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Abstract: This paper considers a wireless energy harvesting two-way relay (TWR) network where the
relay has energy-harvesting abilities and the effects of practical hardware impairments are taken into
consideration. In particular, power splitting (PS) receiver is adopted at relay to harvests the power
it needs for relaying the information between the source nodes from the signals transmitted by the
source nodes, and hardware impairments is assumed suffered by each node. We analyze the effect
of hardware impairments on both decode-and-forward (DF) relaying and amplify-and-forward (AF)
relaying networks. By utilizing the obtained new expressions of signal-to-noise-plus-distortion ratios,
the exact analytical expressions of the achievable sum rate and ergodic capacities for both DF and AF
relaying protocols are derived. Additionally, the optimal power splitting (OPS) ratio that maximizes
the instantaneous achievable sum rate is formulated and solved for both protocols. The performances
of DF and AF protocols are evaluated via numerical results, which also show the effects of various
network parameters on the system performance and on the OPS ratio design.

Keywords: energy harvesting; two-way relay; hardware impairments; ergodic capacity;
optimal power splitting

1. Introduction

Energy harvesting (EH) has recently attracted enormous attention from researchers as a promising
supplemental technology in prolonging the lifetime of a wireless network, especially in wireless sensor
networks [1], cognitive radio networks [2], etc. With energy harvesting technique, the energy can
be captured through solar power [3], strongly coupled magnetic resonances [4] or radio-frequency
(RF) signals in ambient environments [5]. Since RF signals carry energy as well as information, the
integration of RF energy harvesting capabilities into wireless communication systems provides a
possibility of simultaneous wireless information and power transfer (SWIPT) [6]. The pioneer work
of initial work on SWIPT is discussed in [7], which considers an ideal receiver design that is able to
simultaneously observe and extract power from the same received signal. However, as discussed in [8],
this such an ideal receiver does not hold exist in practice. For practical implementation, the study
in [8] also introduces two realizable receiver architectures design: time switching (TS) and power
splitting (PS).

Cooperative relay network [9,10] is a common application scenario of SWIPT. In relay networks,
the relay expenditures additional resources for relaying, which might result a decreased lifetime for
energy-constrained relay networks. A handful of research efforts have explored SWIPT for one-way
relay (OWR) and two-way relay (TWR) networks. In [11], Nasir et al. analyze TS and PS protocols for
one-way amplify-and-forward (AF) relay networks, and derive analytical expressions for the outage
probability and the ergodic capacity. Yin et al. [12] study the optimal power splitting design to

Sensors 2017, 17, 2604; doi:10.3390/s17112604 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
http://dx.doi.org/10.3390/s17112604
http://www.mdpi.com/journal/sensors


Sensors 2017, 17, 2604 2 of 29

maximize the cooperative capacity of OWR networks with AF and decode-and-forward (DF) protocols.
The work in [13] investigates the impact of SWIPT on the performance of one source-destination,
multiple-relay cooperative networks and derive a closed-form expression of the outage probability.
With relay selection, the a closed-form expression of the outage probability has been derived and
verified over independent Nakagami-m fading channels in [14] for a dual-hop wireless powered
cooperative system. For two-way relaying AF networks with the PS protocol, Chen et al. [15]
analytically derive the exact expressions, tight upper and lower bounds on the outage probability and
the ergodic capacity. In [16], resource allocation of the PS and time phases ratios for the PS-based
SWIPT and that of the TS and time phases ratios for the TS-based SWIPT are studied to minimize the
system outage probability in TWR networks.

The above research works contribute in the area of assuming that the transceiver and receiver hardware
of all nodes is perfect. In practice, however, the hardware of a wireless node undergo several kinds of
impairments such as phase noise, I/Q imbalance, high power amplifier non-linearities, etc. [17,18]. There
are several works have investigated the effect of hardware impairments (HI) in relay networks, which
are illustrated next. In [19], the authors quantify the impact of HI on dual-hop AF and DF relaying
networks and derive the outage probability subject to Nakagami-m fading. Matthaiou et al. [20] analyze
the impact of HI at the relay in an AF-TWR configuration, and deduce a closed-form expression for the
outage probability (OP) and symbol-error rates (SERs). In [21], the impact of HI on spectrum underlay
cognitive multiple-relay networks is studied. You et al. [22] study the joint source/relay precoding
design for a practical MIMO two-way AF relaying system that suffers from HI. Recently, there emerges
a few recent works concentrating on analyzing analyzed the impact of HI on energy harvesting enabled
relay networks. Do et al. [23] consider the joint impacts of EH and HI on multiple-relay one-way
networks, and analyze the OP under two relay selection protocols. In [24], the outage probability and
throughput are investigated for cognitive two-way DF relay networks, under the effects of realistic
relay transceiver structures are taken into consideration. It is evident that the research work in [23,24]
provides contributions on protocol design and outage performance analysis for energy harvesting
DF relay networks with HI. However, Do, et al. [23] analyzed OWR networks, and ignores the
multiple-access constraint in TWR with TS and PS protocols in [24]. Meanwhile, the ergodic capacity
and optimal energy harvesting design under considering the impact of hardware impairments is lack
of exploration.

In this paper, we focus on a two-way passive-relay network in which a power-splitting receiver is
adopted at the relay to replenish energy under the consideration of hardware impairments at each
node. The exact analytical expressions of the achievable sum rate and ergodic capacities in integral
closed-form are derived for both DF and AF protocols and address the optimization problems allocated
to energy harvesting and for both protocols to maximize the achievable sumrate, respectively. The main
contributions of this paper can be described in more details as follows.

• We have presented a self-powered TWR energy harvesting and signal transmission models for
both DF and AF protocols suffered by hardware impairments considered at all nodes.

• We obtained the new signal-to-noise-plus-distortion ratio (SNDR) expressions, and derived
the exact analytical expressions of the achievable sum rate and ergodic capacities in integral
closed-form for both DF and AF protocols respectively.

• In order to obtain more engineering insights, we formulate and solve the optimal power splitting
(OPS) ratio that maximizes the instantaneous achievable sum rate for both DF and AF protocols.

• Simulation and numerical results are presented to verify our derivation and to assess the effects of
various parameter settings on system performance. The achieved sum rate with the OPS design
are compared that with the equal power splitting (EPS) design, and the performance of DF and
AF protocols are also compared and discussed.

The rest of this paper is organized as follows. In Section 2, we describes the system and signal
models, and presents the new expressions of SNDRs and the instantaneous achievable sum rate
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expressions. The derivation of ergodic capacities of both DF and AF protocols are presented in
Section 3. Section 4 formulates and develops solutions of OPS ratio for DF and AF protocols. Section 5
validates the analytical results and assesses the effects of various network parameter settings on the
performance and optimal solutions via numerical results, followed by concluding remarks in Section 6.

2. System and Signal Model

Consider a typical half-duplex two-way relay network that consists of three nodes: two source
nodes S1 and S2 with continuously their power sources, and an energy harvesting relay node R, which
harvests the energy it needs from the RF signals transmitted by the two source nodes. It is assumed
that there are no direct links between the two source nodes due to deep shadowing or blockage; thus
information exchange between them only relies on the relay. A PS receiver architecture is employed at
the relay as an energy harvester, and hardware impairments that result in distortion noises suffered by
all nodes are modeled as shown in Figure 1a.
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Figure 1. System model: (a) energy harvesting two way relaying networks with hardware impairments;
(b) data frame structure of the PS protocol.

2.1. TWR EH and Hardware-Impairment-Distortion Model

The network employs a two-step multiple access broadcast transmission and assumes two
common relaying protocols, decode-and-forward (DF) protocol and amplify-and-forward (AF). In this
configuration, each round of transmission stage consist of two phases: multiple access (MA) phase and
broadcast (BC) phase. In the MA phase, the relay R harvests energy and collects receives data from the
wireless signals transmitted by both source nodes simultaneously; in the BC phase, the relay processing
the collected data it received through the DF protocol or the AF protocol, and then broadcasts the
processed information xR with the harvested energy to both source nodes. Note that the power needed
for information processing and for powering the relay hardware is ignored in the model. This kind of
assumption has been applied in a lot of references, such as [11]).

The power splitting energy harvesting protocol is considered in this paper, in which the receiver
architecture of the relay consists of a power splitter and an information decoder (ID) for the DF protocol
is adopted, or an information amplifier (IA) for the AF protocol is adopted. The power splitter divides
the received signal (transmitted by the source nodes) into two portions: one portion ρ (0 ≤ ρ ≤ 1) is
used for EH and the other portion (1−ρ) for information processing.
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Hardware impairments are considered both the transmitter and receiver of each node. Similar
to [19,23], we model the received signal in the presence of hardware impairments for an end-to-end
transmission as

y = h
√

P(x + τtx) + τrx + n (1)

where τtx ∼ CN (0, κ2
tx) and τrx ∼ CN (0, κ2

rxPrec) are the aggregate distortiona affecting noise caused
by HI at the transmitter and receiver, respectively, κtx and κrx characterize the levels of impairments of
the transmitter and receiver hardware, respectively, CN (·) stands for complex circularly symmetric
Gaussian distributions, Prec = |h|2P is power of the received signal expressed in (1), h is the
channel coefficient and n is the additive white Gaussian noise. For simplicity of analysis, in the
following discussion, we assume all nodes have the same structure so that the level of HI are the
same, i.e., κtx,i = κtx,j = κ1, κrx,i = κrx,j = κ2, (i, j = 1, 2, r represent source S1, source S2 and relay
R respectively).

2.2. Information Transmission in TWR

Information transmission in this paper consist of two phase, MA phase and BC phase. Let T
indicate the duration of one round of transmission, from which half of the time, T/2, is used for MA
phase, and the remaining half, T/2, is used for BC phase, which is shown in Figure 1b. In the MA
phase, source nodes S1 and S2 transmit the information simultaneously.

With hardware impairments distortion mingled, the received signal at the relay can be written as

yR = h1
√

P1(x1 + τtx,1) + h2
√

P2(x2 + τtx,2) + τrx,r + nr (2)

where τtx,i ∼ CN (0, κ2
1), i = 1, 2, is the HI caused by the transmitter of Si, τrx,r ∼ CN (0, κ2

2(|h1|2P1 +

|h2|2P2)) is the HI caused by the receiver of R, hi denotes the channel coefficient between Si and R,
nr = na,r + nb,r, nr∼CN

(
0, σ2

r
)

is the additive white noise generated at the relay. And na,r∼CN
(
0, σ2

a
)

is the noise generated at the receiver antenna, and nb,r ∼ CN
(
0, σ2

b
)

is the noise generated in the
down-conversion process of the received signal to baseband [11]. Since in practice the power of
the noise generated at the antenna (σ2

a ) is generally much smaller than the noise power introduced
by the receiver chain (σ2

b ), for simplicity, we neglect the noise term na,r and adopt nr = nb,r in the
following analysis.

Next, the relay then splits the received signal into two portions:
√

ρyR is direct to the energy
harvester for EH,

√
1− ρyR is direct to the information processing (IP) circuit for information

decoding (ID), if the relay works in DF protocol or information amplify (IA) if the relay works
in AF protocol. Note that the distortion noises generated at the transmitter could contribute as
a source of energy harvesting, while the distortion noises generated at the receiver and the noise
nb,r does not contribute to energy harvesting, since the power splitting process is done before the
down-conversion process (the majority of the HI distortion noises of receiver is assumed to be caused
after the down-conversion process).

Thus, we can parameterize the acquired energy at the relay node as

E = ηρ(P1|h1|2+P2|h2|2+κ2
1(P1|h1|2+P2|h2|2)+σ2

r )T/2 (3)

where 0 ≤ η ≤ 1 is the energy-conversion coefficient. The level of hardware impairments in the
transmitter and receiver, i.e., κ1 and κ2, are required within the region κi, i = {1, 2} ∈ [0.08, 0.175] in
3GPP LTE [25]. Thus, (3) can be approximated as

E = ηρ(P1|h1|2 + P2|h2|2 + σ2
r )T/2 (4)
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And the signal delivered to the IP circuit can be expressed as

yIP =
√

1− ρ(h1
√

P1x1 + h2
√

P2x2)

+
√

1− ρ(h1
√

P1τtx,1 + h2
√

P2τtx,2) + τrx,r + nr
(5)

Assume that perfect channel state information is available for all nodes. With different relaying
protocol, the received information yIP will undergo different process which is described in the following
and simply depict in Figure 1a. We describe the different process in the next.

Decode-and-Forward Protocol: When applying the DF protocol, the relay first decodes yIP to
generate the messages x1 and x2, then applies a network coding function to construct the transmitted
signal as xR = x1 ⊕ x2, and finally broadcasts it to both source nodes with the harvested energy.

Amplify-and-Forward Protocol: When applying the AF protocol, the relay utilize an amplifier
factor G to directly amplify yIP as xR = G · yIP without any decoding and then transfer the amplified
signal to both source nodes with the harvested energy.

After information processing, the relay exhausts the harvested energy to forward the processed
information to both source nodes. With the consideration of channel reciprocal, the received signals at
the source node Si, i = 1, 2, is given by

ySi = hi
√

PR(xR + τtx,r) + τrx,i + ni

= hi
√

PRxR + hi
√

PRτtx,r + τrx,i + ni
(6)

where PR is the relay’s transmit power, which is calculated as PR = 2E/T, τtx,r ∼ CN (0, κ2
1), i = 1, 2 is

the HI caused by the transmitter of R, and τrx,i ∼ CN (0, κ2
2|hi|2PR) are the HI caused by the receiver of

Si, ni ∼ CN
(
0, σ2

i
)

, i = 1, 2, is the noise generated at source Si. And

xR =

{
x1 ⊕ x2, for DF protocol

G · yIP, for AF protocol
(7)

where
G = [((1− ρ)(1 + κ2

1) + κ2
2)(|h1|2P1 + |h2|P2 ) + σ2

r ]
− 1

2

= [(ρ̄ + κ2 − ρκ2
1)(|h1|2P1 + |h2|P2 ) + σ2

r ]
− 1

2

(8)

where ρ̄ = 1− ρ, κ2 = κ2
1 + κ2

2.
Since the signal power is usually much greater than the noise power, σ2

r in (4) and (8) will be
omitted in the following analysis.

2.3. Instantaneous Achievable Sum Rate: DF Relaying

Referring to [26,27], we obtain the capacity region of the MA phase based on (5) as

CMA(P1, P2, h1, h2)

=
{
(R1, R2)|R1 ≤ C (Υ1R) , R2 ≤ C (Υ2R) ,

R1 + R2 ≤ C (ΥMA)
}

,

(9)

where C(x) = 1
2 log2(1 + x), ΥiR, i = {1, 2}, are the end-to-end SNDRs from source node Si to relay R,

ΥMA is the multiple access signal-to-noise-plus-distortion ratio (SNDR), which are presented as follows
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Υ1R =
(1− ρ)γ1

(κ2
1(1− ρ) + κ2

2)γ1 + 1
(10a)

Υ2R =
(1− ρ)γ2

(κ2
2(1− ρ) + κ2

2)γ2 + 1
(10b)

ΥMA =
(1− ρ)(γ1 + γ2)

(κ2
1(1− ρ) + κ2

2)(γ1 + γ2) + 1
(10c)

where γ1 = |h1|2P1
σ2

r
, γ2 = |h2|2P2

σ2
r

.
With substituting (4) and (7) into (6), we can derive the capacity region of the BC phase as follows

referring to [26,27].

CBC(P1, P2, h1, h2)

=

{
(R1, R2)|R1 ≤ C (ΥR2) , R2 ≤ C (ΥR1)

} (11)

where ΥRi, i = {1, 2}, are the end-to-end SNDRs from relay R to source node Si written as

ΥR2 =
ηργ2(γ1 + γ2)

κ2ηργ2(γ1 + γ2) + V2
(12a)

ΥR1 =
ηργ1(γ1 + γ2)

κ2ηργ1(γ1 + γ2) + V1
(12b)

and V1 = P1
σ2

1
, V2 = P2

σ2
2

. For the noise components in the source and relay nodes, it is reasonable to

assume σ2
1 = σ2

2 = σ2
r = σ2, which will be adopted in the following derivation.

The capacity region of a two-way relay network is constrained by both MA and BC transmissions,
therefore, the capacity region of this network exploiting the DF protocol can be presented by

R =CMA(P1, P2, h1, h2) ∩ CBC(PR, h1, h2)

=
{
(R1, R2)|, R1 + R2 ≤ RMA,

0 ≤ R1 ≤ I1, 0 ≤ R2 ≤ I2
}

,

(13)

where I1=min
(
C(Υ1R) ,C(ΥR2)

)
, I2=min

(
C(Υ2R) ,C(ΥR1)

)
, and RMA = C (ΥMA).

The total achievable sum rate of the network with the DF protocol is expressed as

RDF
sum = R1 + R2

= min
(

I1 + I2, RMA
)
. (14)

From (10) and (12), note that under the impact of hardware impairments, a continuous increase of
the transmit power does not lead to a continuous increase of SNDR and achievable rate performance
for DF-TWR scheme.
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2.4. Instantaneous Achievable Sum Rate: AF Relaying

Since with the AF protocol directly amplify the received original data, its achievable sum rate
is dependent on the end-to-end SNDR. By substituting Equations (5) and (8) into Equation (6),
the received signal at Si is rewritten as

ySi = hi
√

PRG · yIP + hi
√

PRτ + ni

= hihī

√
(1− ρ)PiPRGxi︸ ︷︷ ︸

self-interference signal

+ hīhi

√
(1− ρ)PīPRGxī︸ ︷︷ ︸

required signal

+ hi
√

PRG[(h1
√

P1+h2
√

P2)τtx+τrx,r]+hi
√

PRτ︸ ︷︷ ︸
impairments distortion noise

+ hi
√

PRGnr + ni︸ ︷︷ ︸
AWGN

,

(15)

where i, ī ∈ {1, 2} and i 6= ī, τtx ∼ CN (0, κ2
1), τ ∼ CN (0, κ2), and κ2 =

√
κ2

1 + κ2
2.

With the perfect knowledge of channel gains and assuming channel reciprocity, Si can remove the
self-interference signal from ySi through self-cancellation process. Therefore, we can compute some
mathematic manipulations, the SNDR at each node is expressed as follows.

Υ1 =
Ξ1γ1γ2

Ξ2γ1(γ1 + γ2) + ηργ1 + Ξ3V1
(16)

for S1 (i.e., SNR received at S1 transmitted by S2) and

Υ2 =
Ξ1γ1γ2

Ξ2γ2(γ1 + γ2) + ηργ2 + Ξ3V2
(17)

for S2 (i.e., SNR received at S2 transmitted by S1), where Ξ1 = ηρ(1− ρ), Ξ2 = ηρ[(κ2 − ρκ2
1)(1 + κ2) +

κ2(1− ρ)], Ξ3 = ρ̄ + κ2 − ρκ2
1.

Accordingly, the data rate at Si, i = 1, 2, is given by Ri = C(Υi), where C(x) = 1
2 log2(1 + x).

Furthermore, the total achievable sum rate of the network with the AF protocol can be expressed as

RAF
sum = R1 + R2

= C(Υ1) + C(Υ2).
(18)

From Equations (16) and (17), note that under the impact of hardware impairments, a continuous
increase of the transmit power does not lead to a continuous increase of SNDR and achievable rate
performance for AF-TWR scheme as well.

3. Ergodic Capacities Analysis

This section provides the derivation of both DF and AF protocols. The capacity expressions will
reveal the effects of hardware impairments on EH-TWR. The channel gain are set to be hi = gi/dm

i ,
where the magnitude of gi is modeled as independent but non-identically distribute Rayleigh random
variables with variance λi, di is the distance between Si and R, and m is pass loss exponent.

Two lemmas are presented to help the following derivations of ergodic capacities.

Lemma 1. Since gi obeys Rayleigh distribute, γi = hi Pi
σ2 = giVi

dm
i

also obeys Rayleigh distribute as well.
The probability distribution function (PDF) of γi is presented as

fγi (γ) = Aie−Aiγ, for γ > 0 (19)



Sensors 2017, 17, 2604 8 of 29

where Ai =
dm

i
λiVi

, Vi =
Pi
σ2 .

Proof. The proof is straightforward, which is omitted here.

Lemma 2. Let Υ be an arbitrary variable. Then

C = E{C(Υ)} = 1
2 ln 2

∫ +∞

0

1− FΥ(t)
1 + t

dt (20)

where C(Υ) = 1
2 log2(1 + Υ), FΥ(·) is the cumulative distribution function (CDF) of Υ.

Proof. With C(Υ) = 1
2 log2(1 + Υ), E{C(Υ)} can be obtained by E{C(Υ)} = 1

2

∫ ∞
0 log2(1 + t) fΥ(t)dt,

Then utilizing partial integration, which leads to (20) by using the integration by parts.

3.1. Ergodic Capacity of DF Relaying

In order to determine the ergodic capacity of the DF protocol for such an EH-TWR networks,
we need to evaluate the ergodic capacity of the source-to-relay link Cir, the relay-to-destination link
Cri, and the multiple-access constraint capacity Cmac. Based on Lemma 2, it is non-trivial to obtain the
CDFs of each SNDRs: FΥiR , FΥRi , and FΥMA first.

Theorem 1. Denote X = γ1, Y = γ2, the CDFs of ΥiR, ΥRi, and ΥMA is given by

FΥiR(t)=1− e
− tAi

(1−ρ)−t((1−ρ)κ2
1+tκ2

2 , 0< t<
1− ρ

(1−ρ)κ2
1+κ2

2

(21)

FΥRi (t)=1− e
−Ai

√
tVi

(1−tκ2)ηρ − Aīζi, 0< t<
1
κ2

(22)

For FΥMA(t), there are two cases based on the relative values of A1 and A2. When A1 = A2,
0< t< 1−ρ

(1−ρ)κ2
1+κ2

2

FΥMA(t)=1−e
− tA2

ρ̄−t(κ2−ρκ2
1)− tA2

ρ̄− t(κ2 − ρκ2
1)

e
− tA1

ρ̄−t(κ2−ρκ2
1) . (23)

When A1 6= A2, 0< t< 1−ρ

(1−ρ)κ2
1+κ2

2

FΥMA(t)=1+
A1

A2−A1
e
− tA2

ρ̄−t(κ2−ρκ2
1)− A2

A2−A1
e
− tA1

ρ̄−t(κ2−ρκ2
1) (24)

where

ζi =
∫ √ tVi

(1−tκ2)ηρ

0
e
−
(
(A1−A2)x+

tAīVi
(1−tκ2)ηρ

· 1x
)

dx (25)

and i, ī ∈ {1, 2}, i 6= ī, ρ̄ = 1− ρ.

Proof. The proof is given in Appendix A.

With the derived CDFs: FΥiR , FΥRi , and FΥMA , we can further derive their ergodic capacities as
shown in the following Theorem 2 based on Lemma 2.
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Theorem 2. The ergodic capacities CiR = E{C(ΥiR)}, CRi = E{C(ΥRi)}, CMA = E{RMA} can be
calculated as

CiR =
1

2ln2

[
J2

1 + u
e
− Ai

ρ̄+κ2−ρκ2
1 E1

(
Ai

ρ̄+κ2−ρκ2
1

)

+J1e
− Ai

κ2−ρκ2
1 E1

(
Ai

κ2−ρκ2
1

)] (26)

CRi =
1

2ln2

{
− 2J3

κ2 + 1

[
ci

(√
Λi

(κ2 + 1)

)
cos

(√
Λi

(κ2 + 1)

)

+si

(√
Λi

(κ2+1)

)
sin

(√
Λi

(κ2+1)

)]
−2J1

[
ci

(√
Λi
κ2

)
cos

(√
Λi
κ2

)

+si

(√
Λi
κ2

)
sin

(√
Λi
κ2

)]
+
∫ ∞

0

(
J1 Ai
1+z

+
J3 Ai

κ2+(κ2+1)z

)
ζ̂idz

} (27)

For CMA, it has are two cases determined by the size of A1, A2. And for A1 = A2, CMA is expressed as

CMA=
1

2ln2

{
J1 A2

κ2−ρκ2
1

[
κ2−ρκ2

1
A1

−e
A1

κ2−ρκ2
1 E1

(
A1

κ2−ρκ2
1

)]

+
(1−ρ)J2 A2

κ2−ρκ2
1

 1
A1
− e

A1
(1−ρ)+κ2−ρκ2

1

(1−ρ)+κ2−ρκ2
1

E1

(
A1

(1−ρ)+κ2−ρκ2
1

)
+

J2

1 + δ1
e

A2
(1−ρ)+κ2−ρκ2

1E1

(
A2

(1−ρ)+κ2−ρκ2
1

)

+J1e
A2

κ2−ρκ2
1E1

(
A2

κ2−ρκ2
1

)}
.

(28)

and for A1 6= A2, CMA is expressed as

CMA =
(A2−A1)

−1

2ln2

{
J2 A1

1 + δ1
e

A2
ρ̄+κ2−ρκ2

1 E1

(
A2

ρ̄ + κ2 − ρκ2
1

)

+
J2 A2

1+δ1
e

A1
ρ̄+κ2−ρκ2

1E1

(
A1

ρ̄+κ2−ρκ2
1

)
+J1 A2e

A1
κ2−ρκ2

1E1

(
A1

κ2−ρκ2
1

)

+J1 A1e
A2

κ2−ρκ2
1 E1

(
A2

κ2−ρκ2
1

)} (29)

where

J1 = −1 (30a)

J2 = 1 + κ2 (30b)

J3 = 1 + u, u = κ2
1 +

κ2
2

1− ρ
(30c)
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and

ζ̂i =
∫ √ zVi

κ2ηρ

0
e
−
(
(A1−A2)x+

zAīVi
κ2ηρ

· 1x
)

dx (31a)

E1(z) =
∫ ∞

z

e−z

z
dz (31b)

ci(z) = −
∫ ∞

z

cos z
z

dz, si(z) = −
∫ ∞

z

sin z
z

dz (31c)

Λi =
A2

i Vi

ηρ
. (31d)

Proof. The proof is given in Appendix B.

Using the obtained ergodic capacities of each link, the total ergodic capacity can be obtained by

CDF
e = min

(
E{I1}+E{I2},E{RMA}

)
, (32)

where E{I1} = min(E{C(Υ1R)},E{C(ΥR2)}), E{I2} = min(E{C(Υ2R)},E{C(ΥR1)}).

3.2. Capacity of AF Relaying

For the AF protocol, the total ergodic capacity can be given by

CAF
e = E{C(Υ1)}+E{C(Υ2)} (33)

The CDFs of Υ1 and Υ2 is presented as following Theorem 3.

Theorem 3. With the define of X = γ1 and Y = γ2. FΥi (t) is obtained as

FΥi (t) = 1− Aie
− tAīηρ

(Ξ1−tΞ2)

√
βi
χi

K1(
√

βiχi), t <
Ξ1

Ξ2
(34)

where
βi =

4AīΞ3Vit
Ξ1 − tΞ2

χi = Ai +
tΞ2 Aī

Ξ1 − tΞ2

(35)

and K1(·) is the first-order modified Bessel function of the second kind [28].

Proof. The CDF of Υ1 for the AF protocol is derived as follows.

FΥ1(t) = Pr {Υ1 < t}

= Pr
{

Ξ1γ1γ2

Ξ2γ1(γ1 + γ2) + ηργ1 + Ξ3V1
< t
}

= Pr {Ξ1XY < t(Ξ2X(X + Y)+ηρX+Ξ3V1)}

= Pr
{
(Ξ1−tΞ2)XY < t(Ξ2X2+ηρX+Ξ3V1)

}
(36)
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Thus, when t > Ξ1
Ξ2

, FΥ1(t) = 1, and when t < Ξ1
Ξ2

FΥ1(t) = Pr
{

Y<
tΞ2

Ξ1−tΞ2
X+

tηρ

(Ξ1−tΞ2)
+

tΞ3V1

(Ξ1−tΞ2)

1
X

}
=
∫ ∞

0
fX(x)FY(

tΞ2

Ξ1−tΞ2
X+

tηρ

(Ξ1−tΞ2)
+

tΞ3V1

(Ξ1−tΞ2)

1
X
)dx

=
∫ ∞

0
A1e−A1x(1− e

−A2(
tΞ2

Ξ1−tΞ2
X+ tηρ

(Ξ1−tΞ2)
+

tΞ3V1
(Ξ1−tΞ2)

1
X )
)dx

= 1− A1e
− tA2ηρ

(Ξ1−tΞ2)

∫ ∞

0
e
−
[(

A1+
tA2Ξ2

Ξ1−tΞ2

)
+

tA2Ξ3V1
(Ξ1−tΞ2)

1
x

]
dx.

(37)

Denote β1 = 4tA2Ξ3V1
Ξ1(1−tΞ2)

and χ1 = A1 +
tA2Ξ2
1−tΞ2

. FΥ1(t can be rewrite as shown in (34) by using the

equation
∫ ∞

0 e−
β

4x−γxdx =
√

β
γ K1(

√
βγ) ([26, 3.324, 1]). The CDF of Υ2 can be derived using the same

derivation which is omit here due to page limitation.
Substituting the obtained FΥi (t) into (20) , which gives in Lemma 2, the ergodic capacities CΥi can

be calculated as

CΥi =E{C(γi)}=
1

2 ln 2

∫ ∞

0

Aie
− zAīηρ

Ξ1Ξ2

√
β̂i
χ̂i

K1(
√

β̂iχ̂i)

Ξ2(1 + z)2 + z(1 + z)
dz

(38)

where z = tΞ2
Ξ1−tΞ2

, β̂i =
4AīΞ3Viz

Ξ2
, χ̂i = Ai + Aīz. Then, substitute (38) into (33) will result in the total

ergodic of AF protocol.

4. Optimal Power Splitting Design

Note that if more received signal is allocated to harvest energy, a higher available transmission
power can be obtained, which may lead to a higher transmission rate, but less signal is
left for transmission, which may lead to the decrease of transmission rate, and vise versa.
Therefore, optimizing ρ is proposed as a way of improving.

With the obtained ergodic capacity expressions of DF and AF protocols derived in Section 3,
the OPS value that maximize the ergodic capacity can be obtained by solving the optimization problem:

OP0 : ρo = arg
ρ

(
maximize CQ

e

)
s.t. 0 ≤ ρ ≤ 1

(39)

where Q = DF for DF protocol, and Q = AF for AF protocol.
However, due to the complicated integral and Bessel function in each ergodic capacity expression,

a closed-form solution of the OPS ratio can hardly be obtained. Instead, we are interested in finding
the OPS ratio that aims at maximizing the instantaneous achievable sum rate. This optimization is
formulated as

OP1 : ρo = arg
ρ

(
maximize RQ

sum

)
s.t. 0 ≤ ρ ≤ 1

(40)

where RQ
sum denotes the achievable sum rate of using the DF (i.e., Q = DF) or AF (i.e., Q = AF) protocol.

Next we design the OPS ratios for DF and AF protocols, respectively.

4.1. The Optimum PS Design for the DF Protocol

From (40), we first analyze the analytical expression RDF
sum to determine the OPS ratio.

Equation (14) shows that the achievable sum rate RDF
sum is determined by I1 + I2 and RMA. Since log2(x)

is a monotonically increasing function of x, we note that RMA(ρ) = C(ΥMA) is a decreasing function
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of ρ because ΥMA is a decreasing function of ρ. The analytical expression of I(ρ) = I1(ρ) + I2(ρ) is
expressed in the following proposition.

Proposition 1. I(ρ) is a three-segment continuous function, segmented by ρDF
min = min(ρ1, ρ2) and ρDF

max =

max(ρ1, ρ2). The optimum I(ρ) exists in the range of [ρDF
min, ρDF

max], where

ρ1 =

√
(1 + b1)2 + 4b1κ2

2γ1 − (1 + b1)

2κ2
2γ1

(41a)

ρ2 =

√
(1 + b2)2 + 4b2κ2

2γ2 − (1 + b2)

2κ2
2γ2

(41b)

b1 =
γ1V2

ηγ2γΣ
, b2 =

γ2V1

ηγ1γΣ
(41c)

and I(ρ) is given by

I(ρ)=



C
(

ηργ2γΣ

κ2ηργ2γΣ + V2

)
+C

(
ηργ1γΣ

κ2ηργ1γΣ + V1

)
, 0 ≤ ρ<ρDF

min

C

(
(1− ρ)γn

(κ2
1(1−ρ)+κ2

2)γn+1

)
+C

(
ηργnγΣ

κ2ηργnγΣ + Vn

)
, ρDF

min ≤ ρ ≤ ρDF
max

C

(
(1− ρ)γ1

(κ2
1(1−ρ)+κ2

2)γ1+1

)
+C

(
(1− ρ)γ2

(κ2
1(1−ρ)+κ2

2)γ2+1

)
, ρDF

max < ρ ≤ 1

(42)

where γΣ = γ1 + γ2, and n = 1 when γ1 < γ2, n = 2 when γ1 ≥ γ2.

Proof. The proof is given in Appendix C.

By analyzing the second-order derivation of I(ρ), it is easy to determine that in the region of
ρ ∈ [0, 1], the three sections of I(ρ) are, respectively, an increasing function, a concave function and
a decreasing function. Since I(ρ) is continuous, the overall function I(ρ) is a concave function. It is
straightforward that I(ρ = 0) = I(ρ = 1) = 0, RMA(ρ = 0) 6= 0 and RMA(ρ = 1) = 0. Thus, I(ρ) and
RMA(ρ) have one and only one intersection within the region of ρ ∈ [0, 1]. The achievable sum rate
RDF

sum(ρ) = min(I(ρ), RMA(ρ)), whose analytical expression can be determined by using the following
Proposition 2, is achieved by combining I(ρ) and RMA(ρ).

Proposition 2. Denote the second-segment of I(ρ) as Isg(ρ) = C
(

ηργnγΣ
κ2ηργnγΣ+Vn

)
+C

(
(1−ρ)γn

(κ2
1(1−ρ)+κ2

2)γn+1

)
, ρ ∈ [0, 1],

it can get conclude that Isg(ρ) and RMA(ρ) have one and only one intersection point in the range of ρ ∈ [0, ρDF
max].

Let ρ+ be the intersection of Isg(ρ) and RMA(ρ), there will be two cases for RDF
sum(ρ):

Case I: If ρ+ < ρDF
min

RDF
sum(ρ)=



C
(

ηργ2γΣ

κ2ηργ2γΣ + V2

)
+C
(

ηργ1γΣ

κ2ηργ1γΣ + V1

)
,

0 ≤ ρ ≤ ρ∗

RMA=C

(
(1− ρ)γΣ

(κ2
1(1−ρ)+κ2

2)γΣ + 1

)
, ρ∗ ≤ ρ ≤ 1

(43)
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Case II: If ρ+ ≥ ρDF
min

RDF
sum(ρ)=



C
(

ηργ2γΣ

κ2ηργ2γΣ + V2

)
+C

(
ηργ1γΣ

κ2ηργ1γΣ + V1

)
, 0 ≤ ρ ≤ ρDF

min

C

(
(1− ρ)γn

(κ2−ρκ2
1)γn+1

)
+C
(

ηργnγΣ

κ2ηργnγΣ+Vn

)
, ρDF

min ≤ ρ ≤ ρ+

RMA = C

(
(1− ρ)γΣ

(κ2−ρκ2
1)γΣ + 1

)
, ρ+ ≤ ρ ≤ ρDF

max

(44)

where ρ+ is the intersection of Isg(ρ) and RMA(ρ), which can be obtained by solving the following
Kubischen Polynoms

B+
1 ρ3 + B+

2 ρ2 + B+
3 ρ + B+

4 = 0

B+
1 =κ2

1(1 + κ2
1)ηγ2

nγ2
Σ

B+
2 =− ηγnγΣ[γnκ2

1 + κ2
1(1 + κ2)γnγΣ

+ (1 + κ2
1)(1 + κ2)(γn − κ2γn̄)]

B+
3 =(1 + κ2)ηγnγΣ(1 + (1 + κ2)(γn − κ2γn̄))

+ (1 + κ2(1 + κ2
1))Vnγn̄

B+
4 =− (1 + κ2)2Vnγn̄

(45)

and ρ∗ is the intersection of the first segment of I(ρ) and RMA(ρ), which can be obtained by solving Kubischen
Polynoms as follows

B∗1 ρ3 + B∗2 ρ2 + B∗3 ρ + B∗4 = 0

B∗1 =η2γ3
Σγ1γ2(κ

2κ2
2 − κ2

1(1 + κ2))

B∗2 =η2γ2
Σγ1γ2((1 + 2κ2) + κ2(1 + κ2)γΣ)

+ ηγ2
Σκ2

2(γ2V1 + γ1V2)

B∗3 =ηγΣ(γ2V1 + γ1V2) + γΣV1V2

B∗4 =− γΣV1V2

(46)

Proof. The proof is given in the Appendix D.

From the two cases of the achievable sum rates expressed in (43) and (44), we analyze the OPS
ratio ρo by case studies.

4.1.1. Case I: ρ+ < ρDF
min

From Equation (43), we can calculate that the first segment is an increasing function of ρ and the
second segment is a decreasing function of ρ. Since RDF

sum(ρ) in a continuous piecewise function, it is easy to
get that the optimal achievable sum rate is obtained at ρ∗. Thus, in this case the optimum power splitting
ratio is ρo = ρ∗.

4.1.2. Case II: ρ+ ≥ ρDF
min

From Proposition 1 and the monotonic of RMA(ρ), we get that the maximum achievable sum rate exists
in the second segment of (44), i.e., ρo ∈ [ρDF

min, ρ+]. Thus, the OPS value is determined by Isg, ρ ∈ [ρDF
min, ρ+].

Because Isg(ρ), ρ ∈ [0, 1] is a concave function, there should have three subcases to determine the optimal
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value by analyzing the location of the extrema of of Isg(ρ). Denote ρex as the extrema of of Isg(ρ), it can be
obtained by solving the following quadratic equation

Bex
1 ρ2 + Bex

2 ρ + Bex
3 = 0

Bex
1 =ηγΣVnκ2

1(1+κ2
1)γ

2
n−κ2(1+κ2)(1+κ2γn)η

2γ2
nγΣ

Bex
2 =−ηγΣVn[γ

2
n(2κ2(1+κ2)+κ2

1(1+2κ2))+2γn(1+κ2
1+κ2)]

Bex
3 =ηγΣVn[κ

2(1+κ2)γ2
n+(1+2κ2)γn+1]−(1+κ2γn)V2

n

(47)

Through analysis of the locations of the extreme value ρex of Isg(ρ), we can get three subcases for
Case II.

• Subcase 1: ρex < ρDF
min

Since Isg(ρ) is a decreasing function in the range of [ρex, 1], it is easy to obtain that Isg, ρ ∈ [ρDF
min, ρ+]

is also a decreasing function. Thus in this case, the optimum power splitting ratio is ρo = ρDF
min.

• Subcase 2: ρex ∈ [ρDF
min, ρ+]

In this case, Isg(ρ) is an increasing function in the range of ρ ∈ [ρmin, ρex] and is a decreasing
function in the range of ρ ∈ [ρex, ρ+]. Thus, Isg, ρ ∈ [ρDF

min, ρ+] is a concave function and obtain its
maximum at ρo = ρex.

• Subcase 3: ρex > ρ+

Isg(ρ) is an increasing function in the range of [0, ρex]. So in this case Isg, ρ ∈ [ρDF
min, ρ+] is an

increasing function of ρ. Its optimum is laid on the border ρo = ρ+.

With the aforementioned analysis, we can obtain the optimal power splitting ratio for DF protocol,
which is expressed as follows

ρo =


ρ∗, for ρ+ < ρDF

min

ρDF
min, for ρ+ ≥ ρDF

min and ρex < ρDF
min

ρex, for ρ+ ≥ ρDF
min and ρDF

min ≤ ρex < ρ+

ρ+, for ρ+ ≥ ρDF
min and ρex > ρ+

(48)

4.2. The Optimum PS Design of AF Protocol

Based on (16) and (17), we analyze the OPS ratio for the AF protocol starting from (16) and (17).
With the notice of that Υ1 and Υ2 are both concave functions of ρ, it is easy to find that RAF

sum is a concave

function. The OPS of AF protocol can be obtained by equating ∂RAF
sum

∂ρ = 0. However, it is difficult to

directly calculate a closed form solution of the OPS ratio by solving ∂RAF
sum

∂ρ = 0 because of complex

high-order polynomial function of ρ in the numerator and denominator of ∂RAF
sum

∂ρ . Therefore, we turn to
utilize an approximate optimal solution for AF protocol with the consideration of high SNR regimes.

Using the fact that log2(1 + x) ≈ log2(x) when x � 1, the instantaneous achievable rate of Si can
be simply approximated in high SNR regimes as

Ri ≈
1
2

log2(
Ξ1γ1γ2

Ξ2γΣγi + ηργi + Ξ3Vi
) (49)

Since the convexity of log2(x) is the same with that of x, by analyzing the convexity of
Ξ1γ1γ2

Ξ2γΣγi+ηργi+Ξ3Vi
, it is easy to get that Ri is concave function. And, thus, RAF

sum(ρ) = R1 + R2 is concave
function.

The first derivatives of RAF
sum can be obtained as

∂RAF
sum

∂ρ
=

∂R1

∂ρ
+

∂R2

∂ρ
. (50)
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The obtained ∂Ri
∂ρ is expressed on the top of next page.

∂Ri
∂ρ = 1

2 ln 2
(ηγΣγi(1+κ2)κ2

2+ηγi−(1+κ2
1)Vi)ρ

2+2(1+κ2)Viρ−(1+κ2)Vi
ηρ(1−ρ)γ1γ2[η(κ

2
1+κ2

1κ2+κ2)γΣγiρ
2−(ηκ2(2+κ2)γΣγi+ηγi−(1+κ2

1)Vi)ρ−(1+κ2)Vi ]
(51)

By equating ∂R1
∂ρ + ∂R2

∂ρ to zero, we obtain that the OPS ratio that maximizes RAF
sum(ρ) must satisfy the

following equation:
Q1ρ4 + Q2ρ3 + Q3ρ2 + Q4ρ + Q5 = 0 (52)

where Qn = Ln,1 − Ln,2, n ∈ {1, 2, · · · , 5}. And Ln,i, i ∈ {1, 2}, is expressed as follows

L1,i =q1γī[q2γi + ηγi − κ2
1,+Vi]

L2,i =− (q2γi + ηγi − κ2
1,+Vi)(q3γī + ηγī − κ2

1,+Vī)

+ 2q1κ2
+Vi

L3,i =− (q2γi + ηγi − κ2
1,+Vi)κ

2
+Vi − q1γīκ

2
+Vi

− 2(q3γī + ηγī − κ2
1,+Vī)κ

2
+Vi

L4,i =− 2κ2
+ViVī + (q3γī + ηγī − κ2

1,+Vī)κ
2
+Vi

L5,i =κ2
+ViVī

(53)

and q1 = η(κ2
1 + κ2

1κ2 + κ2)γΣ, q2 = ηκ2
2(1 + κ2)γΣ, q3 = ηκ2(2 + κ2)γΣ, κ2

1,+ = 1 + κ2
1, κ2

+ = 1 + κ2.
The above function is a quartic polynomial on ρ and has at most four real roots. Since RAF

sum(ρ) is a

concave function, at most one of these roots of ∂RAF
sum

∂ρ = 0 is real and positive.

5. Numerical Results

5.1. Effects of Various Parameters on Ergodic Capacity

The purpose of this set of simulations is to validate the correctness of the ergodic capacity
expression derived and investigate the effect of various parameter settings on the ergodic capacities
for that uses the DF protocol or AF protocols. Parameters chosen are: κ1 = κ2 = κave, σ2 = 10−6.
The channel gains are considered as Rayleign fading with pass loss, where the variances of the channel
coefficients satisfy λ1 = λ2 = 1, and the pass loss exponent is set as m = 2.7. The transmit power
P1 = P2 = Pt, which is within the region Pt = [0, 30] dBm.

Figure 2 shows the effect of κave on ergodic capacities. The utilized parameter settings
are: ρ = 0.5, d1 = d2 = 5 m, and η = 0.8. The ideal hardware impairment situation
(κave = 0; i.e., no hardware impairments) are presented as benchmark performance. This figure shows
that the ergodic capacities obtained by using the closed-form integral expressions are identical with
Monte Carlo simulations. When the effects of hardware impairments are considered, the ergodic
capacities tend to saturation with the increase of Pt. And the higher the value of κave, the more
quickly the ergodic capacities saturate. This is because the distortion noises introduced by hardware
impairments also increase when Pt increases, which will set a bound on the SNDR of each transmission
link. Meanwhile, we also find that the effect of κave on the DF protocol is more obvious than that on
AF protocol. This is because in AF protocol, the amplification of useful signal is more effective than
distortion noise with the increase of Pt, which will slow down the effect degree of the distortion noise,
thus do not contribute severe distortion noises than in the DF protocol in the high SNR region.
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Figure 2. The effect of κave on Ergodic Capacity for DF (upper) and AF (lower) Protocols.

The effects of relay deployment on ergodic capacities are presented in Figure 3 for the DF
protocol (left) and the AF protocol (right). The distance between S1 and S2 is fixed as d1 + d2 = 10 m,
where di, i ∈ {1, 2} is the distance between Si and R. The utilized parameter settings are: κave = 0.1,
ρ = 0.5, η = 0.8 and destination pair (d1, d2) = {(1, 9), (3, 7), (5, 5), (7, 3), (9, 1)}m. It is observed that
the ergodic capacity obtained by the closed-form expressions coincide with that obtained by Monte
Carlo simulations (Simu). It is evident that the ergodic capacities when (d1, d2) = {(1, 9), (3, 7)} m
are identical with that when (d1, d2) = {(9, 1), (7, 3)} m for both protocols, which infers that the
ergodic capacities of both protocols are symmetric with the increase of d1. This is because when set
P1 = P2 and fix the distance between S1 and S2, the system is symmetric, and thus contribute to a
symmetric performance. We also find that the DF protocol have the minimum ergodic capacities
when the distance pair are set as (d1, d2) = (5, 5) m, the minimum ergodic capacities of AF protocol
is obtained when (d1, d2) = (5, 5) m in the low SNR region, and varies to different destination pairs
when setting the transmit power Pt to some certain values. This abnormal phenomenon of AF is due
to the amplification process.
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Figure 3. The effect of d1 on Ergodic Capacity for DF (left) and AF (right) Protocols.

The effect of energy efficient conversion ratio η on ergodic capacities are presented in
Figure 4 for the DF protocol (left) and the AF protocol (right) with parameters κave = 0.1,
η = 0.5, (d1, d2) = (5, 5) m, η = [0.2, 0.4, 0.6, 0.8]. It can be noticed that the ergodic capacities of



Sensors 2017, 17, 2604 17 of 29

both protocols obtained by the closed-form expressions are in accordance with that obtained via Monte
Carlo simulations (Simu). With the increase of η , it is observed that the ergodic capacity of both
protocol increase. This is because PR increases with the increase of η, which will enhance the transmit
capabilities of the BC phase. And since PR is provided by energy harvesting, the value of PR is usually
not very large. Thus the BC transmission ability dominates the value of ergodic capacity. Thus, with
the increase of η, the ergodic capacities increase. The value of η also effects the saturation rate of the
DF protocol and the gap between the curves of AF protocol. This phenomenon is due to the value of η

effects the value of distortion noises.
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Figure 4. The effect of η on Ergodic Capacity for DF (left) and AF (right) Protocols.

The effects of the power splitting ratio ρ on ergodic capacities are evaluated for DF (left) and
AF (right) protocols in Figure 5 under the parameters setting: η = 0.8, (d1, d2) = (5, 5) m, κave = 0.1,
ρ = [0.1, 0.5, 0.9]. The ergodic capacities of both protocols obtained by the closed-form expressions
are in accordance with that obtained via Monte Carlo simulations (Simu). It can be noticed that the
maximum ergodic capacities of both DF and AF protocols with ρ = 0.9 has best performance in low
Pt region; while with the increase of Pt, the maximum ergodic capacity change to the value with
parameter setting ρ = 0.5 and further change to that with ρ = 0.1. This configuration verifies that
the ergodic capacities can be enhanced through the design of ρ, which validates the meaning of OPS
design analyzed in Section 4.
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5.2. Effects of Various Parameters on OPS design

The purpose of this set of simulations is to validate the validness of the OPS design and investigate
the effect of parameters setting on OPS design for that uses the DF protocol or AF protocol. Since in
a practical scenario, the energy conversion efficiency can be known in advance, we mainly focus on
the effect of tranmitted power Pt, impairments distortion level κave and relay deployment d1 on OPS
design in this section. Parameters chosen are: κ1 = κ2 = κave, σ2 = 10−6, η = 0.8, d1 + d2 = 10 m,
λ1 = λ2 = 1, m = 2.7 and P1 = P2 = Pt.

To better understand the importance and the effect of OPS design, we use ρ as x-axis to see
the ergodic capacities (EC) and average achievable sum rate (ASR) changes with the increase of ρ.
In Figure 6, we present the effect of PS ratio on EC and on average ASR for DF protocol, where the EC is
obtained by using the derived closed-form expressions in Section 3.1 and the average ASR is obtained
by doing Monte Carlo simulation using (14). It can be notice that, there exists a maximum value for
both ergodic capacity and average ASR with the increase of ρ, and the value of ρ that maximize EC
and average ASR varies with different transmit power Pt sets and different distortion level κave sets.
The curves of EC and average ASR are not exactly the same, and with the increase of Pt and κave,
the gaps becomes smaller. Though simulation inspect, we find that this is because due to different
calculating of EC and average ASR, the correlative influence introduced by multiple-access restraint
differs. In addition, with the increase of Pt and κave, the correlative influence comparatively decreases.
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Figure 6. Comparison between ergodic capacity and average achievable sum rate versus ρ for DF protocol.

In Figure 7, the EC and average ASR with the increase of ρ for AF protocol are presented. The EC
is obtained by using the derived closed-form expressions in Section 3.2 and the average ASR is obtained
by doing Monte Carlo simulation using (18). It can be noted that the curves of EC coincide with the
curves of average ASR. This is because without the multiple-access constraint influence in AF protocol,
the calculation of EC is equal to the calculation of average ASR. In addition, we also find that the
transmit power Pt sets and the distortion level κave effect the OPS value.
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Figure 7. Comparison between ergodic capacity and average achievable sum rate versus ρ for AF protocol.

In the following configuration, we analyze the effect of parameters setting on OPS design, and the
OPS ratio is obtained aiming at maximizing the instantaneous achievable sum rate which is derived in
Section 4. Figure 8 shows the average achievable sum rate as a function of the transmit power Pt for DF
and AF protocols. The setting of distortion level κave = {0.08, 0.175} is adopted. Both the numerical
search (NS) and the OPS closed-form derived in Section 4 are used to find the OPS ratio and calculate
the corresponding achievable sum rate. The achievable sum rate with EPS is presented as benchmark
performance. It can be noted that the curves obtained by numerical search coincide with that obtained
by using closed-form OPS. It also shows that the OPS design outperforms EPS in each κave setting, and
the gap grows with the increase of κave. The effect of OPS design with DF protocol is more obvious
than that with AF protocol.
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Figure 8. Average achievable sum rate comparison versus Pt for DF and AF protocols.

Figure 9 presents the value of OPS ratio versus the transmit power Pt for DF and AF protocols.
The setting of distortion level κave = {0.08, 0.175} is adopted. Seen from this figure, we find that the
OPS ratio obtained by closed-form coincides with that obtained by doing NS for DF protocol, and the
OPS ratio obtained by closed-form is quite similar with that obtained by doing NS for AF protocol.
It is easy to noted that the OPS ratio is a monotonic decreasing function with the increase of Pt for both
protocols. The reason for this phenomenon is because when the source provide high transmit power,
the recruit of harvested energy is more prone to satisfy the relay to destination transmission, and the
enhancement of system performance is relies on the source to relay transmission which means that
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more information needed to be split to information decoder circuit, i.e., (1− ρ) enhances. We also
find that the OPS ratio with κave = 0.175 setting is higher than that with κave = 0.08 setting for both
protocols. The reason for this phenomenon will be discussed below Figure 11.
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Figure 9. The effect of Pt on OPS design for DF and AF protocols.

Figure 10 plots the achievable sum rate versus hardware impairments distortion level κave for
both DF and AF protocols with different transmit power Pt = {15, 30} dBm. The curves with black
solid line were generated by utilizing the OPS through numerical search (NS), and the curves with
mark were generated by utilizing the OPS derived in Section 4. EPS design is adopted as benchmark
performance. As shown in this figure, the achievable sum rate is decreasing and will tend to flatten out
as κave increases, and the lower the transmit power, the faster the rate approaching to flat. This figure
also verifies that OPS design outperforms EPS scheme, and the gaps of DF protocol between OPS and
EPS design is bigger than that of AF protocol.
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Figure 10. Average achievable sum rate comparison versus κave for DF and AF protocols.

The effect of κave on OPS design for DF and AF protocols are presented in Figure 11. This figure
presents that the OPS ratio obtained by closed-form is identical with that obtained by doing NS for
DF protocol, and for AF protocol, the OPS ratio obtained by closed-form is very close to that obtained
by doing NS. It is observed that the OPS ratio is a decreasing function of κave, and the decreasing
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slope increases with the increase of Pt. This is because the higher κave makes worse decoding ability.
To enhance system performance, more energy need to be diverted to the ID circuit to satisfy the
decoding process, thus, OPS value decreases. We also find when κave is the same, the OPS value with
the higher Pt is lower than that with the lower Pt. This is because in higher Pt region, the harvested
energy is more prone to satisfy the BC transmission with small ρ.
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Figure 11. The effect of κave on OPS design for DF and AF protocols.

With fixed κave = 0.1, we analyze the effect of relay deployment on average ASR with the set
of Pt = {15, 30} dBm for DF and AF protocols (d1 is chosen as the x-axis) in Figure 12. This figure
verifies that the average ASR with OPS obtained in Section 4 and that obtained by using NS are the
same, and the OPS scheme outperform the EPS scheme. For DF protocol, the average ASR is a convex
function with the increase of d1 for Pt = {15, 30} dBm. While for AF protocol, the average ASR is
convex function when Pt = 15 dBm, while when Pt = 30 dBm, the average ASR is a concave function.
This phenomenon echoes the conclusion in Figure 3 (right) that when Pt increase to high enough,
the relay is better to deploy close to any one of the source nodes.
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Figure 12. Average achievable sum rate comparison versus d1 for DF and AF protocols.

Figure 13 plots the value of OPS ratio versus d1 for DF and AF protocols. It shows that the OPS
ratio obtained by closed-form is identical with that obtained by doing NS for DF protocol, and for AF
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protocol, the OPS ratio obtained by closed-form is very close to that obtained by doing NS. With the
increase of d1, the OPS values of both DF and AF protocols are concave function. This is because
when P1 = P2 and d1 + d2 = 10 m, the system has symmetric nature. In addition, when the relay is
deployed in the middle of S1 and S2, the harvested energy is the smallest with the fixed ρ, and the
harvested energy increase when the relay getting closer to any of the source node. Thus, to enhance
the performance, more energy is needed to be allocated to energy harvester when (d1, d2) = (5, 5),
and when di, i = 1 or 2 decrease, less energy is needed to be allocate to energy harvester. We also find
that the curves with Pt = 30 dBm are lower than that with Pt = 15 dBm. This is because with higher
Pt, the harvested energy is more prone to satisfy the transmission with lower ρ.
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Figure 13. The effect of d1 on OPS design for DF and AF protocols.

6. Conclusions

This paper analyzed the a rigorous analysis of a two-way energy harvesting relay network assuming
a realistic scenario that the transceiver and receiver hardware is imperfect and will cause distortions.
After analyzing two different transmission protocol (DF protocol and AF protocol), we derive the new
expression of sum rate with impairment distortions considered. Then, we derive the exact analytical
expression of ergodic capacity for both DF and AF relaying protocols. Furthermore, the OPS ratio
that maximize the instantaneous achievable sum rate is formulated and solved for both protocols.
Through numerical results we find that a continuous increase of the transmit power does not lead to a
continuous increase of the ergodic capacity or the achievable sum rate when HI is considered. Also, the
effect of HI is more obvious for DF protocol than for AF protocol with the increase of the transmit power.
It can be also noticed that the achievable sum-rate with the OPS design outperforms that with EPS design.
These results and observations provide very useful insights to guide the system optimization.
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Appendix A

Denote γ1 = X, γ2 = Y, the PDF of X and Y is fx(x) =
∫ ∞

0 A1e−A1xdx, x > 0, fy(y) =∫ ∞
0 A2e−A2ydy, y > 0, respectively, according to Lemma 1.
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We first derive the CDF of Υ1R, which is given by

FΥ1R(t) = Pr {Υ1R < t}

= Pr

{
(1− ρ)γ1

(κ2
1(1− ρ) + κ2

2)γ1 + 1
< t

}

= Pr

{
(1− ρ)X

(κ2
1(1− ρ) + κ2

2)X + 1
< t

}
= Pr

{
[(1− ρ)(1− tκ2

1) + tκ2
2]X < t

}
(A1)

From (A1), we note that when (1− ρ)(1− tκ2
1) + tκ2

2 < 0, [(1− ρ)(1− tκ2
1) + tκ2

2]X is always
less equal than t(t > 0), which contribute to FΥ1R(t) = 1. Whereas, when (1− ρ)(1− tκ2

1) + tκ2
2 > 0,

we have

FΥ1R(t) =Pr

{
X <

t
(1− ρ)(1− tκ2

1) + κ2
2

}

=1− e
− tA1

(1−ρ)(1−tκ2
1)+κ2

2

(A2)

Similar to the derivation of FΥ1R , we can obtain FΥ2R(t) = 1− e
− tA2

(1−ρ)(1−tκ2
1)+κ2

2 . Thus, FΥiR can be
rewrite as shown in (21).

Next, we derive the CDF of ΥR1, which is express as follows

FΥR1(t) = Pr {ΥR1 < t}

= Pr
{

ηρX(X + Y)
κ2ηρX(X + Y) + V1

< t
}

= Pr
{

ηρ(1− tκ2)X(X + Y) < tV1

} (A3)

It is straightforward that FΥR1(t) = 1 when t > 1
κ2 . In addition, when t < 1

κ2 , FΥR1(t) can be
derived as follows

FΥR1(t) = Pr
{

X(X + Y) <
tV1

ηρ(1− tκ2)

}
= Pr

{
Y <

tV1

ηρ(1− tκ2)X
− X

}

=
∫ √ tV1

ηρ(1−tκ2)

0

∫ tV1
ηρ(1−tκ2)

·1x−x

0
A1e−A1x · A2e−A2ydxdy

=
∫ √ tV1

ηρ(1−tκ2)

0
A1e−A1x(1− e

−A2(
tV1

ηρ(1−tκ2)
· 1x−x)

)dx

=1−e
−A1

√
tV1

ηρ(1−tκ2)−A2

∫ √ tV1
ηρ(1−tκ2)

0
e
−(A1−A2)x+ tA2V1

ηρ(1−tκ2)
·1x dx

(A4)

Similar to the derivation of FΥR1 , we can obtain FΥR2(t). Denote ζi =
∫√ tVi

ηρ(1−tκ2)

0 e
−(Ai−Aī)x+

tAīVi
ηρ(1−tκ2)

·1x dx,
Equation (22) is obtained.
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The CDF of ΥMA is derived in the following.

FΥMA(t) = Pr {ΥMA < t}

= Pr

{
(1− ρ)(X + Y)

(κ2
1(1− ρ) + κ2

2)(X + Y) + 1
< t

}
= Pr

{
[(1− ρ)(1− tκ2

1)− tκ2
2](X + Y) < t

} (A5)

It is straightforward that FΥMA(t) = 1 when t > 1−ρ

(1−ρ)κ2
1+κ2

2
. In addition, when t < 1−ρ

(1−ρ)κ2
1+κ2

2
,

FΥMA(t) can be derived as follows

FΥMA(t) = Pr

{
X <

t
(1− ρ)(1− tκ2

1)− tκ2
2
−Y

}

= Pr

{
X <

t
ρ̄− tκ2 − tκ2

1ρ
−Y

}

=
∫ t

ρ̄−tκ2−tκ2
1ρ

0

∫ t
ρ̄−tκ2−tκ2

1ρ
−y

0
A1e−A1x ·A2e−A2ydxdy

=
∫ t

ρ̄−tκ2−tκ2
1ρ

0
A2e−A2y(1− e

−A1

(
t

ρ̄−tκ2−tκ2
1ρ
−y
)
)dy

=1−e
− tA2

ρ̄−tκ2−tκ2
1ρ−A2e

− tA1
ρ̄−tκ2−tκ2

1ρ

∫ t
ρ̄−tκ2−tκ2

1ρ

0
e−(A2−A1)ydy

(A6)

Thus, when A1 = A2,

FΥMA(t) =1−e
− tA2

ρ̄−tκ2−tκ2
1ρ− tA2

ρ̄−tκ2−tκ2
1ρ

e
− tA1

ρ̄−tκ2−tκ2
1ρ (A7)

and when A1 6= A2,

FΥMA(t) =1−e
− tA2

ρ̄−tκ2−tκ2
1ρ− A2e

− tA1
ρ̄−tκ2−tκ2

1ρ

A2 − A1
(1−e

−(A2−A1)t
ρ̄−tκ2−tκ2

1ρ )

= 1 +
A1

A2 − A1
e
− tA1

ρ̄−tκ2−tκ2
1ρ − A2

A2 − A1
e
− tA1

ρ̄−tκ2−tκ2
1ρ

(A8)

The above derivations proof the Theorem 1.

Appendix B

Appendix B.1. The Derivation of CiR

We first derive CiR. Substituting (21) into (20), we obtain

CiR =
1

2 ln 2

∫ 1−ρ

(1−ρ)κ2
1+κ2

2

0

e
− tAi

(1−ρ)−t(1−ρ)κ2
1−tκ2

2

1 + t
dt (A9)
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Denote z =
t(κ2−ρκ2

1)

ρ̄−t(κ2−ρκ2
1)

, and substitute it into (A9), we obtain

CiR =
1

2 ln 2

∫ +∞

0

e
− zAi

κ2−ρκ2
1

(κ2
1 +

κ2
2

1−ρ )(1 + z)2 + z(1 + z)
dz

=
1

2 ln 2

∫ +∞

0

e
− zAi

κ2−ρκ2
1

(1 + z)(u + (1 + u)z)
dz (where u=κ2

1+
κ2

2
1− ρ

)

(A10)

With some manipulation, it is easy to obtain that 1
(1+z)(u+(1+u)z) can be decomposed into J1

1+z +
J2

u+(1+u)z , where J1 = −1, J2 = 1 + u. Thus,

CiR =
1

2 ln 2

∫ +∞

0

(
J1

1 + z
+

J2

u + (1 + u)z

)
e
− zAi

κ2−ρκ2
1 dz

=
1

2 ln 2

∫ ∞

0

J1e
− zAi

κ2−ρκ2
1

1+z
dz+

∫ ∞

0

J2e
− zAi

κ2−ρκ2
1

u+(1+u)z
dz


=

1
2 ln 2

[
J1e
− Ai

κ2−ρκ2
1 E1

(
Ai

κ2−ρκ2
1

)

+
J2

1+u
e
− Ai

ρ̄+κ2−ρκ2
1 E1

(
Ai

ρ̄+κ2−ρκ2
1

)]
(A11)

Thus (26) is proofed.

Appendix B.2. The Derivation of CRi

Substituting (22) into (20), we obtain that

CRi =
1

2ln2

∫ 1
κ2

0

e
−Ai

√
tVi

(1−tκ2)ηρ + Aiζi
1 + t

dt
(A12)

Denote z = tκ2

1−tκ2 , and substitute it into (A12), we obtain

CRi =
1

2ln2

∫ ∞

0

e
−Ai

√
zVi

κ2ηρ + Ai ζ̂i
κ2(1 + z)2 + z(1 + z)

dz

=
1

2ln2

∫ ∞

0

e
−Ai

√
zVi

κ2ηρ + Ai ζ̂i
(1 + z)(κ2 + (1 + κ2)z)

dz

(A13)

where ζ̂i =
∫√ zVi

κ2ηρ

0 e
−
(
(A1−A2)x+

zAīVi
κ2ηρ

· 1x
)

dx
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With some manipulation, it is easy to obtain that 1
(1+z)(κ2+(1+κ2)z) = J1

1+z + J3
κ2+(1+κ2)z ,

where J3 = 1 + κ2. Thus

CRi =
1

2ln2

∫ ∞

0

J1e
−Ai

√
zVi

κ2ηρ

1 + z
dz +

∫ ∞

0

J3e
−Ai

√
zVi

κ2ηρ

κ2 + (1 + κ2)z
dz

+
∫ ∞

0

(
J1

1 + z
+

J3

κ2 + (1 + κ2)z

)
Ai ζ̂idz

]

=
1

2ln2

2J1

∫ ∞

0

we−A1w

V1
κ2ηρ

+w2
dw+

2J3

1+κ2

∫ ∞

0

we−Aiw

Vi
κ2
+ηρ

+w2
dw

+
∫ ∞

0

(
J1

1 + z
+

J3

κ2 + (1 + κ2)z

)
Ai ζ̂idz

]
(where w =

√
zVi

κ2ηρ
)

(A14)

Referring to [28, 3.354, 2], (27) is obtained.

Appendix B.3. The Derivation of CMAC

(1) When A1 = A2

Substituting (23) into (20), we obtain

CMAC =
1

2ln2

∫ ∞

0

1
1−t

e
− tA2

ρ̄−t(κ2−ρκ2
1)− tA2e

− tA1
ρ̄−t(κ2−ρκ2

1)

ρ̄−t(κ2−ρκ2
1)

dt (A15)

Similar to the derivation of CiR, we denote z =
t(κ2−ρκ2

1)

ρ̄−t(κ2−ρκ2
1)

, and (A15) can rewrite as

CMAC=
1

2ln2


∫ ∞

0

J1

1+z
e
− zA2

κ2−ρκ2
1 dz+

∫ ∞

0

J2e
− zA2

κ2−ρκ2
1

u+(1+u)z
dz︸ ︷︷ ︸

∆1

+
∫ ∞

0

J1

1+z
zA2e

− zA1
κ2−ρκ2

1

κ2−ρκ2
1

dz+
∫ ∞

0

J2

u+(1+u)z
zA2e

− zA1
κ2−ρκ2

1

κ2−ρκ2
1

dz︸ ︷︷ ︸
∆2


(A16)

The value of ∆1 can be derived following the derivation of CiR. In addition, ∆2 can be obtained
by using the integral formula presented in [26, 3.353, 5], which is

∫ ∞
0

xne−µx

x+β dx = (−1)nβneηµE1(ηµ) +

∑n
k=1(k− 1)!(−β)n−kµ−k. Combined ∆1 and ∆2, (28) is obtained.

(2) When A1 6= A2

Substituting (24) into (20), we obtain

CMAC=
1

2ln2

∫ ∞

0

1
1−t

A2e
− tA1

ρ̄−t(κ2−ρκ2
1)

A2−A1
− A1e

− tA2
ρ̄−t(κ2−ρκ2

1)

A2−A1

dt (A17)
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Denote z =
t(κ2−ρκ2

1)

ρ̄−t(κ2−ρκ2
1)

, Equation (A17) changes into the following equation with some

manipulations.

CMAC=
(A2−A1)

−1

2ln2

J1 A2

∫ ∞

0

e
− zA1

κ2−ρκ2
1

1+z
dz+J1 A1

∫ ∞

0

e
− zA2

κ2−ρκ2
1

1+z
dz

+J2 A2

∫ ∞

0

e
− zA1

κ2−ρκ2
1

u+(1+u)z
dz + J2 A1

∫ ∞

0

e
− zA2

κ2−ρκ2
1

u+(1+u)z
dz


=

(A2−A1)
−1

2ln2

[
J1A2e

A1
κ2−ρκ2

1E1

(
A1

κ2−ρκ2
1

)

+ J1A1e
A2

κ2−ρκ2
1E1

(
A2

κ2−ρκ2
1

)
+

J2A2

1+u
e

A1
ρ̄+κ2−ρκ2

1E1

(
A1

ρ̄+κ2−ρκ2
1

)

+
J2 A1

1 + u
e

A2
ρ̄+κ2−ρκ2

1E1(
A2

ρ̄ + κ2 − ρκ2
1
)

]

(A18)

Thus, (29) is obtained.

Appendix C

As a simple extension, the two-way relaying system can be treated as two one-way relay systems.
We first obtain two suboptimal power splitting designs ρi, i = 1, 2, which maximize I1(ρ) or maximize
I2(ρ) to obtain Isub,i = I(ρi).

Note that Ii, i = 1, 2 is determined by Υir(ρ) = C
(

(1−ρ)γ1
(κ2

1(1−ρ)+κ2
2)γ1+1

)
and Υrī(ρ) =

C
(

ηργī(γ1+γ2)

κ2ηργī(γ1+γ2)+Vī

)
, where i, ī = 1, 2, i 6= ī. Through calculation of the second derivation, we find

that Υir(ρ) is a decreasing functions in the region of ρ ∈ [0, 1], which decreases from a positive real
number to 0, while Υrī(ρ) is an increasing function, which increases from 0 to a positive real number.
Thus, Υir(ρ) = Υrī(ρ) has one and only one solution ρi (intersection), which is the optimum value
since ρ is continuous. This shows that the optimal value ρi can be obtained can be obtained via (41a,b).

Denote ρDF
min = min(ρ1, ρ2) and ρDF

max = max(ρ1, ρ2). By substituting ρDF
min and ρDF

max into I(ρ),
we obtain two suboptimal values IDF

sub,min = I(ρDF
min) and IDF

sub,max = I(ρDF
max). It is easy to notice that

I(ρDF
min −4ρ) < I(ρDF

min), because in the range of ρ ∈ [0, ρDF
min] both of I1(ρ) and I2(ρ) are increasing

functions; and I(ρDF
max +4ρ) < I(ρDF

max), because in the range of ρ ∈ [ρDF
max, 1] both of I1(ρ) and I2(ρ)

are decreasing functions, where 0 < 4ρ < 1 and {ρDF
min −4ρ, ρDF

max +4ρ} ∈ [0, 1]. In the range of
[ρDF

min, ρDF
max], I1(ρ) and I2(ρ) have opposite monotonicity; thus there exist only one intersection point

within the range of [ρDF
min, ρDF

max], which is the maximum value of I(ρ). With the above analysis, we can
rewrite I(ρ) as shown in (42).

Appendix D

As a simple extension, the two-way relaying system can be treated as two one-way relay systems.
We first obtain two suboptimal power splitting designs ρi, i = 1, 2, which maximize I1(ρ) or maximize
I2(ρ) to obtain Isub,i = I(ρi).

Note that Ii, i = 1, 2 is determined by Υir(ρ) = C
(

(1−ρ)γ1
(κ2

1(1−ρ)+κ2
2)γ1+1

)
and Υrī(ρ) =

C
(

ηργī(γ1+γ2)

κ2ηργī(γ1+γ2)+Vī

)
, where i, ī = 1, 2, i 6= ī. Through calculation of the second derivation, we find

that Υir(ρ) is a decreasing function in the region of ρ ∈ [0, 1], which decreases from a positive real
number to 0, while Υrī(ρ) is an increasing function, which increases from 0 to a positive real number.
Thus, Υir(ρ) = Υrī(ρ) has one and only one solution ρi (intersection), which is the optimum value
since ρ is continuous. This shows that the optimal value ρi can be obtained can be obtained via (41a,b).
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Denote ρDF
min = min(ρ1, ρ2) and ρDF

max = max(ρ1, ρ2). By substituting ρDF
min and ρDF

max into I(ρ), we
obtain two suboptimal values IDF

sub,min = I(ρDF
min) and IDF

sub,max = I(ρDF
max). Notice that I(ρDF

min −4ρ) <

I(ρDF
min), because in the range of ρ ∈ [0, ρDF

min] both of I1(ρ) and I2(ρ) are increasing functions; and
I(ρDF

max +4ρ) < I(ρDF
max), because in the range of ρ ∈ [ρDF

max, 1] both of I1(ρ) and I2(ρ) are decreasing
functions, where 0 < 4ρ < 1 and {ρDF

min −4ρ, ρDF
max +4ρ} ∈ [0, 1]. In the range of [ρDF

min, ρDF
max], I1(ρ)

and I2(ρ) have opposite monotonicity; thus there exist only one intersection point within the range
of [ρDF

min, ρDF
max], which is the maximum value of I(ρ). With the above analysis, we can rewrite I(ρ) as

shown in (42).
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