ that consists of three potential objects is given
by Θ = {A, B, C}.

Table 1. The basic probability assignments (BPAs) for Example 1.

BPA {A} {B} {C} {A, C}

S1 : m1(·) 0.41 0.29 0.30 0.00
S2 : m2(·) 0.00 0.90 0.10 0.00
S3 : m3(·) 0.58 0.07 0.00 0.35
S4 : m4(·) 0.55 0.10 0.00 0.35
S5 : m5(·) 0.60 0.10 0.00 0.30

Step 1: Construct the distance measure matrix DMM = (dij)k×k as follows:

DMM =


0 0.5386 0.3495 0.3257 0.3311

0.5386 0 0.8142 0.7850 0.7906
0.3495 0.8142 0 0.0300 0.0374
0.3257 0.7850 0.0300 0 0.0354
0.3311 0.7906 0.0374 0.0354 0

 .

Step 2: Construct the similarity measure matrix SMM = (Sij)k×k as follows:

SMM =


1 0.4614 0.6505 0.6743 0.6689

0.4614 1 0.1858 0.2150 0.2094
0.6505 0.1858 1 0.9700 0.9626
0.6743 0.2150 0.9700 1 0.9646
0.6689 0.2094 0.9626 0.9646 1

 .

Step 3: Calculate the support degree of the BPA mi as below:

Sup1 = 2.4551,
Sup2 = 1.0716,
Sup3 = 2.7689,
Sup4 = 2.8239,
Sup5 = 2.8055.

Step 4: Normalize the support degree of the BPA mi as follows:

S̃up1 = 0.2059,
S̃up2 = 0.0899,
S̃up3 = 0.2322,
S̃up4 = 0.2368,
S̃up5 = 0.2353.

Step 5: Measure the information volume of the BPA mi as below:

IV1 = 4.7894,
IV2 = 1.5984,
IV3 = 6.1056,
IV4 = 6.6286,
IV5 = 5.8767.

Step 6: Normalize the information volume of the BPA mi as follows:

ĨV1 = 0.1916,
ĨV2 = 0.0639,
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ĨV3 = 0.2442,
ĨV4 = 0.2652,
ĨV5 = 0.2351.

Step 7: Construct the fuzzy preference relation matrix P = (pij)n×n as follows:

P =


0.5000 0.9002 0.5238 0.5559 0.5144
0.0998 0.5000 0.1087 0.1219 0.1051
0.4762 0.8913 0.5000 0.5323 0.4906
0.4441 0.8781 0.4677 0.5000 0.4583
0.4856 0.8949 0.5094 0.5417 0.5000

 .

Step 8: Construct the consistency matrix P = (pik)n×n as follows:

P =


0.5000 0.9117 0.5208 0.5492 0.5125
0.0883 0.5000 0.1091 0.1375 0.1008
0.4792 0.8909 0.5000 0.5284 0.4917
0.4508 0.8625 0.4716 0.5000 0.4633
0.4875 0.8992 0.5083 0.5367 0.5000

 .

Step 9: Calculate the credibility value of the BPA mi as below:

Crd1 = 0.2395,
Crd2 = 0.0749,
Crd3 = 0.2312,
Crd4 = 0.2198,
Crd5 = 0.2345.

Step 10: Adjust the normalized support degree of the BPA mi based on the credibility value as below:

ASup1 = 0.0493,
ASup2 = 0.0067,
ASup3 = 0.0537,
ASup4 = 0.0521,
ASup5 = 0.0552.

Step 11: Normalize the adjusted support degree of the BPA mi as below:

ÃSup1 = 0.2273,
ÃSup2 = 0.0310,
ÃSup3 = 0.2474,
ÃSup4 = 0.2399,
ÃSup5 = 0.2543.

Step 12: Compute the weighted average evidence as below:

m({A}) = 0.5213,
m({B}) = 0.1606,
m({C}) = 0.0713,
m({A, C}) = 0.2469.

Step 13: Combine the weighted average evidence by utilizing Dempster’s rule of combination four
times. The results of the combination for the first time are shown below:

m({A}) = 0.8066,
m({B}) = 0.0393,
m({C}) = 0.0614,
m({A, C}) = 0.0929.

For the combination for the second time, the results are listed as follows:
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m({A}) = 0.9239,
m({B}) = 0.0087,
m({C}) = 0.0362,
m({A, C}) = 0.0317.

Next, the results of the third combination are calculated as:

m({A}) = 0.9701,
m({B}) = 0.0019,
m({C}) = 0.0184,
m({A, C}) = 0.0105.

Then, the combination results of the fourth time, namely the final fusing results, are produced
as follows:

m({A}) = 0.9888,
m({B}) = 0.0004,
m({C}) = 0.0087,
m({A, C}) = 0.0034.

From Example 1, we can notice that the evidence m2 highly conflicts with other pieces of evidence,
because the normalized support degree of the evidence m2 is 0.0899, which is much lower than the
normalized support degrees of other pieces of evidence.

The fusing results that are generated by different combination methods are shown in Table 2.
The comparisons of the BPA of the target A by different combination rules are shown in Figure 2.

Table 2. Combination results of the evidence in terms of different combination rules.

Evidence Method {A} {B} {C} {AC} Target

m1, m2, m3

Dempster [23] 0 0.6350 0.3650 0 B
Murphy [71] 0.4939 0.4180 0.0792 0.0090 A

Deng et al. [72] 0.4974 0.4054 0.0888 0.0084 A
Zhang et al. [73] 0.5681 0.3319 0.0929 0.0084 A

Proposed method 0.7617 0.1127 0.1176 0.0080 A

m1, m2, m3, m4

Dempster [23] 0 0.3321 0.6679 0 C
Murphy [71] 0.8362 0.1147 0.0410 0.0081 A

Deng et al. [72] 0.9089 0.0444 0.0379 0.0089 A
Zhang et al. [73] 0.9142 0.0395 0.0399 0.0083 A

Proposed method 0.9507 0.0060 0.0334 0.0087 A

m1, m2, m3, m4, m5

Dempster [23] 0 0.1422 0.8578 0 C
Murphy [71] 0.9620 0.0210 0.0138 0.0032 A

Deng et al. [72] 0.9820 0.0039 0.0107 0.0034 A
Zhang et al. [73] 0.9820 0.0034 0.0115 0.0032 A

Proposed method 0.9888 0.0004 0.0087 0.0034 A

As shown in Table 2, Dempster’s combination rule generates a counterintuitive result, even
though the other four pieces of evidence support the target A. As the number of pieces of evidence
increases from 3–5, Murphy’s method [71], Deng et al.’s method [72], Zhang et al.’s method [73] and the
proposed method present reasonable results. Additionally, the proposed method is efficient in dealing
with the conflicting pieces of evidence with better convergence as shown in Figure 2. The reason is
that the proposal not only makes use of the function of evidence distance to obtain the evidence’s
support degree, but also adopts the fuzzy preference relations analysis based on the belief entropy
to measure the relative credibility preference among the pieces of evidence. After considering these
aspects, the unreliable evidence’s weight is decreased, so that its negative effect can be relieved on the
final fusing results compared to other methods.
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Figure 2. The comparison of different methods in Example 1.

5. Application

In this section, the proposal is applied to the fault diagnosis of a motor rotor, where the practical
data in [27] are used for the comparison with the related method.

5.1. Problem Statement

Supposing that the frame of discernment Θ, which consists of three types of faults for a motor rotor
is given by Θ = {Rotor unbalance, Rotor misalignment, Pedestal looseness} = {F1, F2, F3}. The set of
vibration acceleration sensors given by S = {S1, S2, S3} is positioned at different places for gathering the
vibration signals. The acceleration vibration frequency amplitudes at 1X frequency, 2X frequency and
3X frequency are considered as the fault feature variables. The collected sensor reports at 1X frequency,
2X frequency and 3X frequency that are modeled as BPAs are given in Tables 3–5, respectively,
where m1(·), m2(·) and m3(·) represent the BPAs reported from the three vibration acceleration sensors
S1, S2 and S3.

Table 3. The collected sensor reports at the frequency of 1X modeled as BPAs.

BPA {F2} {F3} {F1, F2} {F1, F2, F3}

S1 : m1(·) 0.8176 0.0003 0.1553 0.0268
S2 : m2(·) 0.5658 0.0009 0.0646 0.3687
S3 : m3(·) 0.2403 0.0004 0.0141 0.7452

Table 4. The collected sensor reports at the frequency of 2X modeled as BPAs.

BPA {F2} {F1, F2, F3}

S1 : m1(·) 0.6229 0.3771
S2 : m2(·) 0.7660 0.2341
S3 : m3(·) 0.8598 0.1402
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Table 5. The collected sensor reports at the frequency of 3X modeled as BPAs.

BPA {F1} {F2} {F1, F2} {F1, F2, F3}

S1 : m1(·) 0.3666 0.4563 0.1185 0.0586
S2 : m2(·) 0.2793 0.4151 0.2652 0.0404
S3 : m3(·) 0.2897 0.4331 0.2470 0.0302

5.2. Motor Rotor Fault Diagnosis Based on the Proposed Method

5.2.1. Motor Rotor Fault Diagnosis at 1X Frequency

According to the proposed method in Section 3 and Table 3’s BPAs modeled by the collected
sensor reports at the frequency of 1X, the weighted average evidence in terms of motor rotor fault
diagnosis at 1X frequency is obtained as follows:

m({F2}) = 0.5636,
m({F3}) = 0.0006,
m({F1, F2}) = 0.0782,
m({F1, F2, F3}) = 0.3576.

After that, the weighted average evidence in terms of motor rotor fault diagnosis at 1X frequency
is fused by utilizing Dempster’s rule of combination two times. The results of the combination for the
first time are shown below:

m({F2}) = 0.8095,
m({F3}) = 0.0004,
m({F1, F2}) = 0.0621,
m({F1, F2, F3}) = 0.1280.

Then, the results of the combination for the second time, namely the final fusing results for motor
rotor fault diagnosis at 1X frequency, are generated as follows:

m({F2}) = 0.9169,
m({F3}) = 0.0002,
m({F1, F2}) = 0.0371,
m({F1, F2, F3}) = 0.0458.

5.2.2. Motor Rotor Fault Diagnosis at 2X Frequency

On the basis of the proposed method in Section 3 and Table 4’s BPAs modeled by the collected
sensor reports at the frequency of 2X, the weighted average evidence with respect to motor rotor fault
diagnosis at 2X frequency is obtained as follows:

m({F2}) = 0.7754,
m({F1, F2, F3}) = 0.2246.

Next, by leveraging Dempster’s rule of combination, the weighted average evidence with respect
to motor rotor fault diagnosis at 2X frequency is fused two times. For the combination for the first
time, the fusion results are given below:

m({F2}) = 0.9496,
m({F1, F2, F3}) = 0.0504.

Afterwards, for the combination for the second time, the final fusion results with respect to motor
rotor fault diagnosis at 2X frequency are shown below:

m({F2}) = 0.9887,
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m({F1, F2, F3}) = 0.0113.

5.2.3. Motor Rotor Fault Diagnosis at 3X Frequency

By applying the proposed method in Section 3 and Table 5’s BPAs modeled by the collected
sensor reports at the frequency of 3X, the weighted average evidence with regard to motor rotor fault
diagnosis at 3X frequency is obtained as follows:

m({F1}) = 0.3028,
m({F2}) = 0.4323,
m({F1, F2}) = 0.2254,
m({F1, F2, F3}) = 0.0395.

Therewith, the weighted average evidence with regard to motor rotor fault diagnosis at 3X
frequency is fused by utilizing Dempster’s rule of combination two times. The combination results for
the first time are listed below:

m({F1}) = 0.3415,
m({F2}) = 0.5634,
m({F1, F2}) = 0.0929,
m({F1, F2, F3}) = 0.0021.

Then, the final combination results for the second time for motor rotor fault diagnosis at 3X
frequency are shown below:

m({F1}) = 0.3266,
m({F2}) = 0.6365,
m({F1, F2}) = 0.0368,
m({F1, F2, F3}) = 0.0001.

5.3. Discussion

According to the results as shown in Tables 6–8, we can notice that the proposed method can
diagnose the fault type F2, which is consistent with Jiang et al.’s method [27]. Even facing the conflicting
sensor reports where the normalized support degrees of the sensor reports are different at 1X frequency,
2X frequency and 3X frequency, both of the methods can well manage the conflicting pieces of evidence
and diagnose the fault type F2.

Furthermore, the proposed method outperforms Jiang et al.’s method [27] in terms of dealing
with the conflicting pieces of evidence, as well as coping with the uncertainty as shown in Figures 3–5,
because the belief degrees assigned to the target F2 at 1X frequency, 2X frequency and 3X frequency by
the proposed method rise to 91.69%, 98.87% and 63.65%, respectively, while the belief degrees assigned
to the target F2 at 1X frequency, 2X frequency and 3X frequency by the method Jiang et al. [27] are
88.61%, 96.21% and 59.04%, respectively.

On the other hand, the uncertainty {F1, F2} falls to 0.0371 from 0.0582, and the uncertainty
{F1, F2, F3} falls to 0.0458 from 0.0555 at 1X frequency; the uncertainty {F1, F2, F3} drops to 0.0113
from 0.0371 at 2X frequency; the uncertainty {F1, F2} falls to 0.0368 from 0.0651, and the uncertainty
{F1, F2, F3} falls to 0.0001 from 0.0061 at 3X frequency. The main reason is that the proposed method
not only takes the support degree of the sensor reports into account by making use of the function of
evidence distance, but also considers the relative credibility preference of the sensor reports by taking
advantage of the fuzzy preference relations analysis on the basis of the belief entropy. As a result,
the proposed method can diagnose motor rotor fault more accurately.
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Table 6. Fusion results of different methods for motor rotor fault diagnosis at 1X frequency.

Method {F2} {F3} {F1, F2} {F1, F2, F3} Target

Jiang et al. [27] 0.8861 0.0002 0.0582 0.0555 F2
Proposed method 0.9169 0.0002 0.0371 0.0458 F2
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Figure 3. The comparison of different methods for motor rotor fault diagnosis at 1X frequency.

Table 7. Fusion results of different methods for motor rotor fault diagnosis at 2X frequency.

Method {F2} {F1, F2, F3} Target

Jiang et al. [27] 0.9621 0.0371 F2
Proposed method 0.9887 0.0113 F2

Table 8. Fusion results of different methods for motor rotor fault diagnosis at 3X frequency.

Method {F1} {F2} {F1, F2} {F1, F2, F3} Target

Jiang et al. [27] 0.3384 0.5904 0.0651 0.0061 F2
Proposed method 0.3266 0.6365 0.0368 0.0001 F2
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Figure 4. The comparison of different methods for motor rotor fault diagnosis at 2X frequency.
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Figure 5. The comparison of different methods for motor rotor fault diagnosis at 3X frequency.

6. Conclusions

In this paper, on account of the support degree among the pieces of evidence, the uncertainty
measure of the evidence and the effect of the relative credibility of evidence on the weight, a novel
method for multi-sensor data fusion was proposed. The proposed method was a hybrid methodology
by integrating the distance of evidence, belief entropy and fuzzy preference relation analysis.
It consisted of three main procedures. Firstly, the support degree of the evidence was calculated
to represent the reliability of the evidence. Secondly, the credibility value of the evidence was
generated to indicate the relative credibility preference of the evidence. Thirdly, based on the first
two procedures, the weighted average evidence was obtained; thus, it could be fused by applying
Dempster’s combination rule. As described above, the proposed method was a kind of approach
to pre-process the bodies of evidence. Through a numerical example, it was illustrated that the
proposal was more effective and feasible than other related methods to handle the conflicting evidence
combination problem under a multi-sensor environment with better convergence. On the other hand,
a practical application in fault diagnosis was presented to demonstrate that the proposed method
could diagnose the faults more accurately.

In future work, I intend to consider further fault diagnosis of complicated equipment/systems
that involves certain faults, such as cracks and misalignment. On the other hand, multiple faults,
like bearing faults, rotor-related faults, etc., will be taken into account in future work to improve the
robustness of the technique.
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