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Abstract: Cyber Physical Systems (CPSs) need to interact with the changeable environment under
various interferences. To provide continuous and high quality services, a self-managed CPS should
automatically reconstruct itself to adapt to these changes and recover from failures. Such dynamic
adaptation behavior introduces systemic challenges for CPS design, advice evaluation and decision
process arrangement. In this paper, a formal compositional framework is proposed to systematically
improve the dependability of the decision process. To guarantee the consistent observation of
event orders for causal reasoning, this work first proposes a relative time-based method to improve
the composability and compositionality of the timing property of events. Based on the relative
time solution, a formal reference framework is introduced for self-managed CPSs, which includes
a compositional FSM-based actor model (subsystems of CPS), actor-based advice and runtime
decomposable decisions. To simplify self-management, a self-similar recursive actor interface is
proposed for decision (actor) composition. We provide constraints and seven patterns for the
composition of reliability and process time requirements. Further, two decentralized decision process
strategies are proposed based on our framework, and we compare the reliability with the static
strategy and the centralized processing strategy. The simulation results show that the one-order
feedback strategy has high reliability, scalability and stability against the complexity of decision
and random failure. This paper also shows a way to simplify the evaluation for dynamic system by
improving the composability and compositionality of the subsystem.

Keywords: cyber physical system; dependability; flexibility; self-management; scalability; relative
time model; composability and compositionality; decentralized decision process

1. Introduction

Once the concept of the Cyber Physical System (CPS) was first proposed by the American National
Science Foundation (NFS) in 2006, it soon became so popular that CPS is even regarded as a next
revolution of technology which can rival the contribution of the Internet [1]. CPS applications are
being explored in various areas, e.g., smart transportation, smart cities, precision agriculture and
entertainment. A CPS is a (large) geographically distributed, close-loop system. It closely interacts
with the physical world by sensing and actuating. Roughly speaking, a CPS consists of wireless/wired
sensor networks (WSNs), decision support systems (DSSs), networked control systems (NCSs) and
physical systems/elements. To integrate these four kinds of subsystems, the framework/model of CPS
should support both the discrete models (i.e., WSN, DSS and some NCS) and continuous models (i.e.,
some NCS and physical systems), and integrate them seamlessly.
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In the last decades, numerous conceptual frameworks/models were proposed to explore the
CPS design in different domains and improve the X-abilities of CPS. One famous proposal among
them is the National Institute of Standards and Technology (NIST) reference framework, which was
proposed by the CPS Public Working Group of NIST in 2014. This proposal comprehensively analyzes
the requirements from various aspects and highlights research issues of complexity, timing, adaptability,
safety, reliability, maintainability [2]. However, these conceptual frameworks/models mainly focused on
the requirements and the possible models for CPS design, few of them discussed the dependability
of CPS [3,4]. Meanwhile, most of the current models or solutions are limited to static centralized
architectures, which are incapable of analyzing the dynamic behavior in uncertain environments [3],
let alone achieve synergy between adaptability and dependability under the complex constraints.

Complexity is one key challenge to dependability engineering. To design a dependable system,
one key is using simplicity to control complexity [5]. Considering the infinite scenarios of a
changeable environment, it is infeasible to do a complete testing/simulation to evaluate the decision
in design period. Model@run.time is a smart solution to evaluate decision at runtime. Compared to
testing/simulation in design period, Model@run.time can significantly narrow the possible testing
space, which can decrease the complexity and improve the accuracy of evaluation [6]. In some
sense, modeling and evaluating at runtime is also a kind of solution for decision making. Moreover,
these decisions should be transformed into executable applications. However, runtime transforming
introduces extra complexity, which decreases the dependability. Thus a systemic solution is needed to
build an executable decision to avoid the runtime transforming.

Rammig proposed the challenges of autonomic distributed real-time systems from: (1) modeling
dynamically reconfigurable systems; (2) dynamically reconfigurable system; (3) dynamically
reconfigurable target hardware [7]. CPS suffers the same challenges, but more serious. As a CPS
consists of various heterogeneous subsystems, the processing behaviors of one same decision are
different in most cases, e.g., the execution duration of programs, the reliability of subsystems and the
accuracy of data. Moreover, the available solutions for reconstruction are infinite. It is too heavy for
Model@run.time solutions to evaluate the inconsistent behavior of these solutions in time. As Rammig
argued, the only chance to cope with the challenges of autonomic distributed real-time systems is
to enforce composability and compositionality (C&C) [7]. Improving the C&C of subsystems is a
promising solution for dynamic reconstruction and runtime evaluation [8,9]. High C&C subsystem
design can also comprehensively reduce the complexity of CPSs, simplify the evaluation of decisions
and improve the dependability of decision processing.

1.1. Overview of the Pattern of Self-Managed Loop

Autonomic computing (AC) is a common trend solution for complex systems [10]. AC systems
try to simplify management and improve the adaptability by applying MAPE-K methods [10].
In other words, an AC system tries to automatically make decisions (a.k.a. planning) and take
actions (a.k.a. executing) at runtime. Self-management is a more detailed proposal for AC systems,
which includes four subcategories: self-configuring, self-healing, self-optimizing and self-protecting [11].
More and more studies try to introduce self-management (or AC) into CPS to improve the
flexibility and adaptability [12,13], and the dependability [14,15]. Warriach et al. expanded the
categories of self-management with a set of self-* abilities, including self-healing, self-protection,
self-awareness, self-organizing, self-synchronization and self-configuration, and analyzed both functional
and nonfunctional requirements of self-healing in smart environment applications [16].

Generally, all these self-* processes of the AC system involve four main phases: monitoring,
analyzing, deciding, and acting [17], which is illustrated in Figure 1. AC was once proposed for
business computer systems, which are generally deployed in a well-protected environment (such as
data centers), and rarely affected by the natural world. Hence, a general AC system doesn’t need
to adapt to the changeable external environment. The self-management for the general AC system is
system-centric, which mainly focuses on the continuous improvement of system itself, such as load
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balance, reducing resource consumption of services, improving dependability and security of system.
Indeed, it is us, human beings, who are trained to adapt to the AC systems.
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Figure 1. The system-centric self-management process of AC Systems.

Compared to general AC system, a self-managed CPS has to interact automatically with the
physical world. To behave properly, it should take the right actions in the right place, at the right
time, with reasonable processing speed. In other words, it should not only continuously improve the
system itself, but also adapt to the variable environment. Hence, a self-managed CPS should form
two types of closed loops [13,18,19]. One is a self-healing loop [19], which is similar to the schema in
Figure 1. Another is the interactive loop between the cyber world and the physical world, which is
illustrated in Figure 2. The interaction loop includes long-term loops for causal reasoning (big data
driven MAPE-K loop) and short-term loop for dependable decision process (the feedback control loop).
The self-healing loop and interaction loop may influence each other, e.g., the temperature rise will
trigger the cooling control loop (environment-in-loop adaptation) and also affects the reliability of
hardware (system-centric self-management). In this paper, we focus on improving the consistency
of event observation (the long-term loop) and improving the dependability of decision process (the
short-term loop).
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Figure 2. The environment-in-loop self-adaptation process of CPS.

Centralized decision arrangement is the most common solution for AC systems. The processing
flow of a decision is controlled by a (local) central system, such as DSS. The processing flow fails if the
decision manager fails (a.k.a. single point of failure). The dependability of such processing solutions is
limited by the central system. To overcome this issue, one generic solution is deploying redundant
decision arrangement system. However, it may generate conflicting decisions because two redundant
decision control systems may have the inconsistent observation results and get different events’ orders.

Even to one same centralized decision manager, the order of events may be wrong. The physical
events occur in parallel and sensors are distributed in CPS. Due to various issues (e.g., errors, failures,
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delays, etc.) [20,21], the clocks of sensors may not be precisely synchronized. As a consequence,
different sensors may generate inconsistent timestamps for one same event, which confuses the DSS
and misguides the fault diagnosis methods. Taking precision agriculture as an example, the DSS
analyzes the soil moisture with the current temperature and the status of leaves; and then makes a
final decision that the plants could and should be watered. Then the nozzle starts to spray water at the
timestamp t1, and the event of starting to spray is denoted as e1. The soil moisture sensor detects the
increase of humidity at the timestamp t2, and this event is denoted as e2. If we hold the assumption of
the global reference time, it implies that t1 and t2 are comparable. When DSS receives e2 before e1 and
finds that t1 > t2, the DSS will alarm that there are some things wrong with the nozzle or pipe (i.e.,
leaking). Whereas in a real multi-agent CPS, the timestamps t1 and t2 are not comparable because of
the time synchronization deviation between the node with soil moisture sensor and the actuator with
nozzle. Hence, the timing order of e1 and e2 is indistinguishable. Consequently, the information of
causality between physical events is lost, and further analysis becomes impossible. The timing issue is
challenging the correctness of self-managing decisions, especially to the real-time CPS.

Another challenge is guaranteeing the consistency of the dynamic behavior with simple and
dependable (Model@run.time) solutions. As a kind of system of systems (SoS), a CPS is composed of
numerous heterogeneous subsystems. These subsystems may also recursively consist of various
other subsystems. To describe this feature, we should abstract the subsystems with a model
that is closed under composition. To model the dynamic structure and dynamic behavior for
self-management, the reference framework should be flexible enough to describe the runtime
composition. To guarantee the quality of decisions and quantitative analyze the dynamic behavior,
the properties of subsystems should be composable and the requirements of decision should be runtime
decomposable. With systematic consideration of these requirements, we proposed a framework based
on compositional actors.

The contributions of the paper are manifold. We introduce a relative time solution to solve
the inconsistent event observation in CPS, which forms a foundation for a decentralized decision
process. Moreover, we design a formal compositional framework of the decentralized decision
process. A self-similar recursive actor interface is proposed to simplify self-management. We analyze
the composability and compositionality of our design and provide seven composition patterns.
A one-order dynamic feedback strategy is introduced to improve the reliability, scalability and stability
of decision process.

1.2. Structure of Paper

The remainder of the paper is organized as follows: Section 2 is about the related works on
self-management CPS and formalization. Section 3 introduces the relative time model to guarantee the
consistency of event observation and the qualitative contrastive analysis with the absolute time model.
Section 4 details the actor-based formal model and the interface design. We analyze the composability
and compositionality of reference framework in Section 5. We introduce a simple decentralized
decision process strategy and one-order feedback decentralized dynamic decision process strategy and
compare the reliability with other two strategies in Section 6. The relationship of Sections 3–6 is shown
in Figure 3. Section 7 is a case study of the dependability of decentralized decision process. Section 8
draws the conclusions.

Notations: (1) without additional notes, we use t or tb to represent the absolute timestamp, τ to
represent the duration, tl and tl + τ to represent the relative timestamp in the remainder of our paper.
We use τ̂ to represent the static duration for WCET, BCET, and static requirement of advice, and τ

to represent the real duration or the dynamic requirement of decision; (2) the term “subsystem” is
an agent with several actors. “Subsystem” to decentralized CPS is the “component” to centralized
system; (3) the “decision” in this paper is a dynamical concept, which is similar to the concept of
“application” and “program”. An example is introduced in Appendix A.1 for further understanding of
the decentralized decision process.
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2. Related Works on Self-Management Framework for CPS

Roughly speaking, a CPS has to face two kinds of uncertainty. One is the changeable environment,
another is the unpredictable process flow caused by resource competition and random failures.
To behave properly under uncertainty, CPS should make and process decisions according to the context.
For each self-adapting decision, CPS should select the right subsystems from various heterogeneous
candidates, organize them in the right way, and coordinate the decision process on subsystems.
For self-healing, each prearranged subsystem may be replaced by others at runtime, and heterogeneous
redundant subsystems should cooperate together to improve the reliability. No matter self-adapting
or self-healing, CPS has to dynamically reconstruct its services, structure and topology at runtime.
However, dynamic reconstruction decreases the controllability and predictability of CPS behavior.
It is a big challenge to achieving the consistent quality of decisions process, such as consistent timing,
predictable reliability and safety. To overcome these issues, systemic solutions are need to evaluate the
correctness of reconstruction and to guarantee the consistency of the dynamic behavior of decisions.

A good framework is the foundation for self-management CPS. Massive aspect oriented formal
framework have been published to improve the functional performance of CPS [22,23], and various
frameworks are proposed for self-adapting CPS. As we classified in the survey [3], these frameworks
of CPS can be classified into three types: Service Oriented Architecture (SOA)-based frameworks,
Multi-Agent System (MAS)-based frameworks, and other aspect oriented frameworks. Compared
to SOA-based frameworks, MAS-based frameworks are more lightweight and more scalable. As a
kind of SoS, CPS shows high flexibility, but low predictability. More and more researchers are paying
attention to verification and validation (V&V) of the dynamic structure and behavior of CPS with
Model@run.time methods to improve their predictability. A formal framework is an alternative
solution to improve the predictability and dependability without introducing too much complexity.

Unfortunately, there are relatively few studies on formal framework (architecture) and
dependability evaluation [3]. SCA-ASM is a formal SOA-based framework for modeling and validating
distributed self-adaptive applications. SCA-ASM can model the behavior of monitoring and reacting
to environmental changes and to internal changes, and the related operators for expressing and
coordinating self-adaptive behaviors [24,25]. A MAS-based framework based on the logic-based
modeling language called SALMA was introduced, this model focuses on the information transfer
processing [26]. In the domain of cyber-physical transportation, Mashkoor et al. built a formal model
with higher-order logic [27]. These frameworks are based on centralized decision process control
solutions. The centralized decision controller is slow in reacting because of the long transmission
delay, which increases the safety risk. Moreover, the centralized decision controller is a single point of
failure. Decentralized control can overcome these drawbacks, and more and more studies are being
published in this field. A formal framework was proposed for decentralized partially observable
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Markov decision process problems. Based this framework, a policy iteration algorithm is presented to
improve the coordination of distributed subsystems [28]. A decentralized control solution based on
Markov decision processes is proposed for automatically constructed macro-actions in multi-robot
applications [29]. However, these solutions mainly focus on the performance and convergence speed,
the dependability and timing issues are rarely discussed. Moreover, these researches are based on
ideal subsystems assumption, where all subsystems are dependable and behave consistently.

In the real world CPS, numerous heterogeneous subsystems are applied. These subsystems
have different properties, i.e., different performance, different precision, which complicate the
control of decision process. Various kinds of solutions have been invented to hide the differences
between subsystems, such as middleware and virtualization [30,31], interface technology [32] and
specification [33]. These technologies simplify the self-adaptation by providing consistent interfaces.
Nevertheless, it is still not enough for self-management CPS. For safety, the risk of all decisions should
be evaluable, and all actions should be predictable, which implies that all services and actions have
consistent, stable behavior at run-time. Specifically, a CPS should be stable in the timing behavior and
the reliability of services, and the accuracy of data, etc. Otherwise, the inconsistent and uncontrollable
behaviors will make the CPS unpredictable and increase the risk of safety, mislead the DSS into
making wrong decisions, i.e., the reasoning failure caused by inconsistent timestamp, which was
introduced earlier.

To hide the differences and guarantee the quality of services, one promising way is to improve
the C&C of services. Composability is the property whereby component properties do not change
by virtue of interactions with other components [9]. It comes from the philosophy of reductionism,
which highlights the consistent behavior of the component when it cooperates with other components
to build a whole system. On the contrary, compositionality is originated from holism. Compositionality
is that system level properties can be computed from and decomposed into component properties [9].
It is more about the capacity of decomposition of the system level properties. It focuses on the
consistency between the system level properties and its divided properties (component properties),
where the system level properties can be calculated with components/subsystems properties. For more
detailed discussions about composability and compositionality readers may refer to [9]. By the way,
the concepts of composability and compositionality are interchangeable in some studies.

Designing subsystems with high C&C can reduce the complexity of CPS and systematically
improve the quality of services. A theory of composition for heterogeneous systems was proposed
to improve the stability, which decouples stability from timing uncertainties caused by networking
and computation [34]. Nuzzo introduced a platform-based design methodology based on contracts
to refine the design flow. This methodology uses contracts to specify and abstract the components,
then validates contracts according to the structure of CPS in design period [35]. An I/O automata-based
compositional specification theory is proposed to abstract and refine the temporal ordering of behavior,
and to improve the reasoning of the behavior of components [36], which is useful for dynamic decision
evaluation and fault diagnosis. To guarantee the timeliness of real-time operations, a formal definition
of timing compositionality is introduced [37]. However, how to guarantee in general the quality
of dynamic characteristics such as timing [37], safety [34] and dependability is still an open issue.
Both new architectures and evaluation methods are needed for guaranteeing the timing and the
dependability at runtime. A contract-based requirement composition and decomposition strategy was
introduced for component-based development of distributed systems [38]. This work is a valuable
reference to the solution design for Model@run.time-based decision evaluations.

To achieve dependable CPS, systematic solutions are necessary. Both traditional means and
self-healing methods are useful for maintaining the dependability of CPS. These methods should
be applied organically at different levels to achieve dependability without introducing too much
complexity. A satellite oriented formal correctness, safety, dependability, and performance analysis
method is introduced in [39]; it comprehensively applies the traditional methods to improve a static
architecture, yet the traditional means are limited to static architectures, and they become less and
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less efficient for CPS [3]. Self-healing methods are the trend to manage the dependability of the
dynamic structure, which generally adjusts the architecture to prevent or recover from failures with
flexible strategies. A simplex reference model was proposed to limit the fault propagation in CPS that
built with unreliable components [40]. A methodology is introduced to formalize the requirements,
the specification and the descriptive statements with domain knowledge, it shows a systematic solution
to verify the dependability of CPS with formal models [41].

What’s done cannot be undone, so this hardly eliminates the negative effects of a wrong physical
operation, which makes great claims upon the dependability of CPS. Without maintenance of services
and self-healing solutions, self-adapting CPS is still inapplicable. Considering the complex influence
between self-healing actions and self-adapting actions, a good formal framework is needed to simplify
the decision evaluation at run-time. To address the complexity, we need a systemic solution to apply
self-management without introducing too much complexity.

3. Improving the C&C of Timing Behavior with a Relative Time-Based Model

Time is important to computing [42], especially for feedback control and causal reasoning. As a
necessary condition for causal reasoning, it is important to achieve consensus on the timing behavior
of both physical and cyber events. Moreover, the precise time can improve the control and cooperation
between subsystems. Both context aware-based self-adaptation and fault prevention-based self-healing
can benefit from the accurate causal reasoning and precise decision control. Hence, it is necessary
to eliminate the temporal difference among subsystems and improve the C&C of timing for the
self-management CPS.

To improve the C&C of timing and make all events observers achieve consensus on timing
behavior (the same order of observed events). One intuitive solution is to establish a global reference
time with a precisely timed infrastructure and time synchronization protocol. A time-centric model
has been introduced for CPS [43]. It is a global reference time-based solution where every subsystem
shares one absolute reference time. It is relatively easy to meet the assumption of global reference
time for wired small scale CPS. Whereas for a large scale wireless connected CPS, such as the smart
transportation CPS and the precision agriculture CPS, maintaining the consistent reference time
(absolute time) is a big challenge [20,21].

Furthermore, even if we have a well synchronized system, it still can’t achieve consistent absolute
time and reproduce the causal relationship of events in cyberspace due to the imprecise timestamp.
In fact, the timestamp of an observed event is rough. The accuracy of a timestamp depends on the
sensitivity of the sensor, the processing speed, the sampling period, even the distance between the
target object and sensor. Imagine that a physical event occurs at timestamp tp and the sensor detects
the event at timestamp ts, where tp and ts are absolute times, tp < ts (because sensing takes time).
To sensors (especially to the smart sensors integrated complex data analysis), ts − tp is not equal on
different subsystems because of the sensitivity and the processing speed. Even to one same sensor,
ts − tp is under stochastic volatility. Consequently, it’s impossible to get the consistent absolute time of
events in distributed CPS.

As current causal analysis methods just need the order of events, absolute time is an overly
restrictive conditions, e.g., for logical reasoning e1 ∧ e2 → r : if two events e1 and e2 occur then we
must have the result (event) r; or for quantum causal analysis with probability P(r|e1) : the probability
of the observing event r given that event e1 is true/observed. Few technologies support to deduce
further conclusion from the accurate time difference ∆tr→e between the result event r and the event e.
There are two main reasons: (1) as ∆tr→e is affected by many factors, the acceptable range of ∆tr→e

maybe too large. It is difficult to quantitatively analyze the stochastic volatility of ∆tr→e. For example,
it takes several weeks to observe the effect of fertilization. In the meantime, various factors may
changes the efficient of fertilizer; (2) meanwhile, most events are irrelevant, it wastes resources to
guarantee the absolute time of these events.
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In general, there are two kinds of timekeeping methods. One is absolute time, where all
subsystems share the same reference time (i.e., UTC) and the timestamp of event tb. Another is
based on local time, where all subsystems have a different local reference time tl . For one same event,
these subsystems have different observation timestamps tl + τ. Analyzing the sequence of events is
the first step for mining the relationship between events. The common method to get the order is
calculating the timestamp difference ∆t between two events. With absolute time, we can directly get
the difference ∆tab = tb2 − tb1. With local time, it is relatively complex. As the base reference time tl
is different, the common solutions of local timestamps are not directly comparable. The difference
of two reference times ∆(tl2 − tl1) is necessary, so the final timestamp difference of two events is
∆tr f = τ2 − τ1 + ∆(tl2 − tl1).

As observation is relative to each observer and each case, we propose a relative time model. Every
subsystem just needs to record the duration that it takes to observe the event. The relationship of
absolute time and different observers’ timestamp is depicted in Figure 4. The tuple of timestamp
is (absolute time, timestamp according to sensors’ view, timestamp according to actuator’s view).
For example, a physical event occurs at the absolute time tb. It takes sensor1 τ1.0 to observe the
physical event, and the absolute timestamp is tb + τ1.0. The actuator observes the event from sensor1
at tb + τ1.0 + τ1.1. Here, let us assume that sensor1, sensor2 and actuator are not well synchronized,
they have to record the observation based on their own local times. The timestamp in local time
when sensor1 observes the event is tl1, where tl1 and tb + τ1.0 are two timestamps based on different
reference times, and tl1 = tb + τ1.0. Obviously, sensor1 can infer that the physical event occurs at
tl1 − τ1.0. Likewise, the actuator observes the event from sensor1 at absolute timestamp tb + τ1.0 + τ1.1,
and at tl1 + τ1.1 from sensor1s’ view, and at tl3.1 from the actuator’s view. The event from sensor2
occurs at tb + τ2.0 + τ2.1, tl2 + τ2.1, tl3.2, where tl3.1 maybe not equal to tl3.2. As mentioned earlier,
we can’t figure out the order of two observations based on the timestamps tl1 and tl2. To simplify
the calculation of ∆tr f , one intuitive solution is to select a good observer to let ∆(tl2 − tl1) = 0.
The actuator is such an observer, the actuator can infer that the event occurs at tl3.1 − τ1.0 − τ1.1 and
tl3.2 − τ2.0 − τ2.1. As tl3.1 and tl3.2 share the same local reference time, we have the difference of the
timestamps ∆tr f = tl3.1− τ1.0− τ1.1− (tl3.2− τ2.0− τ2.1) = (tl3.1− tl3.2)− ((τ1.0 + τ1.1)− (τ2.0 + τ2.1)),
where τ1.0 + τ1.1 and τ2.0 + τ2.1 are amount of the process time and transmission time. Currently,
the best observers are the sensors. To achieve this, we propose a dynamic decision process framework, which will
be introduced in the last part of this paper.
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Figure 4. The observation timestamp of an event in different observers’ view.

Theoretically speaking, two observations of one same event should be identical. For timing, two
observations should have the same timestamp, where ∆tr f = 0. However, it may be not true in the real
world system, because the clocks on different subsystems have different speeds due to the frequency
deviation of oscillators. The revised relative time model is shown in Figure 5, where f is the system
clock frequency of the respective subsystems. The tuple of timestamp is (accumulated time from the
physical event is generated, local time). For example, the actuator observes the event from sesnor1 at
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local time tl3, the accumulated time is ( fl3/ fl1)× τ1.0 + τ1.1. From the view of the actuator, the physical
event is generated at the relative time tl3 − ( fl3/ fl1)× τ1.0 − τ1.1.
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Figure 5. Relative time model with frequency revised.

So far, the remaining problem is how to automatically get the scale of the frequency fl2/ fl1.
Based on the time synchronization solutions for the symmetric network [21] or the asymmetry
network [44], every observer can get the duration of transmission time by exchanging message methods
according to its own clock, whereas compared to the absolute time model, the relative time model
doesn’t need to synchronize the clocks. Instead, the neighbor subsystem just needs to check the scale
of the frequency fl2/ fl1. We design an appointment and execution method to calculate fl2/ fl1 which
is shown in Figure 6. For easy understanding, all the timestamps in Figure 6 are absolute times, and all
the duration are relative. With the exchanging message method, every subsystem has already got the
τ1.1 and τ1.5 (actually, τ1.1 and τ1.5 can be inaccurate because of τ1.1 + τ1.5 � τ1.2, τ1.1 + τ1.5 � τ1.3).
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Figure 6. Appointment and execution method for relative frequency scale calculation.

At the beginning, subsystem1 makes an appointment with subsystem2 to execute one same
benchmark at the same time (the execution speed of the benchmark should be independent to the
hardware architecture, i.e., the size of cache). Subsystem1 takes τ1.2 to finish the benchmark and
takes τ1.4 to get the finished signal from subsystem2. From the view of subsystem1, it takes subsystem2
τ1.3 = τ1.4 − τ1.1 − τ1.5 to finish the benchmark. Thus fl2/ fl1 = τ1.2/(τ1.4 − τ1.1 − τ1.5). We can
simplify the relative time model by calibrating the clock (oscillator) of all subsystems with a base
clock (oscillator) before deployment, and set fb/ fl for every subsystem and get an absolute duration.
To simplify the formulation, we use the term absolute duration in the remainder of this paper. We can
easily change the absolute duration τb to relative duration τr with formulation τr = ( fl/ fb)× τb if it
is necessary.

Considering related physical events are in geographical proximity, the observer should be as close
as possible to the source of events. Thus, the accumulated error of duration of two events will not be
too large that CPS can’t reproduce cause-effect relationships. As soon as the events being observed
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and serialized, their orders (relationships) are confirmed. Then, CPS can apply various technologies
for further analysis of the relationship between these events.

The relative time model records the duration of events instead of the absolute timestamp when
events occur. Ideally, fl2/ fl1 just needs to be set once. In the real world system, it may still need to be
calibrated several times during the system lifetime, because oscillators are affected by temperature
and aging. Anyhow, this process can decrease the frequency of synchronization significantly and
has a more stable error. Furthermore, the relative time model doesn’t need a global reference time,
which can improve the scalability of CPS significantly, no matter the subsystems are heterogeneous or
not. Detail comparison between relative model and absolute time mode is beyond the scope of this
paper, the qualitative conclusion is shown in Table 1.

Table 1. Comparison between absolute time model and relative time model.

Absolute Time Model Relative Time Model

Frequency of synchronization Periodically sync Once

Error of timing
Increases with the time during a
synchronizing period and increase
with hops (synchronization error)

Increase with the hops between
event source and observer (no
more than the error of
absolute time) 1

Global reference time Need Not necessary

Scalability It depends on the scalability of the
synchronized algorithm High

1 Because the relative time mode uses the same method to estimate the network transmission time. Indeed the
relative time model can estimate in each communication time and use the mean value to remove the error.

4. The Formal Reference Framework for Decision Process

As mentioned earlier, it can benefit a lot by improving the C&C of subsystems. Our solution
mainly focuses on the composition of subsystems and decomposition of requirements at run-time. In this
section, we introduce the formal reference framework for the dynamic decision process.

4.1. Overview of the Actor Based Framework

A self-managed CPS should automatically sense the environment and diagnose itself, then make
both self-adapting and self-healing decisions, and execute these decisions. Decision making and
executing are the two key parts to form the close-loop. Improving the C&C of subsystems can decrease
the complexity of the process of both decision making and decision executing. Composability can
simplify decision making by simplifying the evaluation of the reasonability of decisions. Otherwise,
DSS has to enumerate all available combinations. Compositionality can simplify decision executing by
simplifying the decomposition of the requirements at runtime, which is helpful for guaranteeing the
dependability of decision execution. Composability and compositionality are two sides of the same
coin, which are the necessary qualities for a good CPS framework.

A self-management CPS includes two parts: (1) the agent platform, which includes hardware
and corresponding actors; (2) the dynamic behavior management subsystem (decision subsystem).
An overview of an actor-based framework for a self-management CPS is shown in Figure 7. The actor
is the atomic abstraction of subsystems in our reference model. Agents are the platform for decision
execution. The behavior of a decision depends on both the properties of hardware and the properties
of the actors. To simplify, we integrate the hardware properties into the properties of the actors.
We assume that the decision has been made by the DSS. Here, we focus on the evaluation of advice
and the dependability guaranteeing in run-time.



Sensors 2017, 17, 2580 11 of 33

Sensors 2017, 17, 2580  11 of 33 

 

of the actors. To simplify, we integrate the hardware properties into the properties of the actors. We 

assume that the decision has been made by the DSS. Here, we focus on the evaluation of advice and 

the dependability guaranteeing in run-time. 

 

Figure 7. Actor-based decision evaluation and self-management based on requirements management 

(RF: Radio Frequency devices). 

4.2. Actor and Decision Formalization 

Definition 1 (Actors). An actor is a time bounded Mealy finite state machine (FSM) 

0
( , , , , , , )Actor Tid S s T       . Where   is a finite set of events, and event should not be empty   ,

timer
e   is the timer interrupt event based on local time; S  is a finite set of states, where s S   has a time 

bound 
s

  that represents the duration that the actor stays in state s , and the maximal time bound of state s  

denotes ˆ|
s

s  ; 
0

s S  is the initial state, and 
00

ˆ|
s

s    . S S   is a set of transition operations, 

where ˆ| , ,k

k k m k
s e s


        , ˆ k


  is the time bound of transition 

k
 ; S S   is a set of 

actions, where ˆ| , ,k

k k m
s e s


        . In addition, an actor must contain one non-empty action 

 ; otherwise, it can’t interact with other actors. ˆ k


  is the time bound of action 

k
 ; T  is the union set of the 

time bound of the state, transition and action ˆ ˆ ˆ{ } { } { }
s

T
 

     . Here we have ˆ{ }

  and ˆ{ }


  because the 

transition in cyber space and the action with physical world are always asynchronous. Tid  is the identifier of 

the type of actor. 

In the rest of this paper, we will simplify the notation by writing 
i n

s s  instead of trajectory (the 

transition sequence) 
, ,

, , , , , ,
i i i i n n n n
s s         , whenever the context allows doing so without 

introducing ambiguity. We define 
i j

Actor Actor  if and only if 
i

Actor  and 
j

Actor  produce 

identical output sequence 
1 n

   for all valid input sequences 
i m
  , where n m . 

( ) ( . . )
i j i j

Actor Actor Actor Tid Actor Tid   , 
i j

Actor Actor  just says that the two actors has the same 

trajectory, the two actors may be not isomorphism, and the properties of two actors can be different, 

i.e., the performance, the reliability etc. If 
i j

Actor Actor , and also all the properties of 
i

Actor  and 

j
Actor  are the same, we use the notation 

i j
Actor Actor . 

Every actor has a set of properties, which we denote as ( , )Actor P . In our dependable 

framework, ˆ ˆ, , ( )b wP p    , where ˆw  is the worst-case execution-time (WCET) of processing a 

 

Common 

platform
Sensor

Actuator

jitter

Hardware Actors with properties

Sensor

actor

Actuator

actor

RF

Network 

actor

Decision (application) with decomposable requirements

QoS

tracer

Advice 

manager
Decision

Dynamic requirement 

evaluator

Decision

generator

1

( )
i it

i
t

Pdt R t
   



1

( )
m

i i

i

R 




1max { }m

j j jt t  

Properties

based decision 

evaluation

Runtime

requirement 

decompose

1

……

m

Input(1,m)
Output&

parallel 

processing

Selected structure

V&V of C&C 

Arrangement

Figure 7. Actor-based decision evaluation and self-management based on requirements management
(RF: Radio Frequency devices).

4.2. Actor and Decision Formalization

Definition 1 (Actors). An actor is a time bounded Mealy finite state machine (FSM) Actor = (Tid, Σ, S, s0, Θ, Ψ, T).
Where Σ is a finite set of events, and event should not be empty ε /∈ ∑, etimer ∈ ∑ is the timer
interrupt event based on local time; S is a finite set of states, where ∀s ∈ S has a time bound τs that
represents the duration that the actor stays in state s, and the maximal time bound of state s denotes
s|τ̂s ; s0 ∈ S is the initial state, and s0|τ̂s0 = +∞ . Θ ⊆ S × Σ × S is a set of transition operations,
where θk = sk × e→ sm|τ̂k

θ , θk 6= φ, Θ 6= Φ , τ̂k
θ is the time bound of transition θk; Ψ ⊆ S × ∑×S is a

set of actions, where ψk = sk × e→ sm|τ̂k
ψ, φ ∈ Ψ, Ψ 6= Φ . In addition, an actor must contain one non-empty

action ψ; otherwise, it can’t interact with other actors. τ̂k
ψ is the time bound of action ψk; T is the union set of the

time bound of the state, transition and action T = {τ̂s} ∪ {τ̂θ} ∪
{

τ̂ψ

}
. Here we have {τ̂θ} and

{
τ̂ψ

}
because

the transition in cyber space and the action with physical world are always asynchronous. Tid is the identifier of
the type of actor.

In the rest of this paper, we will simplify the notation by writing si · · · sn instead of trajectory
(the transition sequence) < εi,si, θi, ψi >, · · · ,< εn,sn, θn, ψn >, whenever the context allows doing
so without introducing ambiguity. We define Actori = Actorj if and only if Actori and Actorj
produce identical output sequence ψ1 · · ·ψn for all valid input sequences εi · · · εm, where n ≤ m.
(Actori = Actorj)⇔ (Actori.Tid = Actorj.Tid) , Actori = Actorj just says that the two actors has the
same trajectory, the two actors may be not isomorphism, and the properties of two actors can be
different, i.e., the performance, the reliability etc. If Actori = Actorj, and also all the properties of
Actori and Actorj are the same, we use the notation Actori ≡ Actorj.

Every actor has a set of properties, which we denote as (Actor, P). In our dependable framework,
P =< τ̂b, τ̂w, p(τ) >, where τ̂w is the worst-case execution-time (WCET) of processing a decision,
τ̂b is the best-case execution-time (BCET). p(τ) is the failure rate, where τ is the online time or the
elapsed time from last recovery. We can calculate τ̂b by replacing the BCET τ̂s and τ̂θ in the formula
τ̂ = ∑

s∈Sp/{sk}
(τ̂s + τ̂θ) + τ̂k

ψ. Likewise, we have the τ̂w.
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Notice τ̂b and τ̂w are not the time from s0 to send. For the case presented in Figure 8, Actori receives
output in state sk, and generates a new output in state sk+h. Thus Sp = {sk, sk+1, · · · , sk+h} is the Sp in
formula τ̂ = ∑

s∈{sk+1,··· ,sk+h}
(τ̂s + τ̂θ) + τ̂k

ψ. We also can get the τ̂b and τ̂w with the Monte Carlo method.
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Figure 8. The interaction of actors.

Definition 2 (Actor Composition). Let CP = (ACTp, ACTs, M,→) be a composition, where ACTs = {Actor}
is a set of preorder actors of the composition, ACTp 6= φ; ACTs = {Actor} is a set of successor actors of
the composition, and ACTr 6= φ; M is the messages (special events) set for the composition communication;
→= ACTp ×M× ACTs is the communication pair of the composition, the arrow is the direction of message.

We use the notations Actori(sk, ψk)
msg→ Actorj(sm, ψm) to represent point-to-point communication

that Actori sends a message msg in state sk with action ψk, and Actorj receives msg in state sj with

action ψj, and Actori ∈ ACTp, Actorj ∈ ACTs. Actori(sk, ψk)
msg→ {Actorj(sm, ψm)} is the one-to-many

communication. {Actori(sk, ψk)}
msg→ Actorj(sm, ψm) is the many-to-one communication. The three

types of communication are illustrated in Table 2. Using message-based composition, we can decouple the
actors and reduce the constraints of operation interfaces.

We will use msg(i, j) to represent the communication in short, and msgi,j to identify the message
itself. Without explicit mention, msg(i, j) also implies that the Actori and Actorj have the same
definition of the structure of the message; if not, Actorj will ignore the message. In addition, we use
msgk,i = msgk,j, where msgk,i shares the same description of structure with msgk,j, the context/value
of message could be different. msgk,i ≡ msgk,j means that msgk,i and msgk,j have the same the
structure and the context. msgk,i , msgk,j means that msgk,i and msgk,j are identical, which means that
msgk,i ≡ msgk,j and the properties (e.g., time bound etc.) of message are the same.
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Table 2. Three types of communication for definition.

Communication Patterns Illustrations

Actori(sk, ψk)
msg→ Actorj(sm, ψm) Point-to-Point

Sensors 2017, 17, 2580  13 of 33 

 

Table 2. Three types of communication for definition. 

Communication Patterns Illustrations 

( , ) ( , )msg

i k k j m m
Actor s Actor s   Point-to-Point 

 

( , ) { ( , )}msg

i k k j m m
Actor s Actor s   One-to-Many

 

 

{ ( , )} ( , )msg

i k k j m m
Actor s Actor s   Many-to One 

 

Notice that, according to this model, one Actor  can send a message to itself, whereas in a real 

system, only the composited actor can send the message to itself (the subsystem of the composited 

actor). It is meaningless for an atomic actor to do so. CP  is the agent/subsystem level view of 

interactions. These interactions are not limited to applications’ communication, which include the 

interactions between agents to maintain the infrastructures, e.g., topology, QoS, etc. For advice 

evaluation, we ignore the communication for maintenance. 

Definition 3 (Advice). Let ,( , , , )
s act f

Ad Tid        be an advice, where   is a set of observation 

event , ,
o t t

Ob Tid   , which represents the preorder actor observes whether the target 
.tid tid t

Actor


 has 

generated event 
t

  or not, { } { }
o t

     ,
o

   ,
t
 ; Ob  is an composition which includes 

an operation instruction op  on event 
t

 , CP
,

( ). , ,
s t t t

Ob msg Tid Tid op Tid    . 
act

Tid  is the identifier 

of actuator actor to take the action, 
s

  is the action triggering conditions, 
f

  is the action finishing 

conditions, 
s

  ,
f

   ;   is Boolean operations { , , }or and not . A generic form of advice is defined 

as , ,
act

s f
Tid Tid

if then excute Actor until
 

 


 
        . Every advice has a set of constraints ˆ ˆ, , s

s d v dep
R r   , 

ˆ
d

  is the maximal process time of the decision that generated from Ad , ˆ
v

  is the term of validity of Ad , 

s

dep
r  is the minimum reliability requirement of the decision. 

Notice that operation instructions op  in the composition message for Ob  can be a set of 

operations { , , , , , ,} { , }op not occur occur         . For safety, one decision contains one final actuator and 

can only take one action, because mealy FSM (1) is on not closed status under parallel composition [45], 

hence, the final action should be processed in serial order. However, it doesn’t says that actuators 

can’t be the target actor of  .   is an observation event, the trigger of a decision can depend on 

the event whether a target actuator has taken/finished an action. 

Definition 4 (Decision). Let ( , , , , )
d

DC uuid Ad ACT CP R  be the decision instance of an advice Ad , 

where Actor ACT   and whose Tid  is defined in Ad  or is an network actor; uuid  is the universally 

unique identifier, msg M   has the same uuid  with the decision; , ,
s

d

d r depv
R r    is the run-time 

decomposed requirements of DC . ˆ
r d i

    is the remaining processing time of the decision, where 
i
  

is the actual processing time of 
i

Actor ; w

iv is
      is the saved time; d

dep
r  is the current reliability of 

 

actor2actor1

point-to-point

 
  

Actorj

  

Actori

one-to-many

 
  

Actori

  

Actorj

many-to-one

Actori(sk, ψk)
msg→ {Actorj(sm, ψm)} One-to-Many

Sensors 2017, 17, 2580  13 of 33 

 

Table 2. Three types of communication for definition. 

Communication Patterns Illustrations 

( , ) ( , )msg

i k k j m m
Actor s Actor s   Point-to-Point 

 

( , ) { ( , )}msg

i k k j m m
Actor s Actor s   One-to-Many

 

 

{ ( , )} ( , )msg

i k k j m m
Actor s Actor s   Many-to One 

 

Notice that, according to this model, one Actor  can send a message to itself, whereas in a real 

system, only the composited actor can send the message to itself (the subsystem of the composited 

actor). It is meaningless for an atomic actor to do so. CP  is the agent/subsystem level view of 

interactions. These interactions are not limited to applications’ communication, which include the 

interactions between agents to maintain the infrastructures, e.g., topology, QoS, etc. For advice 

evaluation, we ignore the communication for maintenance. 

Definition 3 (Advice). Let ,( , , , )
s act f

Ad Tid        be an advice, where   is a set of observation 

event , ,
o t t

Ob Tid   , which represents the preorder actor observes whether the target 
.tid tid t

Actor


 has 

generated event 
t

  or not, { } { }
o t

     ,
o

   ,
t
 ; Ob  is an composition which includes 

an operation instruction op  on event 
t

 , CP
,

( ). , ,
s t t t

Ob msg Tid Tid op Tid    . 
act

Tid  is the identifier 

of actuator actor to take the action, 
s

  is the action triggering conditions, 
f

  is the action finishing 

conditions, 
s

  ,
f

   ;   is Boolean operations { , , }or and not . A generic form of advice is defined 

as , ,
act

s f
Tid Tid

if then excute Actor until
 

 


 
        . Every advice has a set of constraints ˆ ˆ, , s

s d v dep
R r   , 

ˆ
d

  is the maximal process time of the decision that generated from Ad , ˆ
v

  is the term of validity of Ad , 

s

dep
r  is the minimum reliability requirement of the decision. 

Notice that operation instructions op  in the composition message for Ob  can be a set of 

operations { , , , , , ,} { , }op not occur occur         . For safety, one decision contains one final actuator and 

can only take one action, because mealy FSM (1) is on not closed status under parallel composition [45], 

hence, the final action should be processed in serial order. However, it doesn’t says that actuators 

can’t be the target actor of  .   is an observation event, the trigger of a decision can depend on 

the event whether a target actuator has taken/finished an action. 

Definition 4 (Decision). Let ( , , , , )
d

DC uuid Ad ACT CP R  be the decision instance of an advice Ad , 

where Actor ACT   and whose Tid  is defined in Ad  or is an network actor; uuid  is the universally 

unique identifier, msg M   has the same uuid  with the decision; , ,
s

d

d r depv
R r    is the run-time 

decomposed requirements of DC . ˆ
r d i

    is the remaining processing time of the decision, where 
i
  

is the actual processing time of 
i

Actor ; w

iv is
      is the saved time; d

dep
r  is the current reliability of 

 

actor2actor1

point-to-point

 
  

Actorj

  

Actori

one-to-many

 
  

Actori

  

Actorj

many-to-one

{Actori(sk, ψk)}
msg→ Actorj(sm, ψm) Many-to One

Sensors 2017, 17, 2580  13 of 33 

 

Table 2. Three types of communication for definition. 

Communication Patterns Illustrations 

( , ) ( , )msg

i k k j m m
Actor s Actor s   Point-to-Point 

 

( , ) { ( , )}msg

i k k j m m
Actor s Actor s   One-to-Many

 

 

{ ( , )} ( , )msg

i k k j m m
Actor s Actor s   Many-to One 

 

Notice that, according to this model, one Actor  can send a message to itself, whereas in a real 

system, only the composited actor can send the message to itself (the subsystem of the composited 

actor). It is meaningless for an atomic actor to do so. CP  is the agent/subsystem level view of 

interactions. These interactions are not limited to applications’ communication, which include the 

interactions between agents to maintain the infrastructures, e.g., topology, QoS, etc. For advice 

evaluation, we ignore the communication for maintenance. 

Definition 3 (Advice). Let ,( , , , )
s act f

Ad Tid        be an advice, where   is a set of observation 

event , ,
o t t

Ob Tid   , which represents the preorder actor observes whether the target 
.tid tid t

Actor


 has 

generated event 
t

  or not, { } { }
o t

     ,
o

   ,
t
 ; Ob  is an composition which includes 

an operation instruction op  on event 
t

 , CP
,

( ). , ,
s t t t

Ob msg Tid Tid op Tid    . 
act

Tid  is the identifier 

of actuator actor to take the action, 
s

  is the action triggering conditions, 
f

  is the action finishing 

conditions, 
s

  ,
f

   ;   is Boolean operations { , , }or and not . A generic form of advice is defined 

as , ,
act

s f
Tid Tid

if then excute Actor until
 

 


 
        . Every advice has a set of constraints ˆ ˆ, , s

s d v dep
R r   , 

ˆ
d

  is the maximal process time of the decision that generated from Ad , ˆ
v

  is the term of validity of Ad , 

s

dep
r  is the minimum reliability requirement of the decision. 

Notice that operation instructions op  in the composition message for Ob  can be a set of 

operations { , , , , , ,} { , }op not occur occur         . For safety, one decision contains one final actuator and 

can only take one action, because mealy FSM (1) is on not closed status under parallel composition [45], 

hence, the final action should be processed in serial order. However, it doesn’t says that actuators 

can’t be the target actor of  .   is an observation event, the trigger of a decision can depend on 

the event whether a target actuator has taken/finished an action. 

Definition 4 (Decision). Let ( , , , , )
d

DC uuid Ad ACT CP R  be the decision instance of an advice Ad , 

where Actor ACT   and whose Tid  is defined in Ad  or is an network actor; uuid  is the universally 

unique identifier, msg M   has the same uuid  with the decision; , ,
s

d

d r depv
R r    is the run-time 

decomposed requirements of DC . ˆ
r d i

    is the remaining processing time of the decision, where 
i
  

is the actual processing time of 
i

Actor ; w

iv is
      is the saved time; d

dep
r  is the current reliability of 

 

actor2actor1

point-to-point

 
  

Actorj

  

Actori

one-to-many

 
  

Actori

  

Actorj

many-to-one

Notice that, according to this model, one Actor can send a message to itself, whereas in a real
system, only the composited actor can send the message to itself (the subsystem of the composited
actor). It is meaningless for an atomic actor to do so. CP is the agent/subsystem level view of
interactions. These interactions are not limited to applications’ communication, which include the
interactions between agents to maintain the infrastructures, e.g., topology, QoS, etc. For advice
evaluation, we ignore the communication for maintenance.

Definition 3 (Advice). Let Ad = (Xs,< Tidact, X f >,⊗, X) be an advice, where X is a set of observation
event χo =< Ob, Tidt, χt >, which represents the preorder actor observes whether the target Actortid=tid.t
has generated event χt or not, X = {χo} ∪ {χt} ∪ ∑, χo ∩ Σ = Φ, ∑ ⊆ χt; Ob is an composition which
includes an operation instruction op on event χt, Ob = msg(Tids,Tidt). < op, Tidt, χt >∈ CP. Tidact is the
identifier of actuator actor to take the action, Xs is the action triggering conditions, X f is the action finishing
conditions, Xs ⊆ X, X f ⊆ X; ⊗ is Boolean operations {or, and, not}. A generic form of advice is defined as
i f ⊗

χ∈Xs
χ, then excute ActorTid=Tidact , until ⊗

χ∈X f

χ. Every advice has a set of constraints Rs =< τ̂d, τ̂v, rs
dep >,

τ̂d is the maximal process time of the decision that generated from Ad, τ̂v is the term of validity of Ad, rs
dep is

the minimum reliability requirement of the decision.

Notice that operation instructions op in the composition message for Ob can be a set of operations
op = {<,≤,=,≥,>, 6=, } ∪ {not occur, occur}. For safety, one decision contains one final actuator and can
only take one action, because mealy FSM (1) is on not closed status under parallel composition [45],
hence, the final action should be processed in serial order. However, it doesn’t says that actuators can’t
be the target actor of χ. χ is an observation event, the trigger of a decision can depend on the event
whether a target actuator has taken/finished an action.

Definition 4 (Decision). Let DC = (uuid, Ad, ACT, CP, Rd) be the decision instance of an advice Ad,
where ∀Actor ∈ ACT and whose Tid is defined in Ad or is an network actor; uuid is the universally unique
identifier, ∀msg ∈ M has the same uuid with the decision; Rd =< τr, τsv, rd

dep > is the run-time decomposed
requirements of DC. τr = τ̂d − ∑ τi is the remaining processing time of the decision, where τi is the actual
processing time of Actori; τsv = ∑ τw

i −∑ τi is the saved time; rd
dep is the current reliability of decision, which

will be introduced in Sections 5 and 6.1. ∀msg ∈ CP.M belongs to a composition pattern, which will be
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introduced in Section 5.2. And also ∀msg ∈ CP.M has a time bound < τw, τrs >∈ T, Actori+1 first waits for
time τw then starts to process the decision, τw is the reserved time for parallel composition to synchronize the
processing; τrs is the reserved time for decision process, τrs = τ̂d −∑ τw

i+1. In summary, Actori+1 should wait
τw and finish the (i + 1)th step of decision in τr − τrs = ∑ τw

i+1 −∑ τi.

Uuid is the identification to avoid repeatedly processing one decision on the same actors, which is
an important constraint to prevent duplication and maintain safety. Rd is for transmitting the dynamic
requirement to successor actors, τw is for synchronization, τrs is used to control the deadline of process.
The example of the formal process flow is introduced in Appendix A.1.

4.3. Centralized and Decentralized Decision Process

According to the way of decision management, there are two kinds of decision process forms.
One is centralized decision process; another is our proposal, decentralized decision process. Without loss of
generality, the local DSS generates an advice with two χs, i f e1&e2, then excute Actoract, until e3.

The centralized decision process flow is illustrated in Figure 9. The local DSS sends an advice to a
decision manager and the decision manager controls the flows of a decision process. At every step
(1.1 to 1.4, 2.1 to 2.4 and 3.1 to 3.5), the sensors and actuators should acknowledge to the manager,
then the manager sends the command for next operation. By the way, Actoract is also a decision
manager to the process of e3.
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Figure 9. A possible solution for traditional centralized decision process.

To overcome the single point of failure and to minimize the duration (time) error for event
observations, we design a decision as a program solution. The decentralized decision process flow is
illustrated in Figure 10. A decision is processed with the flow of transmission. It has no explicit
decision manager. In some sense, every actor can be regarded as a decision manager for next step
composition. The successor waits for all messages from its preorders according to the composition
pattern (step 3.1). Based on the decentralized solution, CPS can observe the firsthand events (both
physical events and cyber events).
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Figure 10. A possible solution for decentralized decision process based on our framework.

4.4. Simplify Self-Management Strategies with Self-Similar Actor

CPSs have massive subsystems, and some of them are heterogeneous. It is impossible to specify
strategies for every subsystem. In general, most of the subsystems have limited resources, it is too
complex to apply enough powerful strategies to adapt to all situations. Moreover, it is also impossible
to exhaust all situations. The systematic solution is need to decease the complexity of runtime
decision management.

The key idea to achieve self-management without deceasing the dependability is using simplicity
to control complexity [5] and simplifying the management (control) based on self-similarity [46].
To achieve this, we need to take full advantage of the characteristic of SoS and design a systematic
framework and self-similar subsystems to enable recursive composition for CPS. Our framework
includes four levels of abstraction: CPS, Agent, CompositedActor and CommonActor. The BNF (Backus
Normal Form) of the composition relation is shown in Equation (1). To achieve self-similarity,
we propose a well-design actor interface to simplify the self-management. These actors share a
set of similar operations, the self-similar interface is shown in Figure 11. By applying FSM based
actor design, we simplify the constraints for runtime decision decomposition and actor composition.
The detailed composition pattern will be discussed in Section 5.

CPS ::= Agent|CPS
Agent ::= CompositedActor|CommonActor
CompositedActor ::= CompositedActor|CommonActor

(1)

Base on the thought of everything as an actor, we can abstract the decision with compositedactor,
which can be recursive decomposed at runtime. Based on the self-similar interface design,
the ActorManager on different agents can manage every sub-part of decision with the same rule.
And every actor supports a set of same actions self-healing() and property_detecting(). property_detecting()
is dedicated to check the requirements with the actors’ properties, which include process time and
reliability. A compositedactor is generated by the adviceparser according to the advice. The compositedactor
just fills the Tiggerconditions if there is not Actoract on the same agent. Otherwise, the compositedactor
take actions if the value of the Boolean expression of the Tiggerconditions is true.
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Figure 11. Self-similar actor interface.

By using message-based composition, actors share the same communication pattern.
Combining with the self-similar interface, actors can have a self-similar behavior, which is depicted in
Figure 12. For example, based on the observation event X =< Ob, Tid, X > and CP, the observation is
recursive (Boolean operation is closed); logically, any level subsystem can be an observer. The recursive
decomposition of event stops when the event is an atomic event, where χ ∈ Σ. Based on the recursive
design, a complex strategy/decision can be decomposed and processed by basic actors. Based on
self-similar behavior, simple (self-healing) rules can be applied at all levels of CPS, which is shown in
Figure 13. The threshold for the timeout detection are the time bound T which defined in Section 4.2.
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Figure 13. Self-similar healing at actor level and agent level. (a) Time based actor level self-healing;
(b) Time based agent level self-healing.

5. Composition Rules for Reference Framework

As CPS may dynamically reconstruct at any time, different subsystems may be selected to
process the decision. Hence, the ACT of one same decision may be entirely different in different
executions. Even the physical communication topology and the hardware structure may be dynamic,
i.e., the communication topology of the smart fertilization CPS that consists of the unmanned aerial
vehicle (UAV) and WSN, or the hardware structure of a Network-on-Chip (NoC) system. The behavior
of a decision changes with the actors involved. In this section, we formally analyze the consistency
between decision (advice) requirements and subsystem properties based on the reference framework
and give the rules for run-time composition to guarantee the correctness and dependability.

5.1. Composability and Compositionality of Actors

Improve the C&C of actors is an effective solution without introducing too much complexity.
The theory on composability and compositionality for actors are detailed in [47,48]. One main issue
that limits the C&C of actor is that the composed actor may have potential deadlocks due to the data
flow loop. As every decision and each transition of actor has a deadline (time property), this issue
is not so serious. Also, as we analyze in this paper, we just focus on the rules for the composition of
properties and runtime requirements decomposition.

5.1.1. The Pattern of Composition

The three basic formats of composition are illustrated in Figure 14. In each format, P is composited
with i and j. In Figure 14b, i and j have different functional logic and perform parallel. For redundant
composition in Figure 14c, i and j also perform in parallel, but have the same functional logic.
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According to the automata theory, FSM is closed under the operations: union, intersection,
concatenation, substitution, homomorphism, etc. The composite FSM can generate the identical
trajectory with the sub-FSMs under the same input (advice), so FSM-based actors are compositional for
structures in Figure 14 (compositedactor is still an actor, it inherit the logical function and interface from
the sub-actors. The design of compositedactor is shown in Figure 11).

Therefore, we can transform dynamically the advice to decision and reconstruct the
decision according to the closure of union, intersection (composition for parallel observation,
Figure 14b), concatenation (i.e., hierarchical structure composition, Figure 14a), simplify the QoS-based
self-optimization and replacing based self-healing based on homomorphism (for replacing with the actors
on heterogeneous agents), and substitution (replacing the Actortid2 with two Actornet and Actortid2’ or
building a redundant composition with Actortid2 and Actortid2’, Figure 15). We can use the closure of
reversal to simplify reasoning.

Sensors 2017, 17, 2580  18 of 33 

 

According to the automata theory, FSM is closed under the operations: union, intersection, 

concatenation, substitution, homomorphism, etc. The composite FSM can generate the identical 

trajectory with the sub-FSMs under the same input (advice), so FSM-based actors are compositional 

for structures in Figure 14 (compositedactor is still an actor, it inherit the logical function and interface 

from the sub-actors. The design of compositedactor is shown in Figure 11). 

Therefore, we can transform dynamically the advice to decision and reconstruct the decision 

according to the closure of union, intersection (composition for parallel observation, Figure 14b), 

concatenation (i.e., hierarchical structure composition, Figure 14a), simplify the QoS-based self-

optimization and replacing based self-healing based on homomorphism (for replacing with the actors 

on heterogeneous agents), and substitution (replacing the 
2tid

Actor  with two 
net

Actor  and 
2
'

tid
Actor  

or building a redundant composition with 
2tid

Actor  and 
2
'

tid
Actor , Figure 15). We can use the 

closure of reversal to simplify reasoning. 

 

Figure 15. Actor is closed under substitution and concatenation. 

Notice that, Mealy FSM is not closed under parallel composition [45], because the component i  

and j  may depend on each other (cyclic dependency, also called an algebraic loop). To break the 

cyclic dependency, we limit the amount of final actuator to one (see Section 4.2). FSM is closed just 

means that the functional logic of FSM (the trajectory of input and output) is closed under these 

operations. It doesn’t mean that the properties of subsystem are also closed, i.e., the worst case 

response time is not closed under homomorphism and substitution. 

5.1.2. Constraints and Solution for Composability 

(1) Interface composition: (Compatibility): 

According to the interface theory, two interfaces are not compositional, because one can’t accept 

the error output that generated by another interface [32]. Compositional interface can be achieved by 

designing uninterruptible self-healing operation and noticing other actors before starting to self-heal, 

because notification and timeout event are acceptable to all actors. Other actors can reconstruct the 

decision, so no error output will be generated and sent to other actors. After recovery, the state will 

be restarted from the state 0
s . 

(2) Consistent transition: (limits the effects of failures) 

Actor  is consistent in transition, iff Actor  produces identical output sequence 1 n
   for all 

valid input sequences i m
  , and all ˆt t

 
 . 

For normal transitions without error states, according to the automata theory, this constraint can 

be easily complied. If Actor  fails, the conclusions can’t be made, because it may generate an 

erroneous output which is unacceptable to other actors. To an actor, it can’ keep the consistent timing 

behavior in such situation. The only solution is to apply the redundancy methods which will be 

introduced in Section 5.2 and Section 6 to minimize the risk of failure. Meanwhile, we use the methods 

introduced in (1) interface composition to stop all actions immediately until the actors is recovered. 

 

Actortid2

Input Output

Network

Actor

Network

Actor
Actortid2'

Decision solution 1

Decision solution 2

Figure 15. Actor is closed under substitution and concatenation.

Notice that, Mealy FSM is not closed under parallel composition [45], because the component i
and j may depend on each other (cyclic dependency, also called an algebraic loop). To break the cyclic
dependency, we limit the amount of final actuator to one (see Section 4.2). FSM is closed just means
that the functional logic of FSM (the trajectory of input and output) is closed under these operations.
It doesn’t mean that the properties of subsystem are also closed, i.e., the worst case response time is
not closed under homomorphism and substitution.

5.1.2. Constraints and Solution for Composability

(1) Interface composition: (Compatibility)
According to the interface theory, two interfaces are not compositional, because one can’t accept

the error output that generated by another interface [32]. Compositional interface can be achieved by
designing uninterruptible self-healing operation and noticing other actors before starting to self-heal,
because notification and timeout event are acceptable to all actors. Other actors can reconstruct the
decision, so no error output will be generated and sent to other actors. After recovery, the state will be
restarted from the state s0.
(2) Consistent transition: (limits the effects of failures)

Actor is consistent in transition, iff Actor produces identical output sequence ψ1 · · ·ψn for all valid
input sequences εi · · · εm, and all tψ ≤ t̂ψ.

For normal transitions without error states, according to the automata theory, this constraint can
be easily complied. If Actor fails, the conclusions can’t be made, because it may generate an erroneous
output which is unacceptable to other actors. To an actor, it can’ keep the consistent timing behavior in
such situation. The only solution is to apply the redundancy methods which will be introduced in
Sections 5.2 and 6 to minimize the risk of failure. Meanwhile, we use the methods introduced in (1)
interface composition to stop all actions immediately until the actors is recovered.
(3) Composition of actor should be non-commutative: (for causality, observability and traceability)

Actori � Actori 6= Actorj � Actori
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The cyclic dependency of actors will confuse the observation and make decision tracing difficult.
The behavior is not inferable, if the composition is commutative because the trajectory of Actori� Actorj
is the same with Actorj � Actori. The observer can’t infer the behavior based on the trajectory. Hence,
if Actori � Actori = Actorj � Actori, such composition should be forbidden, or Actorj and Actori
should be designed as a one huge actor.

5.2. Composition Rules of Reliability and Time (Duration) Properties

The compositionality of dynamic requirements and the composability of properties in dynamic
behavior are two sides of the same coin. For DSS, checking the rationality of an advice is estimating
the holistic properties of a decision with the properties of the actors. It should take into account
the available structures for processing. For the actors who process the decision, evaluating the
practicability of dynamic arrangement (decision decomposition) is checking the fitness between
run-time requirements with the properties of (next step) actors.

Most requirements/properties of decisions, which include both the system level requirements
and subsystem level requirements, change over time. And most properties of subsystems just depend
the duration of processing, which can be specified by a function of duration/time, i.e., the reliability
R(τ), and energy consumption E(τ) = P× τ. In this paper, we focus on the dependability and process
time, but this method can provide the reference for other requirements.

5.2.1. Calculation Rules for Reliability Composition for Relative Time Based Framework

The reliability function is written as R(τ) = 1 − F(τ) = 1 −
∫ τ

0 p(τ)dτ, where F(τ) is
the failure rate function, p(τ) is the failure density function, τ is the duration, R(τ) ∈ (0, 1).
To simplify the equation, we use the absolute duration in this Section (because the process of
statistic of p(τ) is based on absolute duration; we can transform it into a relative time model with
R0(τ0) = 1−

∫ c(τ0)
0 p(c(τ0))d(c(τ0)), where τt = c(τ0) = τ0 × fb/ f0, τt is the duration of target actor,

τ0 is the duration of the observer actor. fb is the absolute frequency and f0 is the frequency of MCU
where observer runs on).

We conclude seven types of composition solutions, which are shown in Table 3. ti refers to
the timestamp of last recovery of Actori, τr

i refers to the elapsed time from last recovery, τ
p
i is the

process time τb
i ≤ τ

p
i ≤ τw

i . ti + τr
i is the timestamp when Actori starts to process current event and

ti + τr
i + τ

p
i is the timestamp when finishes to process current events. To simplify, let τi = τr

i + τ
p
i ,

Ri(τi) = 1− Fi|
ti+τr

i +τ
p
i

ti+τr
i

. Notice that, the equations in Table 3 can also be applied as the rules for the
decomposition of reliability requirement at run-time.

The pattern 1 and pattern 2 are the two basic functional composition patterns, and the pattern
3 to 5 are the basic redundant processing patterns. All three patterns start m actors simultaneously
to process the same decision. Pattern 3 accepts the first returned output without waiting others (i.e.,
Reliable message transmission). Pattern 4 doesn’t start next action until all actors finish the actions (i.e.,
guarantee the reliability of sensing data). Pattern 5 starts next action after receiving k (same) outputs.
Pattern 6 and 7 are composite patterns to tradeoff between time requirement and reliability. CPS can
apply different strategies (pattern 3–5) to accept the outputs in every step.

Both reliability and process time are very important to safety-critical CPS. We can apply
different composition patterns to arrange the decision process to achieve balance between the
dependability, efficient (minimizing the amount of redundant actors) and correctness (to meet
the requirement of τr, in other word, finishing the decision in time). For example the reserved
time Min(τDC) < τr − τrs < Max(τDC) and the runtime reliability requirement for the next step is
Min(RDC) < rd

dep < Max(RDC), we can apply the pattern 6.2 and with pattern 5 to meet the constraints
of time and reliability at the same time.
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Table 3. The composition rules for reliability and duration.

Patterns The Structure of the Composition RDC(ø), øDC and t1

(1) Basic pattern
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(6.1 Reliability critical)

1−
m
∏
i=1

(1−
n
∏
j=1

Ri,j(τi,j)), where,

max{t1,n + τ1,n, · · · , tm,n + τm,n} = t,

τDC = maxm
i=1{

n
∑

j=1
τi,j}
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(6.2 Time critical)

n
∏
j=1

Ri,j(τi,j), where
n
∑

j=1
ti,j + τi,j = t,

τDC =
n
∑

j=1
τi,j
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(the structure depends on the type of
pattern applied in every step)

Max(RDC) =
m
∏
i=1

(1−
n
∏
j=1

(1− Ri,j(τi,j))),

Max(τDC) =
n
∑

i=1
maxm

i=1{τi},

(apply pattern 4 in all steps)

Min(τDC) =
n
∑

i=1
minm

i=1{τi},

Min(RDC) =
n
∏
i=1

Rj,i(τj,i), j is the first

actor (apply pattern 3 in all steps)
1 RDC(τ) is the reliability of decision, τDC is the duration of decision t is an absolute timestamp when the decision
is finished.

5.2.2. Constraints and Solutions for Redundant Composition

(1) Consistent message sending for redundant composition
For a one-to-many redundant composition Actorp(si, ψi)

msg→ {Actori(s, ψ), Actorj(s, ψ)}, we have
(msg(p, i) , msg(p, j)) ∧ (Actori = Actorj). Notice that, both space based redundancy (pattern 3, 4, 5)
and time based redundancy (redo) should satisfy these constraints.
(2) Consistent receiving behavior for redundant composition

For a many-to-one redundant composition {Actori(s, ψ), Actorj(s, ψ)} msg→ Actorp(si, ψi), we have
(msg(i, r) ≡ msg(j, r)) ∧ (Actori = Actorj).

Where ∧ is the AND operator of Boolean logic.
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(3) Constraints for advices and decisions
For an operable advice, the requirements of time should meet ∑

Actor∈Ad
τ̂b

i ≤ τ̂d, (τ̂b
i is BCET defined

in Section 4.2), and the dependability requirements should meet rdep < Max(RDC), if τrs < Max(τDC).
If τrs > Max(τDC) and τd > τ̂w

i+1, we can try redo Actori+1 to improve the reliability.

6. Improving the Reliability of Decision Processes with Dynamic Structure and Dynamic
Behavior

6.1. Decision Process Patterns and Reliability

We summarized four kinds of decision arrangement solution, two of them are traditional solutions,
and another two are designed for our framework. In this subsection, all involved actors are composited
actors, and the final composition structure of decision is the same with the structure 1 of Table 3.
The availability of n compositional actors is a classical Markov repairable system [49], which is briefly
introduced in Appendix A.1.

6.1.1. Static Decision Process Strategy (Static for Short)

It is the traditional solution for the static architecture, where both hardware and software are
centralized. Applications are built as a macro-system. All actors are tightly implemented as a union,
and the connections between actors can’t be modified dynamically. The structure is shown in Figure 16.
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Figure 16. Static processing on macrosystem.

As all subsystems (components) are built on agent, every subsystem is online. The online duration

of subsystem i is
i

∑
j=1

τj, where τj is the decision process duration on Actorj. The reliability of a decision

using this solution is shown in Equation (2):

Rst =
n

∏
i=1

Ri(τi) =
n

∏
i=1

(1−
∫ ts+

i
∑

j=1
τj

ts
pi(τ)dτ) (2)

6.1.2. Centralized Decision Process Strategy (Centralized for Short)

This is a typical decision process flow of the current solution, the hardware structure is
decentralized but the control is centralized. The centralized decision manager selects next actors
from distributed agents, and controls the flow of the decision process. The structure is shown in
Figure 9. For this structure, the centralized decision manager should be online during the whole
process time. The reliability function of the decision applying this solution is shown in Equation (3).
Notice that, to focus on decision process, we ignore the processing time of decision manager in each
step. As a result, Rcnt is larger than the real value. In simulation, we let the failure density function of
manager pmg = p1:

Rcnt = Rmg ×
n

∏
i=1

Ri(τi) = (1−
∫ ts+

n
∑

i=1
τi

ts
pmgdτ)×

n

∏
i=1

Ri(τi) (3)
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6.1.3. Simple Decentralized Dynamic Decision Process Strategy (simple-dy for Short)

The decision is processed dynamically without feedback control, where both structure and control
are decentralized. The decision process flow is shown in Figure 10. As actors can heal themselves
dynamically, these actors have different online durations (t0 of every actor is different). The decision
process fails if and only if the actor fails when it is processing the decision. The reliability of a decision
with this solution is written as an Equation (4):

Rpre =
n

∏
i=1

Ri(τi) (4)

6.1.4. One-Order Feedback Decentralized Dynamic Decision Process Strategy (OneOder_dy for Short)

The flow of one-order feedback dynamic decision process is illustrated in Figure 17. Suppose that
Actori and Actori+1 are two connected composited actors, and Actori+1 is processing the decision.
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Figure 17. One-order feedback dynamic processing.

(1) If Actori+1 fails when it is processing a decision and Actori doesn’t receive the ACK message
from Actori+1 after the time τw

i+1 + τmsg(i+1,i), Actori can resend the msg(i, i + 1) to another
Actori+1′ to re-process the decision if the time requirement permits. The decision can go on being
processed correctly.

(2) If both Actori and Actori+1 succeed, but Actori doesn’t receive the ACK message because the
network failed. The Actori+1 can find a successor Actori+2 to process the decision, Actori may
resend a query to Actori+1′. As the decision has uuid, the final actuator will just process the
decision once and ignore the decision sent Actori+1′. This wastes resources but decision can be
processed correctly.

(3) Similar to (2), if Actori fails and Actori+1 succeeds, Actori+1 can just ignore Actori and pass the
decision to the next successor. In addition, the decision can be processed correctly.

(4) If Actori+1 fails and Actori also fails, no one has the status of the decision. Obviously, no actors
can rearrange the process of this decision. Consequently, the decision fails.

Therefore, for one-order feedback solution, decision fails only when the Actori and Actori+1 are
both failed. It takes Actori τ̂dl + τw

i+1 + τmsg(i+1,i) to aware the failure and τmsg(i,i+1′) to resend the
message to Actori+1′. The decision can go on processing. If the Actori also fails during τ̂dl + τw

i+1 +

τmsg(i+1,i) + τmsg(i,i+1′), this instance of decision fails. Thus the failure rate is shown in Equation (5),

where t f
i = ti + τr

i + τ
p
i , τaw = τ̂dl + τw

i+1 + τmsg(i+1,i), ts
i+1 = ti+1 + τr

i+1. The reliability of dynamic
processing strategy is shown in Equation (5):

FDy
1 =

∫ ts
1+τi

ts
1

p1dτ; |ACT| = 1

FDy
i+1 = Fi(τaw)× Fi+1(τi+1) = (

∫ t f
i +τaw

t f
i

pidτ)× (
∫ ts

i+1+τi+1
ts
i+1

pi+1dτ); |ACT| > 1
(5)

RDy =


1−

∫ ts
1+τ1

ts
1

p1dτ; |ACT| = 1

(1−
∫ ts

1+τ1
ts
1

p1dτ)×
n
∏
i=2

(1− FDy
i ); |ACT| > 1

(6)
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Notice that, if τw
i+1 + τmsg(i+1,i) < τ̂dl can’t be satisfied, Actori has no time to find another

available actor, the decision fails; but we can decrease the failure possibility by redundant solution,
i.e., arranging more successors to process the decision, which was introduced in Section 5.2.1. By the
way, we can also develop a high-order system to improve the reliability, the ACK message should be
sent from Actori+1 to Actori and to Actori−k in recursive form, so Actori−k also knows the statues of
the decision.

6.2. Simulation and Result Analysis

According to the Equations (2)–(4) and (6), we reach the conclusion that the reliability decreases
with the process time, failure aware time (WCET), because reliability value F(t) < 0. Here, we conduct
a set of simulations with MATLAB to test reliability of the four strategies of decision process against
the complexity of decision (the amount of composited actors).

In this simulation, we assume that the failure functions of all actors are following the exponential
distribution (F(t) = 1− e−λt), which is a common assumption for reliability evaluation. The failure
rate λ of each actors fallows uniform distribution, whose range is [0, 0.0002]. The amount of actors
increases from 2 to 40 with step 2. The process time τ of each actor follows uniform distribution, whose
range is [100, 300]. The range of process time affects the Min reliability and Max reliability of process,
and the more results of different ranges is shown in Appendix A.3. The WCET τw = 1.1× τ; the
τ̂dl = 20; ts

i = 0 which means that all actors are renewed for decision process. The URL for scripts and
simulation data is in supplementary materials.

For each amount of actors, we simulate 100 times, where λ and τ are the same for the four
strategies. In each simulation under same amount of actors, λ and τ are renewed. The simulation
results of four strategies against the complexity of decision (the amount of actors) are illustrated in
Figure 18. Furthermore, the part of statistic results are listed in Table 4. The stability analysis is shown
in Figure 19.

Table 4. Robustness on reliability of four strategies.

Mean Max MIN (Max−Min)/Mean 1

Static process 0.00000047 0.00000798 0.00000000 16.89455532
Centralized process 0.26113862 0.47278942 0.11442376 1.372319661

Simple Dynamic process 0.44719988 0.55121109 0.36700843 0.411902301
One-order feedback 0.96111892 0.98509618 0.92474253 0.062795188
1 The value of Mean, Max and Min are the last case of last simulation (actor = 40) (data file is d0_2-40.mat).
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Figure 19. Stability of reliability under random failure and process time (As the curve of static process
increase much faster than other strategies, it just has the first 5 points in Figure 19b). (a) Max−Min of
the reliability; (b) (Max−Min)/Mean.

The obtained simulation results show that dynamic, decentralized decision process can achieve
not only higher reliability (Static process < Centralized process < Simple dynamic process < one-order feedback)
but also higher stability and higher scalability. Static process is centralized control with centralized
structure; the centralized process is centralized control with decentralized structure; simple dynamic
process and one-order feedback are decentralized control with decentralized structure. The curves in
Figure 18 show that decentralization can increase the reliability of the system. One-order feedback
solution has the highest reliability. For each amount of actors, one-order feedback solution also has
smaller value of Max−Min and (Max−Min)/Mean, which shows that it has more stable behavior
against the variable process time. Thus, the reliability of one-order feedback is more predictable, and it is
important for decision arrangement. With the increasing of complexity, the values of Max−Min and
(Max−Min)/Mean show that one-order feedback solution is more stable. The reliability of one-order
feedback solution decreases slowly with the amount of actors, which shows higher scalability. It means
that one-order feedback solution can be applied for more complex decision and involves more actors.
In addition, one-order feedback strategy can achieve higher reliability and stability than simple dynamic
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decision process strategy without introducing time overhead (it just increases the memory overhead,
because the preorder actor should keep the message until the successor actor returns the ACK).

6.3. Proactive Self-Healing for Fault Prevention (Risk Management)

There are two types of self-healing strategy: (1) self-healing actions only occur after an actor has
failed. Such system is a classical Markov repairable system (as seen in Appendix A.1); (2) The actors
take proactive actions to heal themselves before any fault occurs (i.e., an actor can periodically check
and restart itself to prevent the faults). CPS is safety-critical. Applying the first self-healing strategy
increases risk of missing deadline, because repairing takes time. Therefore, we can apply the second
strategy to prevent failures to improve the safety.

According to the hazard function hi+1(t) =
p(t)
R(t) =

Ri(τi)−Ri+1(τi+1+∆τi+1)
∆τi+1×Ri(τi)

, we can replace the Ri(τi)

and Ri+1(τi+1) with the Equations (2)–(4) and (6), and can get the hazard function of failure for each
strategy when Actori hinds over the decision process to Actorj (the detail equation is attached in
Appendix A.2). Obviously, the hazard increasing with the online time of Actorj (Centralized processing
also depends on online time of decision manager, One-order feedback strategy also depends on the
online time of Actori).

We can define a threshold of risk Hthreshold, let hi+1(τ) ≤ Hthreshold, by solving the equation,
we can have a τp which is the period of self-healing. Therefore, we can control the failure risk and to
improve the safety of the decision process. In addition, let us assume that it takes an actor τh time to
self-heal itself. Thus, the availability of every actor is A = τp/(τp + τh).

7. Case Study

To test, validate and evaluate the propose concepts, we implemented a test-bed platform. We used
a PC as a local DSS, which connects with other subsystems with a USB to ZigBee adapter. There are
three types of Arduino boards (Mega2560) and a humidifier. Type1 (top): the board has a light sensor
(Keyes K853518). Type2 (middle): the board has a soil moisture sensor (FC−28) and controls the
humidifier with a relay module. And Type 3 (bottom): the board has a temperature and a humidity
sensor (DH11). The three types of Arduino cooperate together to process the decision. The platform of
case 1 is shown in Figure 20.
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In all cases, the actors of the same sensors and actuators are implemented with the same code.
We automatically inject the faults on every Arduino board when actors are active, and the frequency
of fault injection is one error every 4 s. The subsystem can self-recover from the failures with a
container-based multilevel self-healing solution, which is introduced in our previous paper [50].
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Case 1: All actors in one board

It is a macrosystem solution, all sensors and actuators are integrated into one board. It is also a
centralized control solution, all process flows are controlled by one agent. Notice that, to improve the
reliability, the actuator will notify local DSS the progress of humidifying every one minute

Case 2: T1_one + T2_one + T3_one

In this case, CPS has no redundant subsystems. It just has one type1 board, one type2 board and
one type3 board.

Case 3: T1_two + T2_one + T3_two

In this case, CPS has two redundant type1 boards and two redundant type3 boards. It has one
type2 board. To avoid over modifying the environment, the process of the final step of decision
(humidifying) is mutually exclusive, and only one actuator is in charge of the final step of action.

Two types of failures are injected: (1) actor level failure, which is WCET violation [50]; the target
actor will start the self-healing action. Other actors on the same board work normally; (2) Board level
failure, which is Random PC Error [50]; the board will be restarted and all actors on this board are failed.
The tests take 12 days (it takes about two days to test every case and each failure, from 15 August to
27 August). The deadline of decision process is 15 min. It takes the board 1–4 s to recover from board
level failure, and it takes about 80–110 milliseconds to recover from an actor level failure. The results
are shown in Tables 5 and 6.

Table 5. The failure rates of the three cases.

Actor Level Failure Board Level Failure

Success Failed Failed Rate (%) Success Failed Failed Rate (%)

Case 1 190 2 1.04 111 81 42.2
Case 2 192 0 0 192 0 0
Case 3 192 0 0 192 0 0

Table 6. The mean process time and overhead of the three cases.

MPT_N (s)
Actor Level Failure Board Level Failure

MPT_F (s) Time Overhead a MPT_F (s) Time Overhead

Case 1 235.8 512.4 217.3%, 276.6 694.2 294.4%, 458.4
Case 2 238.7 407.3 170.6%, 168.6 505.2 211.6%, 266.5
Case 3 239.2 254.8 106.5%, 15.6 463.6 181.9%, 224.4

a Format: (MPT_F/MPT_N, MPT_F −MPT_...N).

The failure rates in Table 4 show that the decentralized framework (cases 2 and 3) can tolerate the
higher frequency failures, especially board level failure. One-order feedback strategy on decentralized
framework (cases 2 and 3 in Table 4) can successfully process all decisions in time. The mean process
time (MPT_N) in Table 5 shows that case1 has highest, performance in normal model, but it is not
much better than the distributed framework (the overhead of the distributed framework in normal
mode is 239.2 − 235.8 = 3.4 s). The mean process time under fault injection (MPT_F) shows that the
distributed framework has significantly higher performance than centralized solution. One-order
feedback strategy on the redundant decentralized framework (case 3 in Table 5) can shorten the
redoing time, cover the time cost of self-healing and improve the dependability of decision process.
In summary, One-order feedback strategy on the redundant decentralized framework can tolerate
failures, leave more time to actuator to take the final action, which can improve the safety of decision
process (the actuator can cautiously process the final action with more frequent checking).
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Notice that, to improve the dependability of real world CPS, we have applied multi-level measures,
which include actor level self-healing solution, node level self-healing solution, decentralized fault
detection solution, etc. The results in Table 4 are the comprehensive effect of these measures. Moreover,
the duration of process time is affected by the weather (the humidity and temperature). Normally, it
takes the humidifier about 4 min to increase the moisture from 30 to 50 (the moisture of surface soil
has been increased to 50). In addition, it takes about 15 min to dry the soil moisture from 50 to 30 in
Harbin in August.

8. Discussion

In this paper, we mainly focus on the introduction of a compositional framework and the
evaluation of decentralized decision process. A CPS is an autonomic computing system which
should be able to adapt to the changeable environment, prevent and recover from various failures
automatically. To achieve this goal, CPS has to adjust its structure and behavior dynamically. In this
paper, we introduce a systemic solution to improve the consistency of event observation (the long-term
loop) and the dependability of decision process (the short-term loop). To solve the inconsistent
timestamp of the events, an observer based relative time solution is proposed to guarantee the
consistent event observation for causal reasoning and processing duration management. The relative
time solution infers the timestamp when the events occur with process duration and the timestamp
that event observed. Using the locality of events, we can select the nearest local observer to control
the errors of observation. This solution doesn’t need the global reference time and periodic clock
synchronization, it can increase the scalability of CPS.

To minimize the errors of observation and to overcome single point failure of centralized decision
process, we design a formal reference framework based on compositional actor for self-management
CPS. Base on the thought of decision as a program, actor-based decisions (advice) can be decomposed
and composed at runtime. Moreover, a self-similar recursive actor interface is proposed to simplify
self-management. We provide the patterns and evaluation rules and constraints for reliability and
process time composition and decomposition.

Based on this framework, we propose a simple dynamic decision process strategy and a one-order
dynamic feedback decision process strategy and compare the reliability with traditional static strategy
and centralized decision process strategy, the simulation results shows that the one-order dynamic
feedback strategy has high reliability, scalability and stability against the complexity of decision and
random failure.

The testing results of the real world system show the comprehensive improvement of
dependability with our framework. Our compositional framework improves the scalability through
three main solutions: (1) the relative time model is applied to remove the central reference time node;
(2) the compositional framework supports decentralized decision process; (3) one-order dynamic
feedback strategy improves the scalability. CPS can apply different composition patterns to achieve
the balance between requirements of safety, reliability and process time.

In this paper, we show a way to simplify the dependability evaluation for dynamic systems.
By improving the composability and compositionality of actors, we can evaluate the system
requirements with the properties of compositional actors, and deduce the system behavior from
the behavior of subsystems, which can accelerate the progress of evaluation significantly.

Supplementary Materials: The simulation code and the record for this figure are available on https://bitbucket.
org/Teampp/sensors2017.
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Appendix

Appendix A.1 A Case of Decentralized Decision Processing

Here, we use the same advice case that is introduced in Section 4.3. To simplify, we removed the
network actor. All properties are shown in Figure A1, and the formal process flow of this example
is shown in Figure A2. I.e., the requirement of decision is Rs =< τ̂d, τ̂v, rs

dep >=< 100, 200, 0.98 >.

The WCET of Actortid1 is τw = 13, the BCET is τb = 9, the real time of decision processing is

τ = 10, the reliability of Actortid1 is R = 0.99. The format of decision process is Actori
<decision>→

Rd ,Tmsg

Actorj, where Rd =< τr, τsv, rd
dep >, Tmsg =< τw, τrs > is the time bound of message < decision >,

τsv =
k
∑

i=0
τw

i −
k
∑

i=0
τi, τrs = τr −

n
∑

i=k+1
τw

i .
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Figure A2. The detail process flow for Figure A1.

Flow1 and Flow2 have a parallel composition. Thus the reliability of Actortid1 and Actortid1
should be larger than 0.98. To synchronize observation, Actortid1 first waits τw = 17 then starts its
observation. Let us assume that Actoract receives the message from Actortid1 at local timestamp t.
According to the relative time model, Actoract can deduce that event from Actortid1 occurs at t− 10,
that event from Actortid2 occurs at t− 20. Actoract have the right order of event. Such decentralized
solution can reduce the error of difference of timestamp.

Without loss of generality, let us assume that Actortid2 is a composited actor, which means that no
Actor can meet the reliability requirement. We can improve the reliability with redundant composition
which introduced in Section 5.1. If we apply the composition pattern 4, the decomposition rule is

1−
m
∏
i=1

(1− Ri(τi)) ≥ 0.98, and the maximum τDC < 100− 55 = 45. Thus, local DSS will select m

Actor whose tid = tid2 to observe the event e2 together. Let us suppose that two Actors with tid = tid2
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are selected to observe the events together. The reliability of Actortid2.1 is 0.96 and Actortid2.2 is 0.86.
1− (1− 0.96)× (1− 0.86) = 0.9944 ≥ 0.98.

As events and actors support recursive composition, every composited actor can decompose the
requirement as the local DSS dose in the example. Suppose e2 =< ob, tid4, e4 > & < ob, tid5, e5 >

is a composited event, e4 is atomic event, e4 ∈ Σ. The decomposed requirement of Actortid2.1 is
Rs =< τ̂d, τ̂v, rs

dep >=< 45, 0, 0.96 >. The Actortid2.1 plays as a local DSS, the process flow is shown in
Figure A3, replacing the e2 with e4.
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Appendix A.2 The Availability of Decentralized Framework

The behavior of the n compositional actors is a classical repairable system [49] with k backup
components (1 ≤ k ≤ n), where n− k is the minimum amount of redundant actors to guarantee the
reliability (RDC > Rrequirement), the k actors can take over the processing if any actor fails. Without loss
of generality, let us suppose that {Actor}i is the n compositional actors for the ith step of a decision.
λi,j is the transfer rate of Actori,j, µi,j is the repair rate of Actori,j.

If all the actors have the same λ and µ (isomorphism), it is a classical Markov repairable system.
The transfer matrix A(n+1)×(n+1) is a tridiagonal matrix, which is shown in Equation (A1). The stable
availability of {Actor}i is A = 1− πn, mean up time (MUT) is 1−πn

πnkµ , mean down time(MDT) is 1
kµ ,

mean cycle time is 1
πnkµ , where πn is shown in Equation (A2):

An+1,n+1 =



−nλ nλ 0
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. . . . . . . . .
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(A2)

Appendix A.3 The Reliability over Different Rages of Process Time

The reliability decreases with the process time, failure aware time (WCET), (1) The reliability
function Ri(τi) is a monotonic decreasing function of the duration τi; (2) The process of a decision
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consists several actors. The range of the reliability of each actors is (0, 1). The four Equations

(2)–(4) and (6) can be simplified as Rdc = c×
n
∏
i=1

Ri, where Ri ∈ (0, 1). Rdc decreases if Ri decreases

(R1 × R2 < min(R1, R2), where 0 < R1 < 1, 0 < R2 < 1). As Ri decreases with the process time,
Rdc decreases the process time of decision is Στi.

All the parameters used are the same with the simulation in Section 6.2. The actor amount is [2–40]
with the step of 2. According to the four figures Figure A4a–d. we can make the conclusion that the
range of process time affects the Min reliability and Max reliability of process. One-order feedback
strategy has best performance of reliability and stability. Obviously, the actor with small process range
is more stable (Figure A4a vs. Figure A4d).
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Appendix A.4 Hazard Function of Four Strategies

Hazard function of the static decision process strategy:

hst
i+1(t) =

Ri(t)(1− Ri+1(t + ∆τ))

∆τi+1 × Ri(t)
=

Fi+1(τi+1)

∆τi+1

Hazard function of the centralized decision process strategy:

hcnt
i+1(t) =

Ri
mg(

i
∑

i=1
τi)− Ri+1

mg (
i+1
∑

i=1
τi)× Ri+1

∆τi+1 × Ri
mg(

i
∑

i=1
τi)
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Hazard function of simple decentralized decision dynamic processing strategy:

hpre
i+1(t) =

(1− Ri+1(tl.s + ∆τi+1))

∆τi+1
=

Fi+1(τi+1)

∆τi+1

Hazard function of one-order feedback decentralized decision dynamic processing strategy.

hdy
i+1(t) =

Fi(τaw)× Fi+1(τi+1)

∆τi+1
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