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Table S1. DMF chip electrode array layout and specifications†. 

Parameter Specifications 

Electrode shape Half/full zig-zag 

Electrode area (mm2) 0.894/0.794 

Electrode droplet volumes (µL) 0.2/0.1 

Reservoir net area (mm2) 9 

Reservoir net volume (µL) 1.6 

Gap between electrodes 30 µm 

Space between bottom and top plates 180 µm 

† The electrode specifications refer to the two electrode shapes present: 1) the half zig-zag shape, which 
corresponds to the electrodes nearest to the reservoirs; and 2) the full zig-zag shape, which corresponds 
to the remaining electrodes.  
  



 

Figure S1. Digital microfluidics device layout. (a) Various regions that comprise the chip, with 
emphasis on the zig-zag electrodes. (b) Photograph of the DMF chip with both bottom and top plates 
spaced by Kapton® tape. 



 

Figure S2. DMF platform integration. a) Overview of the DMF system. An AC signal is amplified 200 
times by a high voltage amplifier, and is further processed by a high voltage switching unit, which will 
enable either an ON or OFF state on each electrode/reservoir of the DMF platform via commands 
transmitted by an Arduino control board. Finally, a temperature control system assures that the on-
chip temperature corresponds to the set point temperature. b) Zoom on the region where the DMF chip 
is placed. 
  



Table S2. Sequences of primers used for the PCR and LAMP reactions. 
Primer Sequence (5´- 3´) Tm (oC) 

 PCR Reaction  

   

MYCforward GCTCATTTCTGAAGAGGAC TTGT 53.5 

MYCreverse AGGCAGTTTACATTATGGCTAAATC 52.8 

 LAMP Reaction  

   

FP TCTGAAGAGGACTTGTTGC 48.9 

BP TTCAGTCTCAAGACTCAGC 48.9 

FIP CTTTTCCTTACGCACAAGAGTTCC-GGAAACGACGAGAACAGT 48* 

BIP ACGATTCCTTCTAACAGAAATGTCC-CAAGGTTGTGAGGTTGCA 48* 
* Melting temperature of the sequences F2 and B2 (complementary to the target sample), Notomi et al, 
2000. All primers were synthesized by STAB-Vida, Portugal.



Improved sample input/output method 

The improved DMF droplet input/output method was firstly tested, as well as all the fluidic operations. 
A top plate inlet system was developed for direct input and output of reaction reagents and products, 
through ports drilled on the top plate, partially overlapping the reservoirs. Figure S3 shows the droplet 
input process. This test was performed using 1× Bst enzyme buffer with blue dye for easier readout 
analysis. After sample insertion, the respective inlet reservoir is activated, allowing the droplet to 
spread.  

 

Figure S3. Sequential video frames, evidencing the sample input process. 

Device working conditions and droplet speed 

Regarding operating conditions, namely working voltage and frequency, this configuration allows the 
movement of 1× enzyme buffer droplets with 5 kHz and 40 VRMS (standard operating parameters) at 
reasonable speed, with the possibility of lowering voltages to 8 VRMS (see Figure 3A in the 
manuscripts). The movement of a solution containing DNA (0.5 ng/µL in LAMP reaction buffer) was 
also tested and the solution droplets were easily moved, as well as droplets containing all LAMP 
reagents. Droplet velocity was determined by averaging both head and tail velocities. Velocity 
measurements were performed by determining the amount of time the droplet took to move from one 
non-activated electrode to an adjacent activated electrode, considering a total motion distance  
of 0.83 mm. 
 
Dynamic characterization of the temperature control system 

From Figure 3B in the manuscripts, used to characterize the temperature control system, as well as the 
results obtained for temperature measurements at bottom (T1) and top (T5) plates, T3 was determined 
simply as the average between inner bottom and top plate temperatures (T2 and T4), considering that 
the system is approximately symmetric, which is deemed a good approximation. Furthermore, the 
hydrophobic, dielectric and electrode layers were omitted from all calculations and representations, 
since they are too thin in comparison to the glass substrates, or even the oil, and may be neglected. 
 

The temperature rise in the thin film resistor is quite fast (200 seconds for initial temperature increase 
to max temperature) and heat is quickly transferred to the top plate. As temperature in the bottom plate 
approaches the set point temperature, there is a small overshoot, consequence of high speed controller 
settings, which is not visible in the top plate due to the thermal resistance of the materials between the 
points where T1 and T5 were measured. The PID controller is also functional, since there are no 
deviations from the set point temperature after reaching the stationary state. 
Heat transfer for a single reaction droplet 

In addition to the chip heat transfer analysis and temperature controller optimization, the temperature 
gradient across a LAMP reaction droplet was theoretically studied. Since on-chip LAMP reactions 
should occur within the optimal temperature range (60 °C to 65 °C), the droplet thermal gradient was 



studied for bottom plate temperatures corresponding to both lower and higher temperature limits. 
Considering first a bottom plate (T1) temperature of 60 °C, to which corresponds a top plate (T5) 
temperature of 59.1 °C (see Figure S5), it is possible to determine the heat between both locations from 
an adaptation of Fourier’s law, equation eqS1: ܣݍ = ଵܶ − ହܶ∆ݔ୥୪ୟୱୱ݇୥୪ୟୱୱ + ୭୧୪݇୭୧୪ݔ∆ + ୥୪ୟୱୱ݇୥୪ୟୱୱݔ∆ ሺeqS1ሻ 
 

Where q is the heat, Δx represents the thickness of each layer, A is the overlapping area of all layers 
involved and k represents the thermal conductivity for each material. Table S3 shows the various 
parameters of the material layers involved. 
 

Table S3. Material parameters for determination of heat across a DMF device. 
 Glass Oil 
Thickness (0.959 ± 0.001) mm (0.177 ± 0.001) mm 
Thermal conductivity (Shackelford et al., 2016) 1.05 W/(m·K) 0.10 W/(m·K) 

 
Solving equation eqS1, we obtain a total heat transfer per unit area (q/A) of 250.2 W/m2. Knowing the 
value of the heat flow, it is possible to determine any temperature from this system (T1 to T5). By 
determining T2 and T4, it is possible to know the gradient of temperature on a droplet during a LAMP 
reaction, for a bottom plate temperature of 60 °C (Table S4, set point 1). For a bottom-plate temperature 
of 65 °C (Table S4, set point 2), a total heat transfer per unit area of 166.9 W/m2 was determined. 

Table S4. Temperature gradient across a DMF device. Bottom plate temperatures of 60 °C and 65 °C. 

L 
Temperature (°C) Measurement 

uncertainty* Set point 1 Set point 2 

T1 60.0 65.0 

± 0.1 °C 
T2 59.8 64.9 
T3 59.6 64.7 
T4 59.3 64.6 
T5 59.1 64.4 

* Uncertainty due to the dispersion of values plus the resolution of the measuring instrument. 
  



Reaction limit of detection 

 

Figure S4. Electrophoretic analysis of the LAMP products for reaction detection capabilities, with 60 
min. (lanes 2 to 7) and 90 min. (lanes 8 to 13) reaction time. Lane 1: ladder; lane 2: 500 pg/µL initial DNA 
concentration; lane 3: 50 pg/µL initial DNA concentration; lane 4: 5 pg/µL initial DNA concentration; 
lane 5: 0.5 pg/µL initial DNA concentration; lane 6: 0.05 pg/µL initial DNA concentration; lane 7: 
negative control. Lanes 8 to 13 contain the amplification products for the same order of concentration, 
with 90 min. LAMP reaction time. 
 

Reaction volume 

 

Figure S5. Electrophoretic analysis of LAMP products obtained for the study of reaction volume 
reduction, with 60 min. (lanes 1 to 9) or 90 min. (lanes 10 to 17) reactions.  The reaction volumes used 
in this study are as follows: 20 µL (2, 10), 15 µL (3, 11), 10 µL (4, 12), 5 µL (5, 13), 2.5 µL (6, 14),  
2 µL (7, 15) and 1.3 µL (8, 16). Lane 1 corresponds to the ladder and lanes 9 and 17 correspond to the 
negative controls for each reaction time (60 min. and 90 min., respectively). 
 


