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Abstract: In this paper, we propose a two-stage multi-task learning representation method for the
classification of synthetic aperture radar (SAR) target images. The first stage of the proposed approach
uses multi-features joint sparse representation learning, modeled as a /5 ;-norm regularized multi-task
sparse learning problem, to find an effective subset of training samples. Then, a new dictionary is
constructed based on the training subset. The second stage of the method is to perform target
images classification based on the new dictionary, utilizing multi-task collaborative representation.
The proposed algorithm not only exploits the discrimination ability of multiple features but also
greatly reduces the interference of atoms that are irrelevant to the test sample, thus effectively
improving classification performance. Conducted with the Moving and Stationary Target Acquisition
and Recognition (MSTAR) public SAR database, experimental results show that the proposed
approach is effective and superior to many state-of-the-art methods.

Keywords: SAR; images classification; multitask learning; sparse representation;
collaborative representation

1. Introduction

Synthetic aperture radar (SAR) are widely applied in various civil and military fields, such as
aerial remote sensing to detect targets [1], environmental monitoring [2], and maritime surveillance [3].
Automatic target-recognition systems using SAR sensors continue to be developed for a number of
applications, particularly in the area of military defense. The goal of these systems is to detect and
classify military targets using various image- and signal-processing techniques. The conventional
architecture of target-recognition systems consists of three separate stages: the pre-screener identifies
local regions of interest using a constant false alarm rate (CFAR) detector, allowing all targets and
numerous false alarms to pass. It is followed by a discriminator that aims to eliminate all natural
false alarms. Finally, the classifier receives all man-made objects and attempts to categorize each
input image as a specific target type contained in the training set [4]. General reviews of automatic
target-recognition concepts and the SAR target-detection technologies can be found in [4,5]. This paper
focuses on the final classification stage of the SAR automatic target-classification system. Target images
obtained by SAR are significantly different with target optical images because microwave imaging
is based on a scattering mechanism. Usually, SAR images are not as intuitive and fine as optical
images. Moreover, the characteristics of SAR target images are very sensitive to azimuth and elevation
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angles [4]. If these angles change significantly, the characteristics of the SAR target images also change
significantly, which is challenging for their classification.

There are three mainstream paradigms governing SAR target images classification: template-based
methods [5], model-based methods [6], and machine-learning based methods [7]. The template-based
methods compare the test sample image with training sample images to determine the target
category. These methods require a large number of target image templates and expensive computation.
Moreover, background clutter also creates greater interference in template matching. For the
model-based method, target images are described using a complex scattering model based on a
scattering mechanism, and the target type is determined according to the likelihood estimation of the
model parameters. However, since these complex scattering models are non-linear, it is difficult to
obtain accurate estimation of the parameters. This method is easily affected by clutter interference
and noise corruption. In addition, performance of the method at extended operating conditions will
significantly decrease because of the obvious difference between training samples and test samples.

Recently, machine-learning based methods have attracted apparent interest for their use in
SAR target images classification. One of the most popular methods is representation learning [8,9].
The most typical representation learning method is sparse representation. The sparse representation
of one signal is based on the following theory: the observed signal can be represented by a linear
combination of a series of known signals called atoms. Under sparse constraints (¢1-norm minimum)
of the representative coefficient vector, a unique representative coefficient solution can be obtained,
and the target type can be identified according to the minimum reconstruction error for each
class. Sparse representation has been widely applied in a variety of recognition tasks, such as face
recognition [10,11], speech recognition [12], and hyperspectral image classification [13]. For SAR
target images classification, some researchers have investigated a number of approaches based on
sparse representation. Zhang et al. proposed a method of multi-view joint sparse representation
by exploring the correlation between target multi-view images [14]. Combining low-rank matrix
recovery, Cheng et al. proposed an improved joint sparse representation approach to classify SAR target
images [15]. Dong et al. investigated a method based on joint sparse representation with monogenic
features, and developed the method on a Grassman manifold [16,17]. Furthermore, Liu et al. studied
the Dempster-Shafer fusion of multiple sparse representations for target images recognition [18].
Sun et al. proposed a SAR target-recognition method combined with dynamic sparse representation
and dictionary learning [19]. Song et al. reported an approach of supervised discriminant dictionary
learning and sparse representation for SAR target recognition [20]. Lately, Liu et al. developed a new
scatter center feature-extraction and target-recognition method based on sparse representation and a
refinement dictionary [21].

Another alternative method of representation learning is collaborative representation [22].
Collaborative representation can be interpreted as an optimization problem under />-norm minimum
constraints. It has also been widely used in face recognition, hyperspectral classification, etc. [23].
Compared to sparse representation, collaborative representation can greatly reduce the computational
cost while maintaining high classification accuracy [23].

In recent years, the combination of multi-task learning and representation learning has become
an important trend in pattern recognition. The idea behind multi-task learning is that when these
tasks are similar enough or correlative to a certain extent, exploiting the correlation between them
is beneficial for improving the generalization of recognition. Some research results have confirmed
the advantages of multi-task learning [24]. Yan et al. extracted various types of features from images,
and viewed each type’s sparse representation recognition as a task in order to model multi-feature joint
sparse representation recognition as a multi-task sparse learning problem [25]. Fang et al. proposed a
face-recognition method based on local Gabor feature adaptive multi-task sparse representation [26].
Li et al. proposed a hyperspectral image-classification method by combining multi-task learning with
collaborative representation [27]. Luo et al. investigated a manifold regularized multi-task learning
(MRMTL) algorithm, which can effectively control the model complexity and ensure that the functions
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in the shared hypothesis space are smooth along the data manifold [28]. Furthermore, Luo et al.
proposed a novel large margin multi-modal multi-task feature extraction framework, which can not
only handle correlated and noisy features but also utilize the complementarity of different modalities
to reduce feature redundancy [29]. Both multi-task sparse representation and multi-task collaborative
representation can exploit shared training sample patterns between different tasks to ensure that
the correct training samples are selected, excluding interferential atoms. In addition, recently some
SAR target-recognition technologies have been based on deep learning. Ding et al. developed the
target-recognition algorithm combined with a data enhancement convolutional neural network [30].
Chen et al. investigated the application of deep convolution networks for SAR target recognition in
detail [31].

In this work, we propose a two stage multi-task representation learning method for SAR target
images classification. Figure 1 shows a schematic view of the approach. The approach first extracts three
kinds of features for all training samples and test samples, which include principal component analysis
(PCA) features, wavelet transform features, and 2D Slice Zernike Moments (2DSZM) features [32].
The first stage is to represent each feature of the test sample as a linear combination of the corresponding
features of the training set, and to determine the Q neighbor samples of the test sample in the training
set by using multi-task sparse representation. This is because, in principle, the current test sample and
its neighboring samples should come from the same class, which means that Q neighboring samples
make the greatest contribution to identifying the test sample. Thus, the first step in this algorithm is to
detect training samples that are far from the test sample, it being assumed that these samples have no
effect on the classification decision. This is helpful for accurate classification of test samples. In fact,
using part of the training samples rather than all training samples to identify a test sample can greatly
reduce the interference of those training samples that are far away from the test sample. The second
stage of this method is to represent the test sample with the new dictionary consisting of Q neighbors in
the framework of multi-task collaborative representation. Furthermore, the representation results are
used to infer the test sample label. We adopt multi-task collaborative representation in the second stage
because of its uncomplicated closed solution and low computation cost. The proposed method is based
on the following factors: the first stage confirms a number of training samples that are most relevant to
the current test sample. Since the class labels of the chosen training samples are usually a subset of
all class labels, the final classification becomes a problem that determines the test sample label from
a small number of candidate class labels. It would be beneficial to have an accurate inference in the
second stage that the real label of the test sample was one of the training subset labels. The proposed
approach not only exploits the ability of combined multiple features representation learning but also
greatly reduces the interference of those irrelevant atoms in the dictionary, which leads to enhanced
classification performance. Evaluation of the proposed method is conducted with the Moving and
Stationary Target Acquisition and Recognition (MSTAR) benchmark data sets. Experimental results
validate the effectiveness and superiority of the proposed approach.

The paper is organized as follows. In Section 2, we briefly describe the three types of
feature-extraction methods used in the work, and review basic sparse representation and collaborative
representation. In Section 3, a two-stage multi-task representation learning algorithm is developed in
detail. In Section 4, experiments are carried out with the MSTAR database, and the performance of the
proposed approach is described. Finally, we conclude the paper in Section 5.
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Figure 1. Flowchart of two-stage multi-task representation learning for synthetic aperture radar (SAR)
target images classification.

2. Multiple Features Extraction and Representation Learning Classifier

In this section, we introduce the three types of feature extraction adopted in this paper, and present
the sparse representation classifier and collaborative representation classifier.

2.1. Multiple Features Extraction

It is well known that each type of feature describes the image from different aspects, and a single
feature cannot contain all discriminative information. In addition, it is impractical to extract an optimal
feature. For image-classification systems, a better approach is to combine multiple features rather than
use a single feature [33]. In this paper, three types of features were extracted from SAR target images,
including PCA features, wavelet transform features, and 2DSZM features.

2.1.1. PCA Features Extraction

PCA is a mature feature-extraction technique. The aim of PCA is to find a projection vector, that can
represent the original sample in the greatest degree and map the original sample to a low-dimensional
space through a linear transformation. Let y € R'N donates the test sample, and P € RN*" donates
the projection matrix; then, the PCA features extraction can be expressed as follows:

spca = yP (1)
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where spca is the extracted PCA features.

2.1.2. Wavelet Transform Feature Extraction

Wavelet transform is widely applied in image feature extraction, image compression, and so on.
In this work, we apply two-dimensional discrete wavelet transform, and vectorize the first-level
low-frequency sub-band images as feature vectors. Wavelet feature extraction can be expressed
as follows:

SwWAVELET=DWT2(y) ()

where DWT2(e) represents the two-dimensional discrete wavelet transform, and swaygrgr donates
the extracted wavelet transform feature vector.

2.1.3. 2DSZM Feature Extraction

A novel feature named 2DSZM was developed recently, depicting SAR target images scattering
features effectively [32]. SAR target images are usually expressed as gray images. According to the
electromagnetic scattering theory, each pixel value of a microwave image is related to the intensity
of the backscattered wave. In SAR target images, there are strong scattering centers, moderate
scattering centers, and weak scattering centers. Since the location and intensity distribution of different
scattering regions are not same, different scattering regions can be separated by the slices operation.
This operation is called the 2D Slice operation. We extract the Zernike moments of each slice, and then
connect all slices” Zernike moments to get the 2DSZM feature vector donated by sypszv. The Zernike
moments can be obtained by Equation (3). Details of the 2DSZM feature extraction can be found in the

literature [32].
p+1

Zpy = ——
P p-

[ Vol w) f(xy)dxdy @)

x2+2<1

2.2. Sparse Representation Classifier

The success of the sparse signal model can be attributed to the sparse representation of the
observed signal with a set of known observation sets (dictionaries). The optimal sparse representation
can be obtained effectively by convex optimization methods [34]. We assume that there are
k(k=1,...,K) classes of training data, denoted by X = [x1,Xk2, ..., Xk, | ER™ ", where the
samples are arranged in R™ with the form of column vectors. The unknown observed sample y € R™
is represented as a linear combination of the k-th class training samples with the representation
coefficient sy = [ag 1, a2, - ..,ock,nk]T ER™,

Y = X0k + X202 + o X Kk, 4)

Because the class label of the observed sample y is unknown, it is necessary to use all the k classes
training samples to represent it. Let X = [X3,Xp,..., Xx| eR™ ", where n = Zle ny is the total
number of training samples. Then, the linear representation of y can be written as follows:

y = X1 +Xoup + ... + Xgag = Xa (5)

where & = [aq,a,...,& K]T €R" is the representation coefficient vector. Theoretically, the elements in
the vector « corresponding to atoms with the same class as y are non-zero, and other elements are
zero. The general method is to find the sparsest representation by adding a regularization term to the
representation-coefficient vector [35].

min|la sty — Xal,, < ¢ ©)
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where || - ||, represents the £p-norm of &, and & donates tolerance error. The optimization of the {p-norm
minimum problem is NP-hard, which is usually relaxed to a £;-norm minimum problem as follows:

. 2
min ||y — Xel[ + |l )

where 7 is the balance parameter, and || - ||; donates ¢;-norm of a. Since Equation (7) is a convex
optimization problem, it can be solved by conventional optimization algorithms [36].

After obtaining the optimal sparse representation vector &, the label of y can be obtained by the
minimum reconstruction error discriminant criterion as follows:

identity(y) = kirllinKHy — Xii||, ®)

The aforementioned outcome is the famous sparse representation classifier (SRC) [11].

2.3. Collaborative Representation Classifier

As an alternative representation-learning theory, the collaborative representation classifier (CRC),
has been developed more fully recently [37]. Collaborative representation has been widely used in
face recognition, hyperspectral classification, etc. A difference with SRC is that CRC is essentially
an /;-norm optimal problem. The collaborative representation of the observed sample y under the
training set X can be written as follows:

B= arg;nin{IIy—XﬁHerVHﬁH%} )

where 7 is the balance parameter, B is the representation coefficient vector, and || - ||, donates the
{y-norm of B.

Compared to SRC, the solving process of CRC needs no optimization search;
therefore, the computation cost is much lower than SRC. Equation (9) of CRC has a closed solution
as follows:

B= (XX +91) 'XTy. (10)

With B, the class label of y can be decided by the minimum reconstruction error criterion
as follows:

identity(y) = min |y — XiB,- (11)

3. Two-Stage Multi-Task Representation Learning

For image-classification tasks, taking into account the shared patterns among various tasks
is beneficial for improving the generalization performance of classification. Numerous studies
have confirmed the superior performance of the multi-task learning framework in theory and
practice. For example, multi-task sparse representation has been applied in face recognition,
and multi-task collaborative representation has been used in hyperspectral image classification. In this
work, the classification by each type of feature can be considered as an individual task.
Multi-feature classification constitutes a multi-task model, in which multiple tasks should share
feature subsets of the training set for a test sample.

Both multi-task sparse representation and multi-task collaborative representation utilize all
training samples for classification. However, many studies show that the local subset rather than
all of the training samples mainly contributes to classification. That is, many training samples play
the role of interference. For instance, it has been illustrated that local PCA is superior to global
PCA in classification [38]. Vural proposed the use of local dependencies of samples to conduct the
classification [39], while Xu et al. investigated two-phase sparse representation with a local subset of
training samples [40].
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In this section, we propose a two-stage multi-task representation learning (TSMRL) algorithm for
SAR target images classification. The first stage of the algorithm is to represent each feature of the test
sample as a linear combination of the corresponding features of all training samples. The ¢, ;-norm
regularized multi-task sparse learning is adopted to determine the Q nearest neighbor training samples
for the test sample. Using local training samples instead of all training samples to identify a test sample
can greatly reduce the interference of those training samples far away from the test sample. The new
dictionary is constructed by the Q nearest neighbor training samples. In the second stage of the
algorithm, multi-task collaborative representation is used for classification with the new dictionary,
leading to the final decision of the test sample. In this section, we will describe the proposed two-stage
multi-task representation learning method in detail.

3.1. The First Stage: £, 1-Norm Regularized Multi-Tnsk Sparse Representation Learning

Firstly, it is assumed that the test sample features and the training samples features approximately
satisfy the following equation:

k k k k. .k k k k k k k
y=apxpntapXpt... a1, X1y e +acixc1+...+a cncX Cnes (12)

where yk(k =1,2,3) here is the k-th pattern features of the test sample, and a’gi(c =1,2,...,GC
i=1,2,...,n;k =1,2,3) is the representation coefficient. Equation (12) can be rewritten in the
following matrix form:

yk = X*ak. (13)

According to the sparse representation principle, each pattern feature of the test sample should
share features from the same training samples. Taking into account errors caused by noise, we can
achieve the following /; ;-norm regularized multi-task sparse representation model:

3
: k vk k)2
argngn{z ly" — X"a"(|F +)\|A||2,1}/ (14)
k=1
where A is the balance parameter, || - || denotes the Frobenius norm of a matrix, and || - |, ; denotes
the ¢, 1-norm, A = [ul, az, a3].

The regularization term in Equation (14) is chosen as the ¢, 1-norm regularization term of A. This is
because, for all kinds of features from the same test sample, the location of non-zero coefficients in the
corresponding sparse coefficient vectors should be similar. Additionally, the corresponding coefficient
values of these shared atoms are different due to differences between feature types. Under this
assumption, non-zero coefficients of the representation coefficient matrix should be in the same row.
A regularized ¢, ;-norm can be imposed on A to select a small number of non-zero rows. The optimal
problem (14) can be obtainedby the accelerated proximal gradient algorithm [41].

As is known, each column of A is a corresponding representation coefficient vector of each
feature. For representing the test sample, each training sample contributes to classification differently.
The contribution of a training sample can be estimated by the corresponding representation coefficient
value. A large coefficient value means that the training sample makes a large contribution to the
representation. Since there are three representation coefficient vectors, we adopt the following method
to obtain a local training subset comprising Q nearest neighbor samples. First, the Q atoms with the
largest coefficient values are selected in each coefficient vector, leading to three groups. Due to the
{5 1-norm regularized multi-task sparse constraints, most of the Q atoms come from the same training
samples. However, there are still a few atoms from different training samples. A new subset will be
formed by three groups. We get a subset of V atoms after mixing all three groups and merging the
same atoms. We assume that xj? (j =1,...,V) is the k-th pattern feature vector of the j-th atom in the V

3 2
subset, and let ¢; = kzl |y~ — x;.f ||2 According to the ascending order of ¢;, we select the first Q atoms
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from V to form the final nearest neighbor local subset. For each type of feature, the final Q nearest
neighbor atoms are reserved, while other atoms are set to zero vectors. In this way, the dictionary X*
is updated to a new dictionary X’*. Thus, the interference caused by irrelevant atoms can be greatly
reduced, which can improve correct judgement.

3.2. The Second Stage: Multi-Task Collaborative Representation Learning

The second stage of the TSMRL algorithm is to represent the test sample based on the multi-task
collaborative representation with the new dictionary X', as follows:

3
. 2 2
argmin E ly* — X 6% + || B|7 ¢, (15)
k=1

where p is the balance parameter. B is the collaborative representation coefficient matrix,
and B = [b!, b%,b®]. The optimal problem of multi-task collaborative representation has analytical
solution as follows [27]:

A T -1 T
b = (x™) X% +p1)  (X*)'y" (16)
We employ multi-task collaborative representation because of its simplicity in computation and
its accurate classification ability.

Then, the class label of y is predicted to the class with the lowest total reconstruction error
accumulated over all tasks, i.e.,

3
. a2
Class(y) = argmin ly* — XXX (17)
ce{12,..CH—1

In summary, the steps of TSMRL are shown in Algorithm 1.

Algorithm 1 Two-stage multi-task representation learning for SAR target images classification

Input:

Xinxn @ All training samples

Yinxp: All test samples

Output: the identity of Yy x

Steps:

1)  Extract three types of features from X« respectively; let X 1 = Xpca, X2 = XwaveLeT, and
X3 = Xopszum-

2)  Select a test sample y; from Yy, xp, and three types of features of y; are extracted; let yi1 = YiPCA,

y,-2 = YiWAVELET, and y? = Yi2DSZM-

3)  Using {3 -norm regularized multi-task sparse representation, represent {y},yiz,y?} with the dictionaries
{x1,X2,X3}; obtain the representation matrix A. Then, obtain the local subset comprising Q nearest
neighbors, and construct new dictionaries {X’ 1 x? x'3).

4)  Using multi-task collaborative representation, represent {yi1 ,yiz,y?} with the new dictionaries {X'!, X2,
X"3}. Then, obtain the representative matrix B.

5)  Decide the label of the test sample y; based on the criterion of the total minimum reconstruction error of
multi-task collaborative representation.

6)  If all testing samples are classified, go to step 7). Otherwise, return to step 1).

7)  End
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4. Experimental Results

4.1. Experimental Data Set

In order to evaluate the performance of the proposed approach, we used the MSTAR SAR
image database to carry out experiments. SAR is a typical microwave imaging sensor that can obtain
high-resolution two-dimensional images of targets. The database is widely used for the performance
evaluation of various SAR target-recognition algorithms. The database was acquired by X band
SAR sensors with 0.3 m x 0.3 m resolutions. The main targets in the database are armored vehicles,
tanks, and other vehicles. SAR images in the database have an azimuth range from 0-360°, and have
two different depression angles (15°, 17°). In the experiments, we mainly used images of three
targets, namely BMP2, BTR70 and T72. The optical images of the three targets are given in Figure 2.
The SAR images of the three targets with similar azimuth angles are given in Figure 3. In particular,
BMP2 has three different configurations: BMP2-9563, BMP2-9566, and BMP2-C21. BTR70 has only
one configuration, BTR70-C71. T72 also has three different configurations: T72-132, T72-812 and
T72-S7. Table 1 lists the number of training samples and test samples. SAR images of the three targets
obtained at a 17° depression angle were used as training samples, while images acquired at a 15°
depression angle were used as test samples. In addition, a SAR image from the MSTAR database
contains background clutter besides the target; and the target is usually located in the central region of
the SAR image. In order to reduce the interference of background clutter, we used a 60 x 60 window
to get the central region of the original SAR image.

@ ()

Figure 2. Optical images of three targets. (a) BMP2; (b) BTR70; (c) T72.

(a) (b) (c)

Figure 3. SAR images of three targets. (a) BMP2 (45.5°); (b) BTR70 (45.0°); (c) T72 (44.8°).

Table 1. The targets and number of training and test datasets.

Number of Objects 1 2 3 4 5 6 7
Training sample type (17°) BMP2sn-9563 BMP2sn-9566 ~ BMP2 sn-c21 BTR70sn-c71 ~ T72sn-132  T72sn-812  T72sn-s7
Number 233 232 233 233 232 231 228
Testing sample type (15°) BMP2sn-9563 BMP2sn-9566  BMP2 sn-c21 BTR70sn-c71  T72sn-132  T72sn-812  T72sn-s7
Number 195 196 196 196 196 195 191

4.2. Classification Results and Analysis

We first analyzed the classification performance of the proposed TSMRL algorithm. In order
to illustrate the effectiveness of the TSMRL, we compared it to the multi-task sparse representation
classifier (MSRC) and the multi-task collaborative representation classifier (MCRC). The advantage
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of TSMRL lies in the fact that the best local subset for the test sample can be obtained through the
{5 1-norm regularized multi-task joint sparse in the first stage, which can greatly reduce the interference
of irrelevant atoms. In fact, this agrees with the characteristics of SAR target images, which are sensitive
to azimuth changes. Thus, only training samples from the same target and with adjacent azimuth can
be selected as nearest neighbors of the test sample.

4.2.1. Classification Performance under Different Feature Dimensions

First, we compared the classification performance of the three methods under different feature
dimensions. The results are shown in Figure 4 and Table 2. It is necessary to note that the dimensionality
of three features used in this paper is different. Therefore, the change of feature dimensions was
obtained by decreasing each feature dimension with the same ratio. The horizontal axis in Figure 4
is the dimensionality of the PCA feature. As can be seen from Figure 4, the error rate of TSMRL
decreases with the increase of feature dimension. When the dimension is 600, TSMRL had the lowest
error rate of 0.80%, that is, the average classification accuracy was 99.20%. Under the same feature
dimension, the error rates of MCRC and MSRC were 3.53% and 16.56%, respectively, which are
much higher than that of the TSMRL. Moreover, the TSMRL can maintain small error rates in lower
dimensions. These experimental results support the advantages of the proposed algorithm for SAR
target images classification.

0.25
MSRC
—*—MCRC
ozl —S—TSMRL| |
.
e
W15+ 1
c
S
T
RS}
=
2 o01r .
o
o
0.05 1 1
o
o L ‘ . s
120 240 360 480 600

Dimensionality

Figure 4. Classification performance of three algorithms with varying feature dimensions.

Table 2. Error rates of the three algorithms with varying feature dimensions.

Method
Dimensionality TSMRL MSRC MCRC
120 7.00% 15.59% 5.75%
240 7.00% 10.70% 8.08%
360 2.22% 21.68% 5.41%
480 1.20% 16.73% 3.24%
600 0.80% 16.56% 3.53%

4.2.2. Classification Performance under Different Number of Neighbor Atoms

The dictionaries in both MSRC and MCRC are composed of all training samples.
However, in TSMRL, a subset of training samples is selected after the first stage ¢ ;-norm regularized
multi-task joint sparse learning. Thus, although the dictionary size is the same as those of MSRC
and MCRC, the number of valid non-zero atoms is much smaller than those of MSRC and MCRC.
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We changed the value of Q in order to observe the impact of the number of selected neighbor atoms.
The classification results are shown in Figure 5.

0.15 T T

Classification Error

o . |
5 10 50 100 500
Number of Neighbor Subset Atoms

Figure 5. Classification performance of two-stage multi-task representation learning (TSMRL) under
different number of neighbor subset atoms.

As shown in Figure 5, when Q equals 10, the error rate of TSMRL attains the minimum of
0.80%. With the increased Q, the error rate becomes larger, and reaches 14.17% when Q equals 500.
This is mainly because many interfering atoms are inevitably introduced with the increased number of
neighbor atoms. Nevertheless, it can be seen from Figure 5 that TSMRL still maintains low error rates
over a wide range of Q values from 5 to 100. According to the above results, the number of neighbor
atoms was set to 10 in subsequent experiments.

To compare the performance of the three methods definitively, one query sample of BMP2-9563
with an azimuth angle of 172.5° was selected to analyze the representation coefficient and
reconstruction error, as shown in Figures 6-10. Compared to the representation coefficient of both
MSRC and MCRC, the representative coefficient vector of TSMRL becomes much sparser, as shown in
Figure 7. The reason for this is that we selected a fixed number of neighbor atoms (Q = 10) for TSMRL.
However, for both MSRC and MCRC, there are many atoms with large coefficients belonging to
non-BMP?2 in the representation coefficient vector, which causes huge interference. The reconstruction
error graphs of the three methods shown in Figure 10 confirm our predictions. Figure 10 suggests that
minimal reconstruction errors for both MSRC and MCRC correspond to the incorrect class, while the
minimal reconstruction error for TSMRL means that it is able to correctly identify the target. As shown
in Figure 10a, the reconstruction error of the query sample in TSMRL is far less than other target
categories. In summary, TSMRL can identify targets more accurately than MSRC and MCRC.

Figure 6. Test sample BMP2-9563 (172.50°).
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Figure 7. (a) The second-stage representation coefficient of principal component analysis (PCA) features
of TSMRL; (b) the second-stage representation coefficient of wavelet features of TSMRL; (c) the second
stage representation coefficient of 2DSZM features of TSMRL.
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Figure 10. (a) Reconstruction error of TSMRL; (b) reconstruction error of MSRC; (c) reconstruction
error of MCRC.

For MSRC and MCRC, coding was performed across the global azimuth range of 0-360°.
For TSMRL, after the first stage ¢, 1-norm regularized multi-task joint sparse learning, a subset
of training samples was selected. The training samples in the selected subset became the effective
atoms, while the other atoms were set to zero vectors. In this way, we constructed a new dictionary,
which the second stage was based upon. These selected neighbor atoms play an important role
for correct classification. In summary, the experimental results shown in Figures 7-10 demonstrate
that TSMRL can prevent the interference of atoms far away from the test sample, and improve
recognition performance.

4.2.3. Classification Performance with Regularization Parameter Value Change

There are two regularization parameters, A and p, in TSMRL. The values of the two regularization
parameters have an important impact on classification performance.

There is only one balance parameter in both MSRC and MCRC. In order to compare TSMRL with
MSRC and MCRC, two regularization parameters in TSMRL take the same value as those in the other
two algorithms. In this experiment, the value of Q was fixed to 10, and the regularization parameter
values were set to 1073, 1072, 0.1, 1, 5 and 10 respectively. Figure 11 and Tables 3 and 4 show the
classification error variation diagram, the error rate table, and the confusion matrix, respectively.
From the curve of Figure 11, it can be seen that MSRC and MCRC are sensitive to changes of
regularization parameter values, and the recognition error rates tend to descend with the increase of
the value from 1073 to 5. However, TSMRL is rather smooth with changes of regularization parameter
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values, and the error rate does not change obviously with the variety of parameter values, which shows
that TSMRL had better robustness to various regularization parameters. This is very important in
practical applications because you do not always know the ideal regularization parameters. Taking the
regularization parameter value 0.1 as an example, the classification error rates corresponding to MSRC,
MCRC and TSMRL were 20.26%, 11.27% and 0.74%, respectively. The classification performance of
TSMRL was much better than that of MSRC and MCRC. The entire statistical classification error
rates are shown in Table 3. It is clear that TSMRL has the highest classification accuracy and small
fluctuation. By contrast, the classification performance of MSRC and MCRC is not stable. In addition,
it can be seen that when the regularization parameter value is 1072, TSMRL achieves the minimum
error rate of 0.57%, i.e., the correct recognition rate is as high as 99.43%. As shown in Table 4, with the
regularization parameter value 1072 as an example, the number of correct classified three targets
obtained by TSMRL is better than that of MSRC and MCRC under the same conditions. The number
of BMP2 correctly identified by TSMRL is 583, which is significantly better than the 453 of MSRC
and 560 of MCRC. The results of these experiments illustrate that TSMRL had the best discrimination
ability among the three algorithms.

0.25

MSRC
—*%—MCRC

Classification Error

0>——@/$——9/”9/

1073 1072 107" 10° 10"
A

Figure 11. Classification performance of the three algorithms with different values of regularization
parameter A.

Table 3. Classification error rate of the three algorithms with regularization parameter A.

Method
A TSMRL MSRC MCRC
10-3 0.68% 22.03% 20.43%
102 0.57% 21.51% 17.70%
0.1 0.74% 20.26% 11.27%
1 0.80% 16.56% 3.53%
5 1.25% 11.61% 2.45%

10 1.99% 16.56% 2.96%
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Table 4. Confusion matrix of the three algorithms under different regularization parameter values.

A=10"3 A=10"2
Method Ground Truth
BMP2 BTR70 T72 BMP2 BTR70 T72
BMP2 585 0 2 586 0 1
TSMRL BTR70 5 579 4 4 581 3
T72 1 1 580 1 1 580
BMP2 433 91 63 439 86 62
MSRC BTR70 66 487 35 64 495 29
T72 56 76 450 57 80 445
BMP2 548 0 39 552 0 35
MCRC BTR70 168 274 146 145 317 126
T72 6 0 576 5 0 577
A=01 A=1
Method Ground Truth
BMP2 BTR70 T72 BMP2 BTR70 T72
BMP2 583 0 4 583 1 3
TSMRL BTR70 6 580 2 8 578 2
T72 1 0 581 0 0 582
BMP2 453 73 61 484 64 39
MSRC BTR70 53 510 25 54 510 24
T72 65 79 438 55 55 472
BMP2 560 0 27 562 2 23
MCRC BTR70 96 421 71 15 552 21
T72 4 0 578 1 0 581
/\ = 5 A = 10
Method Ground Truth
BMP2 BTR70 T72 BMP2 BTR70 T72
BMP2 581 1 5 579 1 7
TSMRL BTR70 6 574 8 17 563 16
T72 1 1 580 2 0 580
BMP2 536 32 19 539 9 39
MSRC BTR70 53 505 30 122 381 85
T72 28 42 512 14 22 546
BMP2 554 7 26 542 11 34
MCRC BTR70 0 580 8 0 585 3
T72 0 2 580 1 3 578

TSMRL uses two-stage multi-task representation learning. The first stage is the ¢,;-norm
regularized multi-task sparse learning, the balance parameter of which is A. The second stage is
the Frobenius norm regularized multi-task collaborative learning, and the balance parameter is p.
In previous experiments, A and p took the same value. However, in practice their values are often
inconsistent. Therefore, it is necessary to analyze the classification performance when both values
are not equal. We set A and p for different values and carried out the classification experiment using
TSMRL. The results are shown in Figure 12. As can be seen from Figure 12, the error rates of TSMRL
were lower than 2% when A and p are in the range of 10~2-10. The results further illustrate TSMRL's
robustness to a variety of regularization parameter values. On the other hand, when A is 0.1 and p is
10, TSMRL achieves the minimum error rate of 0.34%, i.e., the correct recognition rate was as high as
99.66%. These experimental results support the advantages of the proposed algorithm.
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Figure 12. Classification errors of TSMRL with different regularization parameters.

Furthermore, we compared the performance of the proposed method with recent SAR target
images classification methods. Under the same dataset, the method in [19] achieved a recognition
rate of 96.48%; the approach in [32] achieved a recognition rate of 98.63%. The recognition rate of the
proposed method reached 99.66%, which was better than the above methods.

4.2.4. Robustess to Noise

Due to the complex imaging environment of the battlefield, it is important to investigate the
anti-noise performance of the proposed algorithm. Gaussian noises of different levels with varying
signal-to-noise ratios (SNR) were added into testing samples, thereby enabling evaluation of the
robustness of the algorithm. Figure 13 shows the classification performance curves of the three
algorithms at different SNRs. From the figure, we can see that the error rates of all algorithms decrease
with higher SNR. Nevertheless, the TSMRL algorithm has the minimal error rate among all methods
for each SNR level. Furthermore, an error rate of 3.67% can be achieved under 20 dB SNR by the
TSMRL algorithm, and an error rate of 0.74% can be obtained under 40 dB SNR level, which illustrates
its robustness to noise corruption.

Classification Error

-10 0 10 20 30 40 50
SNR(dB)

Figure 13. Performance of three algorithms with varying signal-to-noise ratios (SNRs).

4.2.5. Experiments Conducted with Depression Angle Variations

In practical applications, SAR images of a target are not collected at a fixed depression angle.
When the depression angle of the target changes, the SAR image varies as well. In other words, a change
in depression angle also affects the classification performance of the algorithm. Thus, it is necessary to
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analyze the classification performance with depression angle variations. In our experiments, the three
algorithms were evaluated with a large depression angle variation. Three targets, BRDM2, 251,
and ZSU23/4 were employed, as shown in Figure 14. SAR images of these targets are shown in
Figure 15. The dataset used in the experiment is given in Table 5. SAR images collected at a 17°
depression angle were used for training, while images collected at 30° and 45° were employed for
testing. The experimental results are shown in Table 6.

(b)

.—.r.j‘l
.\L"‘&:'.

e

r v.qil- -ll, - ..,

Figure 15. SAR images of three targets. (a) BRDM2; (b) 251; (¢) ZSU23/4.

Table 5. Dataset used in experiment.

BRDM2 281 ZSU23/4
Training Set (17°) 298 299 299
Testing Set (30°) 287 288 288
Testing Set (45°) 303 303 303

Table 6. Classification error under different depression angles of the three methods.

Method
Depression TSMRL MSRC MCRC
30° 5.33% 28.85% 8.11%
45° 44.11% 63.81% 59.52%

As shown in Table 6, with a 30° depression angle, the error rate of TSMRL was 5.33%,
obviously lower than those of MSRC and MCRC. With the depression angle increasing to 45°,
the recognition performance of the three methods all declined. This was mainly because SAR
images of the targets changed severely with an angle gap of 28° between training and test samples.
However, TSMRL could still achieve the minimum classification errors, which were 19.70% and 15.41%
lower than those of MSRC and MCRC, respectively.

The experimental results verify that TSMRL is most robust when it comes to the depression
variation among the three algorithms. This is because of the two-stage strategy reducing confusion
caused by large depression variation, which ensures accurate multi-task learning.
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5. Conclusions

In this paper, we proposed a two-stage multi-task representation learning model to classify
SAR target images. The proposed method could not only make use of multi-feature collaborative
discriminative ability for targets, but could also integrate the representation learning capacity
of sparse representation and collaborative representation. The first stage ¢; ;-norm regularized
multi-task sparse learning selects the nearest subset of the test sample from the perspective of
representation learning, which greatly reduces the interference caused by outliers. In this way, a
new dictionary is obtained. Through the second stage of multi-task collaborative representation
learning, the rational representation weight coefficients are assigned to each atom in the new dictionary.
Subsequently, the label of the test sample can be inferred accurately based on the criterion of
the minimum reconstruction error. Moreover, because the second-stage multi-task collaborative
representation has a closed form solution, the computational complexity of the whole algorithm is
mainly embodied in the first stage of multi-task sparse representation learning. The experimental
results show that the classification performance of the proposed algorithm is much better than that of
multi-task sparse representation learning and multi-task collaborative representation learning, and the
algorithm is robust for a wide range of regularization parameters.
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