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Abstract: In this paper, we consider magnetic positioning and tracking of objects and provide a
comparison of the characteristics of two major measurement models: the magnetic dipole model
and the mutual inductance model. The numerical results obtained by applying these models to a
short-range position measurement application, with a maximum operating distance of approximately
50 cm, are compared. Based on the results of this comparison, a prototype 9-sensor array is developed,
experimental tests are performed, and extensive measurement results are presented. Outcomes show
the feasibility of tracking the position and orientation of a mobile coil in real time with a median
positioning error below 1 cm and a worst-case error of about 2 cm and 11 degrees inside a spatial
region of 30 × 30 × 30 cm3 operational volume.

Keywords: magnetic positioning systems; magnetic measurement models; tracking, unscented
Kalman filter

1. Introduction

Short-range positioning and tracking techniques are gaining increasing interest in many fields
related to the Internet of Things (IoT) framework, such as indoor localization, biometrics, robotics,
domotics, and health care. Applications in these fields may require high accuracy in small confined
spaces. Various techniques have been proposed to solve this problem. Several approaches are based
on radio propagation, such as Ultra Wide Band [1], Bluetooth [2], and Zig-Bee [3] technologies.
Alternative techniques are based on the propagation of acoustic waves, such as the ultrasound
techniques proposed in [4,5]. Another category of positioning technologies is represented by Magnetic
Positioning Systems [6].

During the last two decades, magnetic positioning systems have attracted the attention of
numerous researchers, mainly due to their robustness to propagation phenomena, such as multipath
and obstructions, and due to their high potential accuracy [6]. As an example, the processing and
system-level aspects of designing a magnetic positioning system based on coils and a magnetic sensor
are investigated in [7]. The 3D positioning system in [8] was realized using three-axis field generating
coils and a three-axis sensor coil. In [9], a method for measuring the location and orientation of a
sensor based on a rotating magnetic dipole was proposed. Moreover, in [10] the authors propose a
system based on three-axis magnetic coils, where each coil has outer size 5 cm × 5 cm × 5 cm and
300 turns. In [11], three transmitter coils are placed in an orthogonal arrangement with a pyramidal
shape with base diameter of 21 cm and height of 11 cm. In [12] the authors use a cylindrical magnet of
diameter 1/8 inches and 3/8-inch length.

In general, one of the fundamental issues is that of developing a system with reduced dimensions
of the transmitters and sensors, while at the same time achieving the high positioning accuracy granted
by the magnetic technology. With this aim, a system for tracking a 0.9-mm diameter subminiature coil
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is presented in [13]. This system is composed of a 2D-array of 64 transmitting coils, each having a
diameter of 2.6 cm.

In this paper, we address the magnetic positioning and tracking problem from a measurement
modeling point of view. Specifically, we consider the tracking of the pose, i.e., position and orientation,
of a mobile field-generating coil by processing measurements of the voltage induced in an array of
known-pose sensing coils.

The goal of the research activity presented in this paper is to analyze the implications of two
different modeling techniques on positioning accuracy and computational complexity. These are the
magnetic dipole model and the mutual inductance model. Either one of them forms the basic building
blocks necessary to position and track systems. Thus, the analysis described in this paper can assist a
system developer in making informed design choices.

In the literature, the magnetic dipole model is widely used for realizing positioning systems.
However, this model may provide inaccurate results for some geometrical configurations, such as
when the distance between the center of the field generator coil and that of the sensing coil is of the
same order of magnitude as the diameter of the larger of the two coils, or smaller. Thus, the study of
alternative models that offer better accuracy is relevant. Such models are based on the computation of
the mutual inductance between coils. This comparison between the magnetic dipole model and the
mutual inductance model in terms of positioning accuracy and computation time has not been provided
in the literature. Therefore, it represents a novel contribution of this paper where, at first, the numerical
results obtained by applying these two models are compared. Then, based on this comparison,
a prototype system is realized, experimental tests are described and extensive measurement results
are presented, to prove the feasibility of a practical short-range tracking system. In the context of
this paper, a tracking system is considered short-range if it has a maximum operating distance of
approximately 50 cm. This class of systems may be employed in such applications as hand-tracking
for robotic telemanipulation, or in the biomedical field [14,15]. For these applications, compared to
optical or ultrasound systems, magnetic-field positioning systems offer the advantage of being robust
to obstructions and non-line-of-sight situations, e.g., due to the position of the hand that might block
the view of the fingers.

The paper is structured as follows. In Section 2, the measurement models for magnetic positioning
systems are presented. In Section 3, numerical results are analyzed. In Section 4, the realized magnetic
tracking system is described. Finally, in Section 5, experimental results are described.

2. Measurement Models for Magnetic Positioning Systems

We consider a positioning system comprised of several sensing coils, having fixed and known
positions, and a mobile field-generating coil. The goal is to estimate the position and orientation
of the field-generating coil, based on the measured voltage at the sensing coils. In order to define
the measurement model, let us consider a field-generating coil and a sensing coil with arbitrary
relative position and orientation in space. The magnetic field generated by a coil driven by an
alternate current induces a voltage on the sensing coil. The root-mean square value of the induced
voltage may be measured at the sensing coil. Then, by collecting simultaneous measurements from
multiple known-position sensing coils, it is possible to estimate the position and orientation of the
field-generating coil relative to the coordinate frame of the sensing coils. The equations that relate the
measured voltage at the sensing coil to the relative position and orientation of the field-generating
coil with respect to the sensing coil may be derived using the model employed in [8,13], based on the
concept of magnetic dipole moment. Alternatively, they may be derived by using the model in [16],
based on the mutual inductance concept, or that presented in [17,18], which is an extension of the
mutual inductance model in [16]. In the following subsections, the derivations of these measurement
models are provided.
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2.1. Magnetic Dipole Model

Assume that the sensing coil is centered at the origin of the coordinate system (see Figure 1).
The field-generating coil may be approximated as a magnetic dipole. When the distance between the
field-generating coil and the sensing coil is small compared to wavelength (quasi-static approximation),
the magnetic flux density vector at the sensing coil, denoted as B, is given by [8,13]:

B(xG, yG, zG, a, b, c) =
µ0

4π

(
3 (m · r) r

r5 − m
r3

)
e−jω0t, (1)

where µ0 is the magnetic permeability of vacuum, m is the magnetic dipole moment vector of the
field-generating coil, r = [xG, yG, zG] is the vector from the center of the field-generating coil to the
center of the sensing coil, r, with |r| = r, ω0 is the angular frequency of the sinusoidal excitation of the
field-generating coil, and t is time. The magnetic dipole moment vector m of the field-generating coil
depends on the construction of the coil, on the amplitude of the feeding current, and on the orientation
of the coil. It is given by:

m = NGSG InG (2)

where NG is the number of windings of the field-generating coil, SG is its area, I is the amplitude of
the feeding current, and nG is the unit vector normal to the plane where the field-generating coil lies
(thus aligned with the coil’s axis), with nG = [a, b, c]T , as illustrated in Figure 1.

By assuming a uniform flux inside the sensing coil, the root-mean-square (rms) voltage at the
sensing coil, denoted as VS, may be obtained as [19]

VS(xG, yG, zG, a, b, c) = ω0NSSSB(xG, yG, zG, a, b, c) · nS (3)

where NS is the number of windings of the sensing coil, nS is the unit vector normal to the sensing coil
and SS is the sensing coil’s area.

Figure 1. 3D geometric configuration of the circular filaments in the mutual inductance model.
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2.2. Mutual Inductance Model

An alternative measurement model may be obtained by assuming the coils to be inclined
circular filaments, arbitrarily positioned in space with respect to each other and by computing
their mutual inductance M [16]. Let us consider the geometric configuration of the coils depicted
in Figure 1. The sensing coil is assumed to be at the origin of the coordinate system, lying on the
xy plane. The field-generating coil is placed at an arbitrary position (xu, yu, zu), lying on the plane
λ ≡ ax + by + cz + d = 0, with

√
a2 + b2 + c2 = 1. Therefore, as in Section 2.1, the vector nG = [a, b, c]T

is the unit normal vector of the plane λ and describes the orientation of the field-generating coil.
This vector is aligned with the coil’s axis. The mutual inductance between the field-generating coil and
the sensing coil is given by [16]:

M (xu, yu, zu, a, b, c) = ξ
∫ 2π

0

[p1 cos ϕ + p2 sin ϕ + p3]Ψ(k)

k
√

V3
0

dϕ (4)

where ξ =
µ0Rs

π , p1 = ±γc
`

, p2 = ∓ β`2 + γab
`L , p3 = αc

L , ` =
√

a2 + b2, L =
√

a2 + b2 + c2,

k =

√
4V0

A0 + 2V0
,

V2
0 =α2

[(
1− b2c2

`2L2

)
cos2 ϕ +

c2

`2 sin2 ϕ +
abc
`2L

sin 2ϕ

]

+ β2 + γ2 ∓ 2α
βab− γ`2

`L
cos ϕ∓ 2αβc

`
sin ϕ,

A0 = 1 + α2 + β2 + γ2 + δ2 + 2α(p4 cos ϕ + p5 sin ϕ),

α =
RG
RS

, β =
xu

RS
, γ =

yu

RS
, δ =

zu

RS
,

where RS is the radius of the sensing coil, assumed to be in the origin, and RG is the radius of the
field-generating coil. The choice of the sign in the above equations must be made consistently with
the displayed convention, i.e., either all upper signs or all lower signs should be used. In Label (4),

Ψ(k) =
(

1− k2

2

)
K(k)− E(k), where K(k) is the complete elliptic function of the first kind and E(k)

is the complete elliptic function of the second kind [16].
The computation of the elliptic integrals is typically performed using burdensome numerical

methods, thus reducing the applicability of this measurement model to practical real-time tracking
scenarios. To mitigate this problem, numerous approximation methods have been proposed to compute
the elliptical integrals [20]. In this paper, we use the following polynomial approximations [21]:

K(k) = [a0 + a1k1 + · · ·+ a4k4
1]− [b0 + b1k1 + · · ·+ b4k4

1] ln
(

1
k1

)
+ εK(k), 0 ≤ k < 1,

where k1 = 1− k, the approximation error term obeys |εK(k)| < 2× 10−8, and the coefficients of the
polynomials are

a0 = 1.38629436112, a1 = 0.09666344259, a2 = 0.03590092383, a3 = 0.03742563713, a4 = 0.01451196212

b0 = 0.5, b1 = 0.12498593597, b2 = 0.06880248576, b3 = 0.03328355346 b4 = 0.00441787012,

E(k) = [1 + c1k1 + · · ·+ c4k4
1]− [d1k1 + · · ·+ d4k4

1] ln
(

1
k1

)
+ εE(k),
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where the coefficients of the polynomials are

c1 = 0.44325141463, c2 = 0.06260601220, c3 = 0.03590092383, c4 = 0.01736506451,

d1 = 0.24998368310, d2 = 0.09200180037, d3 = 0.04069697526, d4 = 0.00526449639,

and the approximation error term obeys |εE(k)| < 2× 10−8.
The mutual inductance binds the rms voltage on the field-generating coil VG and that measured

on the sensing coil VS through a constant, denoted by C, as follows [22]:

VS (xu, yu, zu, a, b, c) = CVG M (xu, yu, zu, a, b, c) , (5)

The constant C can be estimated using a calibration procedure, described in the following section.
Equation (5) represents the measurement model based on mutual inductance.

3. Numerical Simulation of a Magnetic Positioning System

To compare the positioning accuracy performance obtained by using the magnetic dipole model
to that obtained by using the mutual inductance model, numerical simulations were performed.
Noisy measurement data were created using different values of the signal-to-noise ratio, in order to
characterize the influence of measurement noise on the accuracy performance.

3.1. Simulation Data

The simulation was performed by considering a grid of NS sensing coils lying on the xy plane
and having fixed and known positions and orientation. Then, a set of positions and orientations
of the field-generating coil, i.e., the true trajectory, was generated. For each element of this set,
accurate values of the mutual inductance between the field-generating coil and the sensing coils
were computed according to the model in [17,18]. Such model is more sophisticated than that in [16]
described in Section 2.2 of this paper, since it takes into account all parameters related to the physical
dimensions of the coils. According to this model, the finite dimension of the coils is taken into account
by discretizing them into a mesh of filaments. This procedure is also known in the literature as the
filament method [23]. Then, the total magnetic flux linked with an arbitrary filament at the sensor
coil is calculated as the sum of the magnetic fluxes due to all the filaments in the field-generating
coil. This model is characterized by a good accuracy since it can correctly account for the physical
dimensions of the coils. However, this comes at the cost of a high computational complexity, due to
the large number of required computations of the flux between every combination of primary and
secondary filaments. Thus, it is unsuitable for real-time position estimation. Therefore, we used this
model only to generate realistic simulation data. Instead, for the actual position estimation, we applied
the simplified mutual inductance model described in Section 2.2, which approximates the entire coils
as filaments thus reducing computational complexity.

The voltage at the sensing coil was simulated using an equivalent circuit similar to the one shown
in [22]. Specifically, this circuital configuration exploits the resonance of an inductor-capacitor (LC)
circuit, comprised of a capacitor connected in parallel with the coil. In the simulations, a resonant
frequency of approximately f0 = 200 kHz was considered. This resonant circuit is employed both
at the field-generating coil and at the sensing coil, resulting in a sensed voltage that is greater than
that obtained without the resonant circuit. Finally, white Gaussian noise having a standard deviation
of σAWGN was added to the simulated samples of the voltage signal received at each sensing coil.
A record of N = 103 samples of the noisy signal was generated for each sensing coil, with a sampling
frequency of 4 MSa/s, and the root-mean-square value of this record was calculated, thus obtaining
a simulation of the noisy voltage induced at each coil. The simulation was repeated for the entire
trajectory using different values of σAWGN , in order to evaluate the influence of signal-to-noise ratio
(SNR) on performance.
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Once the noisy voltage data were simulated, they were used to estimate the vector parameter
θ = [xG, yG, zG, a, b, c]T , which represents the position and orientation of the field-generating coil.

The estimate of the vector parameter θ, which we denote as θ̂ =
[

x̂G, ŷG, ẑG, â, b̂, ĉ
]T

, was obtained by
fitting the noisy voltage data simulated at the sensing coils to the corresponding voltages predicted by
the two models in Sections 2.1 and 2.2 using a nonlinear least squares approach as follows:

θ̂ = arg min
θ

NS

∑
i=1

(
Ṽrms,i −VS,i (θ)

)2 , (6)

where Ṽrms,i is the rms voltage measured at the sensing coil i and VS,i (θ) is the predicted voltage at
sensing coil i, obtained by simulation and corrupted by noise, and VS,i (θ) is the predicted voltage at
sensing coil i, obtained alternatively using the model in Label (3) or that in Label (5). The optimization
method used was the Nelder–Mead simplex method [24].

At each trajectory point, the initial guess of the optimization routine was provided by the position
and orientation estimated at the previous trajectory point. At the first trajectory point, such initial
guess was provided by the true values of the position and orientation, to emulate the situation in
which the trajectory of the field generating coil starts from a known position and orientation. A block
diagram illustrating the simulation procedure is shown in Figure 2.

Figure 2. Numerical simulation procedure.

3.2. Calibration

The methods described in Sections 2.1 and 2.2 require a preliminary calibration phase to calculate
the scale factor that establishes the relationship between the magnetic field or mutual inductance and
measured voltage. For the mutual inductance model, such scale factor is denoted as C in (5). On the
other hand, for the magnetic dipole model, such scale factor is theoretically known from Equation (3).
However, due to imperfections in the coil construction, parasitic effects, and other nonideality factors,
in a practical scenario it deviates from its theoretical value. Thus, the calibration procedure is performed
in order to determine it empirically. In order to be consistent between experiments and simulations,
we perform this procedure in both simulations and experiments.

The calibration procedure, as in [8], consists of taking voltage measurements at known positions
and orientations between the coils. This procedure was performed, in the simulations as well as in
the experiments, by placing the field-generating coil and the sensing coil at a set of known distances,
with both coils lying on the same plane. At each distance, one measurement result was taken and
used to calculate the ratio between the measured voltage and the modeled voltage. Then, the average
of the ratios at all distances was used as the calibration constant. The results obtained in simulation
are shown in Figure 3, demonstrating a good agreement between the considered models after the
calibration procedure.
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Figure 3. Preliminary calibration performed before the numerical simulation.

3.3. Simulation Setup and Performance Evaluation Metrics

In the case of the numerical simulation, the 200-point trajectory in the 3D space shown in Figure 4 was
used. Furthermore, a 2D-array comprised of 36 sensing coils was employed. Although, in the general case,
the position of the sensor coils could be decided arbitrarily, a planar 2D array with uniform placement
of the coils provides advantages in terms of simplicity of the construction of the experimental setup.
Seven values of the standard deviation of the Gaussian noise σAWGN were used, resulting in a set of mean
SNR values (averaged over the entire trajectory) ranging from 13 dB to 100 dB.
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Figure 4. Trajectory used for the numerical simulations. Sensing coils are placed on the xy plane
and denoted by red-filled circlets. The true trajectory of the field-generating coil is marked as a solid
blue line, the trajectory estimated by the mutual inductance method by black dots, and that estimated
by the magnetic dipole method by red circlets.
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The positioning error d was defined as the Euclidean distance between the true position and the
estimated position as follows:

d =
√
(xG − x̂G)2 + (yG − ŷG)2 + (zG − ẑG)2. (7)

Moreover, the orientation error φ was defined as the angle between the true unit normal vector
of the plane where the field generating coil lies, i.e., nG = [a b c], and the corresponding estimate
n̂G = [â b̂ ĉ], as follows:

φ = arccos
(

nG · n̂G
‖nG‖‖n̂G‖

)
. (8)

3.4. Numerical Simulation Results

In order to identify the most effective positioning strategy, the mutual inductance model and the
magnetic dipole model were compared, assuming a slowly moving field-generating coil, such that the
distance between the position at time k and that at time k + 1 is on the order of millimeters. If such
assumption is satisfied, we can approximate the amplitude of the sinusoid acquired at each record
as constant.

Under such conditions, the cumulative distribution function (CDF) of the positioning error
was evaluated and shown in Figures 5 and 6. Furthermore, the mean positioning error obtained for
different values of the SNR is shown in Figure 7. Results show that the mutual inductance model
provides higher accuracy than the magnetic dipole model in terms of positioning and orientation error.
Nevertheless, from the mean computation time plotted in Figure 8 it can be noticed that the magnetic
dipole model has lower computational complexity than the mutual inductance model. As an example,
for SNR = 81 dB, the computation time of the magnetic dipole model is approximately seven times
smaller than that of the mutual inductance model as shown in Table 1. These computation times were
measured on Matlab (Mathworks, Natick, MA, USA) implementations running on the same computer,
a MacBook Pro (Apple, Cupertino, California, USA) with a Core i7 2.5 GHz processor and 16 Gb
of RAM.
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Figure 5. Simulation results: CDF of the positioning error obtained for SNR = 13 dB and SNR = 40 dB.
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Figure 6. Simulation results: CDF of the angular error obtained for SNR = 13 dB and SNR = 40 dB.
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Figure 7. Simulation results: comparison of the mean positioning error obtained for different values of
the SNR.
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Figure 8. Simulation results: comparison of the mean computation time obtained for different values
of the SNR.

Table 1. Numerical simulation results: mean computation time and mean positioning error for each
position calculation, with SNR = 81 dB.

Model Mean Computation Time [s] Mean Positioning Error [mm]

Magnetic Dipole 0.72 0.91
Mutual Inductance 4.94 0.21

As shown in Table 1, the magnetic dipole moment has a computational time that is smaller
than the computation time of the mutual inductance model by a factor 7. Furthermore, the accuracy
degradation obtained when using the dipole model (a factor 4) is acceptable in practical situations,
given that the error in simulation is below 1 mm. This trade-off between accuracy and computational
time was used to guide the design process of the experiemntal prototype. Specifically, given its strong
advantage in terms of computation time, the magnetic dipole moment was selected for implementation
in the prototype, as described in the following section.

4. Experimental Magnetic Tracking System (MTS)

By analyzing the results of the numerical comparison provided in the previous section,
we observed that the magnetic dipole model provides a better trade-off between accuracy and
computational complexity. For this reason, it may be more suited for realizing practical positioning
and tracking systems. Based on this observation, we chose to employ the magnetic dipole model for
realizing a complete experimental tracking system. Such a system requires the solution of nonlinear
problems, which in general may result in high computational complexity. However, with the rapid
development of the microprocessor, it is possible to perform computational tasks of increasing
complexity, therefore algorithms for solving nonlinear problems have become more appealing.
For nonlinear state-space models, it is not possible in general to derive the optimal state estimator
in closed form, but various modifications of the Kalman filter were proposed to estimate the state.
The Unscented transformation method, presented in [25,26], may be used to propagate mean and
covariance information through nonlinear transformations. The Unscented transformation is the base
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of the Unscented Kalman Filter (UKF), which was used for the experimental prototype realization
described in the remainder of this paper.

4.1. Hardware Setup

A prototype positioning system was designed and implemented, using the magnetic dipole
model. Nine sensing coils were realized using enameled copper wire and placed on the same plane
as shown in Figure 9, so that they had fixed and known positions and orientations. The radius
of the sensing coils is 18.5 mm, the number of turns is 5, the coils’ thickness is 0.5 mm and the
coils’ height is 3.5 mm. The field-generating coil has a radius of 5 mm, the number of turns is 15,
the thickness is 0.5 mm and height is 3.5 mm. The number of turns of the coils was selected such
that it resulted in a sufficiently high amplitude of the sensed voltage. Other choices are possible,
such as a larger number of turns. However, this choice would increase the physical dimension of
the coils and the construction complexity. A larger number of turns would also increase resistance,
thus deteriorating the quality factor of the resonators. The resulting nominal inductance of the
coils is L1 = L2 = L = 2 µH. Similarly to the configuration simulated in Section 3, to reduce current
consumption at the transmitter side and increase the operating range, each coil was employed in a
resonator configuration, by connecting it in parallel with a capacitor having the same nominal value of
C1 = C2 = C = 330 nF. The resonant frequency of the realized circuit was approximately 184 kHz.

The voltage induced at each sensing coil was amplified by an AD8421 instrumentation amplifier.
The output of each amplifier was connected to one of the channels of an U2331A data acquisition
board, where the signals were digitized at 3 MSa/s, 12 bits. The duration of the observation window
used to obtain the digitized record of the signal was 100 µs. Digitized signals were transferred to a
host PC for further processing.

In order to realize known orientations of the field-generating coil, it was placed inside a 3D-printed
support shaped as an icosahedron. By changing the orientation of such a support, it is possible to
place the field-generating coil in a set of predefined orientations. Furthermore, the icosahedral
support was placed on a wooden stand that was then aligned to a set of printed reference markings.
Such markings define a 199-point reference trajectory where the distance between consecutive points
is 3 mm. The combined use of the printed reference markings and the icosahedral support allowed
obtaining ground truth information for both position and orientation.

Notice that the sensing coils span a region shaped as a square having a 30-cm side. Having
verified that the system can detect the mobile node’s signal up to a height of 30 cm, this results in an
operational volume of approximately 30× 30× 30 cm3. In order to cover a larger operational volume,
it would be necessary either to use a larger number of sensors or to realize field-generating coils having
larger physical dimensions.

The experimental tests were conducted by placing the field-generating coil at each point of the
reference trajectory and acquiring a data record from all sensing coils. The test was repeated for two
different positions of the icosahedral support, corresponding to two different initial orientations of the
field-generating coil. The first initial orientation was defined by coefficients a = 0, b = 0 and c = 1,
thus the field-generating coil was parallel to the sensing coils. The second orientation was defined by
coefficients a = 0.72361, b = −0.52573 and c = 0.44721, thus the field-generating coil was inclined with
respect to the sensing coils. Note that, during the second test, the orientation of the field-generating
coil changed at each trajectory point.

Prior to the experimental tests, the calibration procedure was performed. As in [8], it consisted of
taking voltage measurements at known positions and orientations between the coils for calculating the
calibration constants. It was performed experimentally by placing the field-generating coil and each of
the sensing coils at a known distance of 150 mm in a coaxial configuration.

During the experimental tests, tracking was performed using the algorithm described in the
following section.
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Figure 9. Hardware setup: nine sensing coils are placed on the xy plane shown at the bottom of the
picture. Each of them is connected to a printed circuit board containing a parallel capacitor and an
instrumentation amplifier. The field-generating coil is placed inside the icosahedral support shown
at the top of the picture. The origin of the coordinate system is in the center of the coil shown at the
bottom left of the picture, where a diagram of the axes of the coordinate system is also depicted.

4.2. Tracking Algorithm

To perform tracking, we define a state-space dynamic model, where the state vector x is given by
the position, velocity, and orientation of the field-generating coil, as follows:

x =
[
xG yG zG vx vy vz a b c

]T (9)

with vx, vy, and vz denoting the components of the velocity vector associated with the field-generating
coil in the 3D space.

The tracking model adopted is a nearly constant velocity model [27] with the following
state-space equations

xk+1 = Fxk + wk,

zk = h (xk) + ek,
(10)

where k is the time step, w is white Gaussian process noise with covariance matrix Q, e is white
Gaussian measurement noise with covariance matrix R, z is the measured voltage at sensing nodes,
and h is the nonlinear measurement function that relates the state vector to the measured voltages,
corresponding to the magnetic dipole measurement model given by Label (3).

The state-transition matrix is given by:
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F =



1 0 0 T 0 0 0 0 0
0 1 0 0 T 0 0 0 0
0 0 1 0 0 T 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1


,

where T is the time interval between two consecutive time steps.
The process noise covariance matrix is

Q =



10−6 0 0 0 0 0 0 0 0
0 10−6 0 0 0 0 0 0 0
0 0 10−6 0 0 0 0 0 0
0 0 0 10−3 0 0 0 0 0
0 0 0 0 10−3 0 0 0 0
0 0 0 0 0 10−3 0 0 0
0 0 0 0 0 0 20 0 0
0 0 0 0 0 0 0 20 0
0 0 0 0 0 0 0 0 20



2

.

Furthermore, the measurement noise covariance matrix is given by

R = σ2
nI9,

where σn = 2.5× 10−3, and I9 denotes the 9× 9 identity matrix. The value of the standard deviation
of the measurement noise, i.e., σn, was defined by processing the experimental data acquired using the
hardware setup.

The UKF algorithm is an extension of the Kalman filter that reduces the linearization errors of
the extended Kalman filter (EKF). Unlike the Kalman filter and EKF, which propagate state estimates,
the UKF propagates an estimate of the probability density function of the state and the measurement
through the nonlinear function. With respect to the EKF, the UKF may be applied to models that are
not easily differentiable.

The UKF deterministically extracts so-called sigma points from the Gaussian distribution and
passes these through a nonlinear function, in our case the measurement function h(xk) in Label (10).
For an n-dimensional Gaussian distribution with mean µ and covariance Σ the sigma points χ, which
are n-dimensional vectors, are chosen according to following rule [26,28]:

χ0 = µ,

χi = µ +
(√

(n + λ)Σ
)

i
for i = 1, ..., n,

χi = µ−
(√

(n + λ)Σ
)

i−n
for i = n + 1, ..., 2n,

and the corresponding weights w are defined as follows:

w[0]
m = λ/(n + λ),

w[0]
c = λ/(n + λ) + (1− ξ2 + ρ),

w[i]
m = w[i]

c = 1/[2(n + λ)] for i = 1, ..., 2n,
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where λ = ξ2 (n + κ)− n is a factor, expressed as a function of the scaling parameters ξ and κ, that
determines how the sigma points are spread from the mean of a Gaussian distribution, and ρ is an
additional parameter used to incorporate prior knowledge on the distribution.

These sigma vectors are propagated through the nonlinear function

Υ[i] = h(χ[i]), i = 1, ..., 2n

The mean and covariance for z, denoted as ẑ and Pz, respectively, are approximated using a
weighted sample mean and covariance of the posterior sigma points:

ẑ ≈
2n

∑
i=0

w[i]
m Υi

Pz ≈
2n

∑
i=0

wi
c
{

Υ[i] − ẑ
}{

Υ[i] − ẑ
}T .

Then, at each time step, the estimate of the state and the corresponding covariance matrix are
obtained using recursive equations based on those of the Kalman filter. An extensive explanation of
the UKF algorithm is given by [26,28].

During the experimental tests, at the first time step, the state estimate was initialized at the
true value of the state. At subsequent time steps, the state was estimated recursively using the UKF
algorithm, to produce an estimated trajectory.

4.3. Experimental Results and Discussion

An overhead view of the true 3D trajectory that was used for experimental tests is shown
in Figure 10, together with the estimated trajectories for the two orientation configurations tested.
The coordinates of the initial point are [0.210 0 0.203], on the bottom right part of Figure 10. Visually,
a good qualitative agreement between the true trajectory and the estimated one may be observed.

We can notice that the voltage measured is strongly dependent on the position and orientation of
the coil. As an example, in the first configuration, the minimum voltage measured is always lower
than that measured in the second configuration, as shown in Figure 11. Furthermore the variance of
the voltage measured in the first configuration is larger than the second one, as shown in Figure 12.
We recall here that, as described in Section 4.1, in the second orientation configuration, the field
generating coil’s orientation changes with respect to the absolute reference at each trajectory point.
Instead, in the first orientation configuration, the orientation does not change and the coil always
remains parallel to the xy plane.

In order to quantitatively evaluate and compare the performance under different orientation
configurations, the CDF of the positioning error and orientation error are shown in Figures 13 and 14.

Results show that the performance remains satisfactory for different coil orientation configurations
in 3D space, therefore proving the robustness of the realized system. The median positioning error is
9.7 mm for the first orientation configuration, i.e., parallel coils, and 6.8 mm for the second orientation
configuration. Furthermore, for the first orientation configuration, in 90% of the cases the positioning
error is less than 10 mm, while the orientation error is smaller than 5 degrees. For the second orientation
configuration, the estimated position shows an error of less than 20 mm in 90% of the cases and the
orientation error is less than 11 degrees.

The average computation time of an iteration of the UKF tracking algorithm is approximately
26 ms, therefore proving the feasibility of real-time tracking.

By comparing the experimental results with those of the numerical simulations in Section 3,
it is possible to notice that the positioning error is larger in the experimental results by a factor of
approximately 10, with the simulation results achieving an error below 1 mm. This discrepancy is
due mainly to nonidealities present in the experimental setup. The main aspect influencing the setup
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nonideality is the uncertainty of the ground truth information provided by the experimental setup.
Such setup is in fact affected by an error that may be quantified to be of a few millimeters, due to the
difficulty in physically realizing structures and supports capable of placing the coils in predetermined
positions with submillimeter accuracy.
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Figure 10. Experimental results: position estimation under two orientation configurations. The black
line is the true trajectory, the green line is the estimated trajectory with the first configuration, i.e.,
initial coil orientation a = 0, b = 0 and c = 1, the red line is the estimated trajectory with the second
configuration, i.e., coil orientation a = 0.72361, b = −0.52573 and c = 0.44721.
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Figure 11. Plot illustrating the minimum voltage that was experimentally measured along the path
in a set of 199 positions inside the test area. The green line is obtained using the initial orientation
of transmitter coil a = 0, b = 0 and c = 1 and the red line using the initial orientation a = 0.72361,
b = −0.52573 and c = 0.44721.



Sensors 2017, 17, 2527 16 of 19

Time step k
0  50 100 150 200

M
ea

su
re

d 
vo

lta
ge

 [V
]

0

0.05

0.1

0.15

0.2

0.25

Time step k
0  50 100 150 200

M
ea

su
re

d 
vo

lta
ge

 [V
]

0

0.05

0.1

0.15

0.2

0.25

Figure 12. Boxplot illustrating the experimental results of measurements along the paths in a set
of 20 positions inside the test area. The results of the test performed with the initial orientation of
transmitter coil a = 0, b = 0 and c = 1 are shown in the figure on the left and those with the initial
orientation a = 0.72361, b = −0.52573 and c = 0.44721 in the figure on the right. In each box, the central
mark is the median, the box edges denote the 25th and 75th percentiles, and the top and bottom ends
of the dashed lines are the maximum and minimum values, respectively. The cross denotes the mean.
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Figure 13. Experimental results: CDF of the positioning error under two orientation configurations.
The green line (first configuration) is related to the test performed with initial orientation of transmitter
coil a = 0, b = 0 and c = 1, the red line (second configuration) is related to the test performed with the
initial orientation of transmitter coil a = 0.72361, b = −0.52573 and c = 0.44721.
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Figure 14. Experimental results: CDF of the orientation error under two orientation configurations.
The green line (first configuration) is related to the test performed with the initial orientation of
transmitter coil a = 0, b = 0 and c = 1, the red line (second configuration) is related to the test
performed with the initial orientation of transmitter coil a = 0.72361, b = −0.52573 and c = 0.44721.

The results obtained may be compared to previous work on magnetic tracking systems by
taking several aspects into account, including operational range, accuracy, and deployment complexity.
Specifically, in [9], an average error of 3.3 mm was observed when measuring the distance between a
triaxial transmitting coil and an uniaxial receiving coil, which was not stationary but was mounted on a
rotating device. Compared to [9], our approach is operational also in stationary conditions and provides
estimates of 3D positioning and orientation. Moreover, in [10], a tracking system with three triaxial
generating coils and two triaxial sensor coils was described. This system achieved a maximum positioning
error below 3 mm and an average positioning error of approximately 1 mm. Compared to this system,
the setup we considered in this paper allows for a lower-complexity implementation and deployment by
eliminating the requirement for realizing triaxial coils, which are prone to construction imperfections and
axis misalignment, at the expense of a worse accuracy. In [11] a system for tracking body movements was
realized using three orthogonal generating coils, magnetic-field sensors, and inertial sensors. The system
was designed to be portable and fixed to the body. The observed tracking accuracy was approximately
5 mm. Compared to this system, the infrastructure of our realized prototype provides similar accuracy
but has a different purpose, since it is not designed to be worn but rather to be placed in an environment
where a mobile device can be tracked.

Furthermore, a comparison with other tracking technologies might be considered. In particular, the
application of the Bluetooth low energy (BLE) technology for indoor positioning purposes was investigated
in [2] This technology offers the advantage of an easy implementation, because BLE functionality is
embedded in widespread commercial devices. Compared to our prototype magnetic tracking system,
its longer operational range allows for suitable application to many indoor scenarios. However, the
attinable accuracy is worse, with a positioning error in the order of a meter.

Another technology that is potentially suitable for realizing tracking systems is ultrasound
propagation. As an example, in [4] the ultrasonic technology was employed to realize a system that
integrates the information obtained by a set of local positioning systems with odometry for mobile
robot localization. This system achieved decimeter-order positioning accuracy over an operating
range of several meters. In [5], a sub-centimeter positioning system based on ultrasonic sensors was
presented. Compared with the magnetic tracking system presented in this paper, it is more vulnerable
to obstructions and its performance might be negatively affected by direction-dependent sensors.
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Finally, compared to optical tracking systems, the magnetic-field technology provides robustness to
non-line-of-sight conditions.

The presented experimental results obtained by using the realized prototype confirm that magnetic
tracking is a viable choice for such applications as hand tracking for robotic telemanipulation and for
biomedical applications. Specifically, these applications may benefit from the good tradeoff between
ease of implementation, low computational complexity, accuracy, and robustness provided by the
magnetic dipole model.

5. Conclusions

In this paper, a comparison of the magnetic dipole model and the mutual inductance model
in the context of 3D positioning and tracking was presented. Numerical comparison results show
that the mutual inductance model allows for a better positioning accuracy than the magnetic dipole
model, but at the expense of a higher computation time. Therefore, the magnetic dipole model might
be a more suitable choice in practical applications with constrained computational resources. After
considering the trade-off between accuracy and computational complexity resulting from the two
models, the magnetic dipole model was selected for the development of a 3D positioning and tracking
system using a quasi-stationary magnetic field generated by coils. The realized prototype is a 9-sensor
system. Measurement results were obtained in two orientation configurations. The median positioning
error was 9.7 mm for the first orientation configuration, which used parallel coils, and 6.8 mm for the
second orientation configuration, where the orientation of the field-generating coil changed at each
trajectory point. Such results show the feasibility of tracking the position and orientation of a mobile
coil in real time with a median positioning error below 1 cm and a worst-case error of the order of 2 cm
and 11 degrees, inside a spatial region of 30 × 30 × 30 cm3 operational volume.
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