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Abstract: Static fatigue behavior is the main failure mode of optical fibers applied in sensors. In this
paper, a computational framework based on continuum damage mechanics (CDM) is presented to
calculate the crack propagation process and failure time of optical fibers subjected to static bending
and tensile loads. For this purpose, the static fatigue crack propagation in the glass core of the optical
fiber is studied. Combining a finite element method (FEM), we use the continuum damage mechanics
for the glass core to calculate the crack propagation path and corresponding failure time. In addition,
three factors including bending radius, tensile force and optical fiber diameter are investigated to find
their impacts on the crack propagation process and failure time of the optical fiber under concerned
situations. Finally, experiments are conducted and the results verify the correctness of the simulation
calculation. It is believed that the proposed method could give a straightforward description of the
crack propagation path in the inner glass core. Additionally, the predicted crack propagation time of
the optical fiber with different factors can provide effective suggestions for improving the long-term
usage of optical fibers.
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1. Introduction

Optical fibers are widely investigated and applied in both telecommunication and sensor
industries due to their prominent properties. On account of high capacity and low transmission
loss, optical fibers are mostly used in long-haul communication systems. Additionally, they are also
widely applied in sensors [1–3], considering their excellent flexibility and compact size. Owing to
the severe environmental conditions, the optical fibers in sensors face some challenges in terms of
the reliable functional guarantee and long lifetime requirement. Harsh environmental conditions
could cause mechanical damage and the degradation of strength [4]. This could make optical fibers
unable to satisfy the operational requirements, causing the sensors to stop working. This could bring
devastating failures and costly repairs for some inaccessible devices like the micro fiber optic gyroscope
(MFOG) [5], the submarine hydrophone [6] and so on. Therefore, lifetime design and corresponding
improvements are essential for optical fibers to satisfy the long-term life requirement under critical
operating conditions. The key issue is how to make an accurate life prediction for the optical fibers
in sensors.

The common mechanical failure mode for optical fibers is the slow crack propagation at the initial
stage and unsteady fast fracture. This can be determined as the static fatigue. The static fatigue-induced
damage process mainly is related to the following three factors. Firstly, according to our observation
shown in Figure 1, different defects including bubbles, cracks and bruises exist in the structure of
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optical fibers, and among these, the cracks on the surface cause the most severe damage. The fiber
surface could be damaged during manufacturing processes such as post-processing or the handing step.
Secondly, external tensile and bending loads place a non-uniform stress distribution on the fiber surface,
which further causes the flaws to gradually grow during the operational period [7]. Furthermore,
environmental effects like humidity and temperature may accelerate the damage process. Currently,
the research in the field of optical fiber failure time prediction mainly includes two considerations:

• Statistical method based on the failure data.
• Mechanical method based on the crack growth model.

The statistical method needs enough failure data to support the life prediction modelling of
the optical fiber. For example, Annovazzi-Ledi et al. [7] carried out static fatigue experiments with
over 300 samples under different bending radii during a period of 468 days. Their statistical analysis
using the maximum likelihood and the least-squares method gave an available bending radius for the
lifetime requirement. In the static bending experiments of [8], more than 200 samples were used to
calculate the initial strength distribution of fibers and check on the reliability measurement for optical
fibers under static bending situations. Scanning electron microscope (SEM) observations conducted
on tested samples exhibited the typical brittle fracture morphology, and the wedge-shape fracture
always initiated from the outer silica surface with the maximum tensile stress. However, in such above
experiments, environmental effects that would accelerate the failure process were ignored [9]. To face
this issue, several experiments considering environmental factors such as humidity, temperature and
so on were conducted. The effect of water content on the crack propagation of optical fibers has been
thoroughly tested [10–13] and it was found that water can corrode the glass interface, promoting
surface crack defects. It will also further accelerate the structural relaxation phenomenon. Furthermore,
Armstrong et al. [12] found that the simple exponential model gives a better description than the power
law of the degradation process of optical fibers under humidity. Moreover, time-to-failure prediction
models of fibers were developed based on experimental results under different temperature levels,
and a new method was proposed to enhance the thermal durability of optical fibers [14]. In summary,
the statistical methods strongly rely on the experimental results. The test investigations just focus on
the qualitative analysis of surface topography, rather than the quantitative description of the optical
fiber’s failure process. Meanwhile, the mechanical method based on the crack growth model could
provide a quantitative evaluation by characterizing the crack propagation process of optical fibers
subjected to the static fatigue under external loads.

Currently, several empirical and mechanism-based models have been proposed for the life
prediction of optical fiber. Under the static load, the fiber usually fractures from the surface of the
inner glass core [8]. Hence, the glass crack growth is mainly studied. The commonly used methods
are based on the stress intensity factor dominated power law. Griffioen et al. [15] reviewed and
compared twelve power law-based failure-time predicting models applied on different types of fibers.
They found that the applicability of the power law model to the silica fiber is questionable since it is
not based on firm physical grounds. Similarly, Matthewson [16] investigated the degradation models
of optical fibers, and came to the conclusion that the power law kinetic is unduly optimistic and lacks
physical fundamentals. Therefore, the use of the power law is not recommended for some applications.
Further study is required to yield better understanding of the crack growth mechanism in optical
fibers. Therefore, various kinetics models have been proposed to describe the crack growth process
in silica fibers. Lawn [17] described the crack propagation with a second exponential form model
derived from the atomistic model. Matthewson et al. [18] analyzed the differences between three
common models including the crack growth kinetics regression models [19,20], the model based on the
simple chemical kinetics theory [21] and the atomistic crack growth model [17]. Moreover, fibers with
different defects like subthreshold, post-threshold and macroscopic cracks behave quite dissimilarly
and they are not expected to be described with a single subcritical crack growth model on account
of residual stress. Consequently, the crack propagation subjected to combined residual and external
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loads is supposed to be depicted with theoretical models. In summary, the mentioned studies indicate
that it is crucial to ascertain the relevant mechanism of the optical fiber fracture process to give a more
accurate failure-time prediction.

In order to model the actual fracture behavior of glass with initial defects, the framework of
continuum damage mechanics (CDM) has been thoroughly researched. CDM characterizes the effect
of micro defects on the macro-scale properties of materials. The initial concept of CDM was introduced
by Kachanov [22], then developed by Lemaitre [23] and successfully applied on quasi-brittle materials
including concrete, rocks and glass. Sun [24] chose an anisotropic damage tensor to quantify the
damage and cracking mechanism of glass under the static indentation situation, and a finite element
simulation was generated to verify the model. Ismail et al. [25] presented a numerical simulation in
which an approach of CDM combined with the fracture mechanism was performed to predict the
directions of crack propagation. In the present paper, we make the assumption that a crack defect is
introduced on the optical fiber coating surface during post-processing to study the crack propagation
procedure and the corresponding failure time of optical fibers. A static analysis of a glass core is
performed with the three-dimensional finite element model using ANSYS Workbench static analysis.
A time-dependent continuum damage model for the glass core of the fiber is proposed in this study.
The main content is to calculate the damage degree of each element around the crack tip, and then to
simulate the crack propagation process of the glass core. Beyond that, effects of three factors including
bending radius, external tensile load and optical-fiber diameter on the crack propagation path and
failure time of the optical fiber are analyzed to give an optimal strategy for optical fiber applications.

The remainder is organized as follows: Section 2 introduces the optical fiber bending model and
the calculation procedure of glass core crack propagation. In Section 3, the sensitivity analysis in
terms of bending radius, tensile force and optical fiber diameter on the crack propagation path and
failure-time prediction are presented. Additionally, experiments for verifying the finite element results
are provided in Section 4. The results show that our method is suitable for the crack propagation
prediction of optical fibers under static bending and tensile loads. Finally, Section 5 summarizes
some conclusions.
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Figure 1. Flaws observed in the optical fiber structure: (a) bubbles in the polymer coating; (b) bruises
on the fiber surface; (c) cracks on the fiber surface.

2. Mathematical Modeling

2.1. Static Fatigue Damage Model

Based on the behavior of glass at room temperature [26,27], the constitutive equation can be
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The total strain rate of glass
.
ε in Equation (1) is composed of the elastic strain rate

.
ε

e and the
plastic strain rate

.
ε

p. In Equation (2), εe is the elastic strain, σ̃ is the second-order stress tensor with
damage, ν is the Poisson’s ratio and E is the elasticity modulus. In Equation (3),

.
λ is the changing

rate of the instantaneous nonnegative proportionality constant, σs is the yield stress and σ̃′ is the
second-order stress partial tensor. Under the constant load, glass gradually splits in optical fibers until
it is totally fractured. The static fatigue mechanism of glass plays a crucial role in the failure process of
optical fibers. A damage criterion is demanded to predict the static fatigue process and failure time.
Since the change rate of strain in the glass is fairly tiny and could barely be acquired through the finite
element analysis, a time-dependent isotropic damage revolution law for glass is introduced based on
the work of Kachanov [22] and Lemaitre [28]. Assume that D is the accumulated damage, the damage
rate

.
D equals

.
D =

σ2
MRν

2Es(1− D)2+α0

[
σM

K(1− D)

]n
, (4)

where K, n and s are material parameters, and σM is the von Mises equivalent stress. Rν is the triaxiality
coefficient of the multiaxial state of stress that satisfies

Rν =
2
3
(1 + ν) + 3(1− 2ν)(

σH
σM

), (5)

where σH is the hydrostatic stress. The material parameters can be estimated from the relationship
between crack propagation time tc and applied static stress in the static fatigue test of glass fibers [29].
Under the experimental condition, α0 = 0, Rν = 1 and σM = σ. The other material parameters can be
simplified as An+2 = 2EsKn. The breakup time and applied stress are nonlinearly fitted by Equation (4)
to obtain the values of A and n.

The crack-opening mode is assumed to be dominated by the normal tensile principle stress
component above a certain damage threshold [30]. Therefore, the time-dependent damage variable
can be defined as

D =


0

1−
[
1− (3 + n)

( σ1
A
)2+n

(t− tω)
] 1

3+n

1

i f σ1 ≤ σt

i f σtσ1σc

i f σ1 ≥ σc

. (6)

Under the static loading condition, σ1 is defined as the maximum principal stress. σt is set to be
200 MPa based on experimental results [29], which means that no damage occurs under the stress
below σt. σc is 524MPa when elements are totally damaged [31].

In addition, the following assumptions are considered:

• The material and damage variables are isotropic.
• tω is equal to 0, after which dissipation with damage occurs.
• The initial state D0 is 0.

The damage variable D is calculated under the averaged stress for each element. By using the
element death technique [32], elements of glass are set to inactive properties once their damage variable
D is accumulated such that D = 1, and the dead elements do not contribute to the stiffness anymore.

2.2. Finite Element Modelling

2.2.1. Description of the Finite Element Model

In this work, the finite element model is generated in ANSYS Workbench to obtain the mechanics
parameters, including strain and stress, that will be used in the calculation of damage of interested
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elements. Here, we use the three-dimensional optical fiber winding model in hydrophone [33] with
a change of the geometry parameters and a simplification of the twining mode. As shown in Figure 2,
spiral optical fibers wound on the spool are simplified as a length of fiber circumferentially twined
on a part of the spool. Then, concentration is focused on the part of the optical fiber with a defect on
the coating.

The optical fiber is composed of several layers. The doped glass with a higher refractive index is
used to transfer the optical signal. The cladding layer is doped glass with a lower refractive index,
to make sure that light is restricted to the core. The mechanical properties of core and cladding glasses
are quite similar, and these two parts could be simplified as the glass core with 125 µm diameter.
The glass core is coated with two protecting polymer layers whose diameters are 187 µm and 245 µm.
The Young’s modulus of the inner coating is 3.5 MPa, and that of the outer coating is 6.24 GPa.
The other geometry parameters as well as the material properties of the optical fiber in the simulation
are listed in [33].
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Figure 2. Twined optical fibers on the bobbin and partial views: (a) the optical fiber wound on the
spool; (b) the partial view of the optical fiber subsection; (c) the cross-sectional stress of the optical
fiber subsection.

On the basis of the experimental results, the optical fiber under bending circumstances fractures
from the surface of the glass core. Once the glass core is broken, the light transmission of the optical
fiber is stopped. Thus, the crack propagation in the glass core is focused. A penny-shaped crack is
introduced on the optical fiber surface as shown in Figure 3a, which crosses the two acrylate layers and
reaches the surface of the glass core. The original size of the crack is l = 73 µm, a = 60 µm. Figure 3b
exhibits the crack position and the geometry on the fiber surface; the crack opening angle θ is 2 degrees.
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2.2.2. Calculation of the External Loads

Tensile forces are applied to the distal end section of the optical fiber, and the spool rotates around
its axis for 45 degrees, leading the optical fiber to unwind on the spool surface. The stress on the cross
section of the middle part is obtained to simulate the bending deformation of a part of optical fiber.

Transverse loads are applied, including tensile forces and bending moments, which are defined as

M = Mglasscore + Mcoating, (7)

Mglasscore =
Ei · π · di

4

64 · (R + ri)
(i = 1), (8)

Mcoating =
Ei · π · d4

i
64 · (R + ri)

[
1−

(
di

di−1

)4
]
(i = 2, 3), (9)

where Ei is the Young’s modulus of the ith component layer, di and ri are respectively the diameter and
radius of the ith layer in the optical fiber (note that i = 1, 2, 3 separately represent the glass core, inner
coating and outer coating layers, respectively), and R is the bending radius.

2.2.3. Calculation of Crack Propagation Time

Based on the definition and revolution law of the damage variable, the maximum principal
stress of each element is directly obtained after one calculation cycle from the finite element model.
The calculation procedure of the damage values and the crack propagation times is proposed in
Figure 4a. The tc is the crack propagation time and ∆tij is the time for the damage to increase to one
for element i at the jth step.

Moreover, the computational procedure of accumulated damage for ith element is shown in
Figure 4b (i is omitted). The black solid curve represents the actual damage-increasing track under the
changing stress, while the yellow dotted line is the virtual damage-increasing track under jth stress
along with time. It can be observed from Figure 4b that the partial black solid line from Dj to Dj+1 is
parallel to part of the yellow dotted line. Since the damage development trend is only related to the
current stress level and accumulated damage Dj, the rate of damage change of the actual track from
Dj to Dj+1 shown by the black solid line should be exactly the same as that of the virtual path shown
by the yellow dotted line. This means that in the same time interval ∆t (∆t < ∆tjmin), the damage
calculation based on the black solid line is equal to that based on the yellow dotted line.

To calculate the increased damage from Dj to Dj+1 at the step j, the time-of-damage variable from
Dj to 1, noted as ∆tj, is calculated for each element respectively. According to Equation (6), ∆tj can be
easily calculated through the virtual path. Furthermore, the shortest time ∆tjmin among all elements
is selected as the time step for the cycle. The red dotted curve is the damage-increasing path of the
element with ∆tjmin. For every element around the crack tip we can obtain the damage Dj+1 after
calculation cycle j through the yellow curve based on Equation (6). The total crack propagation time
is the summary of the entire time steps. The fully damaged elements are killed in the finite element
model and the crack profile is modified accordingly for the next cycle.

The calculating process iterates until the glass core is completely fractured, as in the process
shown in Figure 4c. In the initial phase, there is a stress-concentration region on the glass core surface
on account of the crack defect in the polymer coating. As damaged elements get killed along with time,
the crack gradually extends deeper and wider. According to the work of Muraoka et al. [34], once the
crack propagates to a certain length in the optical glass core, it becomes unstable and rapidly expands,
resulting in fast fracture. Based on the observed micrographs of the fractured surface of an optical fiber
by Muraoka and Abe [35], the boundary between the stable and unstable crack-propagation stages is
32 µm in the diagrammatic sketch shown in Figure 4c [36]. Therefore, the failure criterion is that crack
depth reaches 32 µm for the glass core with 125 µm diameter.
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propagation states: (a) calculation procedure of the damage values and the crack propagation times;
(b) computational procedure of the accumulated damage; (c) diagrammatic sketch and micrograph of
the different crack propagation states.

3. Simulation Results and Discussion

3.1. Results at Different Bending Radii

In this section, under the condition of 2 N tensile force, the bending radii are set at 15 mm,
17 mm, 20 mm, 22 mm and 25 mm to compare the effect of bending radius on crack propagation
time. The maximum principal stress contour plots at 29,411 h are illustrated in Figure 5. It can be seen
that the glass core under R = 15 mm is already fractured; the crack under R = 17 mm is quite deep
and presents an elliptical shape (see Figure 5b), which is probably due to stress relief of the cracked
flank after it expanded. Meanwhile, there is only a tiny crack on the surface of the glass core when
R = 20 mm and R = 22 mm, and no element is fully damaged under R = 25 mm.

Since the killed elements cannot be shown in the diagram, it is hard to know the damage values
at different locations around the fracture profile. Thus, element A and element B existing in different
places shown in Figure 5 are selected to give examples of the time-varying damage around the crack
profile, as illustrated in Figure 6.
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Compared with the crack propagation times tc in Figure 5, there is an obvious inversely
proportional relationship between the crack propagation time and the bending radius. This is because
a smaller bending radius causes a higher bending load on the optical fiber, and it increases the
damage-accumulating speed, as shown in Figure 6.

The accumulated damage values of elements A and B at the fracture moment are presented in
Figure 6. It shows that element A acquires more severe damage than element B. The damage of element
A is positively correlated to the crack propagation time and bending stress, while the bending stress
is negatively correlated to the crack propagation time. Therefore, the final accumulated damage of
element A with different bending radii cannot present an obvious monotone trend. For element B,
the maximum damage merely reaches 0.055 for R = 25 mm, while the minimum is D = 0.026 when the
bending radius is 20 mm. It seems that the difference of damage-growth rates is insignificant under
different radii.

Moreover, the increasing crack depth as well as the number of elements killed with time are
indicated in Figure 7. Failure times range from 2.00 × 104 h to 1.12 × 105 h, indicating that the bending
radius has a major impact on the crack propagation time of the optical fiber. The average crack growth
rates under R = 15 mm and R = 25 mm are 1.59 × 10−3 µm/h and 2.85 × 10−4 µm/h, respectively.
Take the case of R = 22 mm, for example; the crack propagation process is presented with cracked cross
sections at different time points. As the crack grows deeper and wider along with time, the local stress
distribution is modified accordingly.

Obviously, two stages can be observed in the crack propagation process. Before about 30 elements
are killed, the crack growth rates are relatively low, which corresponds to the crack-initiation stage.
It takes a long time for the material to be damaged and the crack to grow. However, in the second
stage, the crack growth rates increase rapidly as elements are killed faster, and this can be described as
the early crack-extension stage. In the crack-initiation stage, the crack depth prediction is reliant on the
element size, such that a smaller element size could provide a more accurate prediction.
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Figure 7. Crack depth and the number of killed elements vs time in the case of different bending radii 
R. 
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3.2. Results at Different Tensile Forces

Under the condition of bending radius R = 20 mm, five external tensile forces are applied to the
optical fiber for analyzing the effect of external tension on life prediction. One application of optical
fibers, the fiber optic hydrophone, should acquire a coiled tensile force above 0.9 N to guarantee that
the optical fiber is fixed in place even under an external disturbance. Herein, we assume that the
external coiled forces F respectively are 1.5 N, 2 N, 2.5 N, 3 N and 3.5 N. The crack-propagation states
and maximum principal stress maps for the five loads at the time t = 18,999 h are displayed in Figure 8.
While the glass cores under 3 N and 3.5 N tensile force are almost ruptured, there are merely a few
elements that are fully damaged and the crack length is quite small under 2 N and 2.5 N tensile loads.
Figure 9 exhibits the maximum principal stress distribution and crack shapes for five loads at the crack
propagation time. It shows that a higher tensile force results in a shorter crack propagation time.
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Figure 8. The maximum principal stress maps and crack shapes for five loads (F = 1.5, 2, 2.5, 3, 3.5 N)
at 18,999 h. (a) F = 1.5 N; (b) F = 2 N; (c) F = 2.5 N; (d) F = 3 N; (e) F = 3.5 N.

By comparison among the fractured states and crack propagation times shown in Figure 9,
an inversely proportional relationship can be found. Higher tensile forces causes higher stress levels
around the defect, which further gives rise to higher element killing rates and damage-accumulating
speed. Therefore, higher F results in a shorter crack propagation time.
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Figure 9. The maximum principal stress maps and crack shapes for five loads (F = 1.5, 2, 2.5, 3, 3.5 N)
at the failure times. (a) tc = 140,196 h, F = 1.5 N; (b) tc = 39,820 h, F = 2 N; (c) tc = 27,955 h, F = 2.5 N;
(d) tc = 67,151 h, F = 3 N; (e) tc = 18,999 h, F = 3.5 N.

Despite the effect of element size, cracks propagate to the flanks as they get deeper, and the
cracked cross sections in Figure 9 approximately appear as a penny shape, which conforms to the
actual micrograph of the fractured surface of an optical fiber observed by Muraoka and Abe [36],
as shown in Figure 9. Additionally, a higher tensile load induces a bigger cracked area.

Figure 10 illustrates that the crack depth and the number of accumulated elements killed increases
over time. The early stage of the crack propagation process takes up a large proportion of the optical
fiber’s total crack propagation time. As damage values increase to a relatively high level, the time
step for one iteration gets shorter and more elements are killed in a limited time interval, representing
a higher crack-growth speed.
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There is a notable growth of the number of killed elements in the finite element models under
an increasing load. Only 201 elements are killed for F = 1.5 N, while over 600 elements are fully
damaged until fracture for F = 3.5 N. For the optical fiber subjected to a larger tensile load, both elements
at the surface and center of the glass core obtain faster damage accumulation under a higher stress
level, which results in more elements being killed.
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3.3. Results at Different Optical Fiber Diameters

Optical fibers with multiple diameters are manufactured for various objectives. Some scholars
investigated the experimental results and concluded that thinner optical fibers have smaller bending
loss, while thicker ones can possess higher transmission capacity. Few researchers focus on the
relationship between the geometry size of the optical fibers and their usage time. Thus, in this
section, five commercial optical fibers with different geometry parameters are considered to discuss
the geometry size effect on the optical fibers’ crack propagation times through the finite element model.
The geometry parameters and the critical crack depths of these optical fibers with different diameters
are respectively listed in Table 1. The critical crack depth listed in Table 1 represents the critical crack
depth of the turning point beyond which the crack propagation behavior transits from the stable region
to the unstable region. In general, the crack grows fast and unstably at the last region and leads to
sudden failure. Therefore, the time duration of the unstable region is much shorter compared with
that of the stable crack propagation region, and can be ignored in most of studies [34,35].

Table 1. Geometry parameters of the five optical fibers and critical crack depths.

#1 #2 #3 #4 #5

Glass core diameter (µm) 45 80 125 200 300
Inner coating diameter (µm) 77 120 187 230 330
Outer coating diameter (µm) 115 165 245 500 650

Critical crack depth (µm) 11 22 32 50 79

All the simulations are carried out under the condition that F = 2 N and R = 25 mm.
The relationship between the crack propagation time and glass core diameter is shown in Figure 11.
From the simulation results, we can see that in the initial part of the curve, with the diameter of
the optical fiber core and cladding diagram increasing, the crack propagation time does not show
a correlational variation trend.

For deeply investigating the variety of propagation times, we are trying to compare the stress
levels of glass cores with different diameters. The simulation results in section III-A and III-B prove
that the stress on the glass core has a significant impact on the crack propagation time of the optical
fiber. As shown in Figure 12, there is a negative relationship between the crack propagation time and
the maximum stress on the glass core (obtained by the finite element analysis). A higher stress level
leads to a greater damage-accumulating speed that causes more elements to be killed, which results
in a shorter crack propagation time. In addition, based on the finite element results, the relationship
between the diameter and the maximum stress level, as shown in Figure 13, can also explain the
varying trends of propagation time in Figure 11. For instance, having the minimum stress level in
these five cases, the #3 optical fiber has the longest propagation time.

In actuality, the maximum stress on the glass core is determined by the combination of external
loads, optical fiber geometry parameters and defect size. It approximately equals the sum of the
maximum bending stress and the tensile stress on the glass core, which can be deduced as the function
of glass core diameter d1, as shown in the equation of Figure 13. The I1 is the inertia moment of the
glass core. From Figure 13, the finite element results are well matched with the numerical calculation.
It can be seen that the maximum stress on the glass core decreases first and then increases along with
the glass core diameter. The lowest point of the curve corresponds to the diameter of 154 µm, which is
close to the diameter of the #3 optical fiber.

In summary, there is an optimum diameter for the glass core that acquires the lowest stress,
and lower stress levels would give longer crack propagation times. On the basis of these two facts,
the optical fiber with a 125 µm-diameter glass core has the longest crack propagation time.
This conclusion could give optimization suggestions in optical fiber design to improve its lifetime
under the static stress condition.
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4. Experimental Verification

4.1. Experimental Procedure

A glass core with diameter d1 = 125 µm is used to verify the simulation results in section III-A and
III-B. As shown in Figure 14a, both sides of the samples are glued to carbon fiber sheets with epoxy
resin to protect them from the crush caused by fixtures. The samples are subjected to both bending
and tensile loads the same as the simulation conditions in a laboratory environment (25 ◦C and 40%
relative humidity).

Figure 14b exhibits the experiment device and the way to apply loads. Both carbon fiber sheets
are clamped by fixtures while the optical fiber wound on the spool is fastened tightly by the other pair
of fixtures. A preset crack, such as the one in Figure 3, is introduced by thin blades. The geometry
parameters of the preset crack are inspected using a stereoscopic microscope. The average crack width
2l (see Figure 3a) is around 0.146 mm, and the opening angle θ of the crack defect (see Figure 3b) is
smaller than 3◦. The average depth of the crack defect is calculated based on the geometry of the blade,
which is around 0.059 mm. Since the simulation results indicate that the crack propagation times are
over 10,000 h, to reduce the experimental time and cost, higher tensile loads are applied in these cases.
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Figure 14. The test specimen and experimental devices: (a) optical fiber specimen and carbon fiber
sheets; (b) experimental devices and the way to apply loads.

In the first case, the bending radii R are set to 15, 17, 20, 22 and 25 mm and the tensile load F is
15 N. In the second case, the bending radius R is 20 mm and the tensile loads are selected from 9 to
15 N. The testing process is continually monitored by the computer to keep the loads stable at the
preset values until the optical fibers fracture.

The fractured cross sections are then imaged with a Hitachi S-4800 scanning electron microscope
(SEM). The SEM images provide the information of crack geometry and initiations of the fiber fracture.

4.2. Results and Discussion

SEM images of fractured cross sections under different bending radii are illustrated in Figure 15.
As shown in the images, there is no visible boundary between the core and cladding. The core is
covered tightly by two polymer coatings.

Cracks initiate from the preset defects in the coating and gradually propagate until they cause
a complete fracture. There are two phases of the fracture process, which can be observed in the
SEM images. The first stable propagation phase results in a smooth penny-shaped crack, and the
second unstable crack extension phase is reflected on the radial cracks on the fractured cross section.
The boundaries of the two phases are pointed out with arrows. It can be seen that the average depth
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of cracks is 32 µm with an acceptable disparity. Despite the normal fracture features, peeling of the
coating layer can be observed while R = 17 mm. This is mainly due to the weak bonding strength
between the coating and the glass core, and its effect should be further studied.

Specimens tested under different tensile forces are also observed with SEM examinations,
and the fracture morphologies are shown in Figure 16. As the tensile force increases, the cracks
are getting wider, caused by the higher stress on the side of the crack, which basically validates the
simulation results shown in Figure 9. Based on the simulation results, greater tensile forces can easily
cause elements on the crack flank to take on higher damage values and be killed, which leads to the
appearance of wider cracks.
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Figure 16. Fracture cross sections under different tensile forces. (a) F = 11 N; (b) F = 12 N; (c) F = 13 N;
(d) F = 14 N; (e) F = 15 N.

To verify the proposed method, the crack propagation time versus bending radius for both the
simulation and experiment are presented in Figure 17a. The increasing trend of crack propagation
time along with the bending radius can be observed from simulated and experimental data. To further
quantify the simulation accuracy, results from both the simulation and experiment are shown in
Figure 17b. The central diagonal solid line represents an ideal agreement between the simulated
and the experimental results. The dashed lines denote the 95% fiducial limits. It can be seen that
most points are within the fiducial limits. Moreover, it should be noticed that the experimental
crack propagation times are shorter than the simulated results. This phenomenon may be caused by
uncertainties associated with the simulation and experiment. Uncertainties arise from a variety of
sources; they can affect the experimental result, which differs from the simulated crack propagation
due to, for example, variability in the preset crack procedure. The measured data can also be affected
due to the fluctuations of the surrounding environment.

In addition, Figure 18a shows the evolution of crack propagation time under various tensile
forces. The crack propagation times decrease with the increasing tensile forces. The simulated crack
propagation times are close to the experimental values. Some discrepancy may also exist for the above
mentioned reasons. Moreover, simulated results versus experimental results under various tensile
forces are presented in Figure 18b to quantify the simulation accuracy. Most points are within the 95%
fiducial limits. Therefore, it is convincing that the proposed approach can quantitatively predict the
crack propagation times of the optical fibers under the experimental conditions.

Therefore, for the twining of optical fiber in a hydrophone, lower tensile force and greater bending
radius would increase the crack propagation time of optical fiber remarkably. For the circumstance
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where bended optical fibers are composed as the key part of the sensor, longer lifetime could be
obtained by improving the structure to decrease the stress on the glass core.Sensors 2017, 17, 2633 15 of 18 

 

14 16 18 20 22 24 26
5.0

5.2

5.4

5.6

5.8

6.0

 simulated results
 experimental results

Cr
ac

k 
pr

op
ag

at
io

n 
tim

e 
ln

(t)
 (h

)

Bending radius R (mm)  
(a) (b)

Figure 17. The comparison between the simulated and experimental crack propagation times under 
different bending radii: (a) crack propagation time vs bending radius; (b) simulated results vs 
experimental results. 

9 10 11 12 13 14 15
5.0

5.5

6.0

6.5

7.0

7.5

 simulated results
 experimental results

Cr
ac

k 
pr

op
ag

at
io

n 
tim

e 
ln

(t)
 (h

)

Tensile force F (N)  
(a) (b)

Figure 18. The comparison between the simulated and experimental crack propagation times under 
different tensile forces: (a) crack propagation time vs tensile force; (b) simulated results vs 
experimental results. 

5. Conclusions 

Optical fibers are widely investigated and applied in both telecommunication and sensor 
industries due to their prominent properties. For satisfying the long-term usage requirement of 
optical fibers under critical operating conditions, it is essential to make an accurate failure-time 
prediction for optical fibers in sensors. In this paper, an approach based on continuum damage 
mechanics is presented for calculating the crack propagation process and failure time of the optical 
fiber under static bending and tensile loads. The finite element model of the optical fiber subsection 
is built with a pre-existing crack defect introduced in post-processing. The maximum principal stress 
is used to calculate the damage variables for each element based on the time-varying damage 
revolution mechanism. The crack propagates by killing damaged elements in the finite element 
model until the fracture threshold is reached. Finally, the test data validate the results from the three-
dimensional simulation under different bending and tensile loads well. It is believed that the 
proposed method could give an intuitionistic process of optical fiber crack propagation and provide 
effective improvement countermeasures for long-term usage of optical fibers. The main conclusions 
are summarized below: 

Figure 17. The comparison between the simulated and experimental crack propagation times under
different bending radii: (a) crack propagation time vs bending radius; (b) simulated results vs
experimental results.

Sensors 2017, 17, 2633 15 of 18 

 

14 16 18 20 22 24 26
5.0

5.2

5.4

5.6

5.8

6.0

 simulated results
 experimental results

Cr
ac

k 
pr

op
ag

at
io

n 
tim

e 
ln

(t)
 (h

)

Bending radius R (mm)  
(a) (b)

Figure 17. The comparison between the simulated and experimental crack propagation times under 
different bending radii: (a) crack propagation time vs bending radius; (b) simulated results vs 
experimental results. 

9 10 11 12 13 14 15
5.0

5.5

6.0

6.5

7.0

7.5

 simulated results
 experimental results

Cr
ac

k 
pr

op
ag

at
io

n 
tim

e 
ln

(t)
 (h

)

Tensile force F (N)  
(a) (b)

Figure 18. The comparison between the simulated and experimental crack propagation times under 
different tensile forces: (a) crack propagation time vs tensile force; (b) simulated results vs 
experimental results. 

5. Conclusions 

Optical fibers are widely investigated and applied in both telecommunication and sensor 
industries due to their prominent properties. For satisfying the long-term usage requirement of 
optical fibers under critical operating conditions, it is essential to make an accurate failure-time 
prediction for optical fibers in sensors. In this paper, an approach based on continuum damage 
mechanics is presented for calculating the crack propagation process and failure time of the optical 
fiber under static bending and tensile loads. The finite element model of the optical fiber subsection 
is built with a pre-existing crack defect introduced in post-processing. The maximum principal stress 
is used to calculate the damage variables for each element based on the time-varying damage 
revolution mechanism. The crack propagates by killing damaged elements in the finite element 
model until the fracture threshold is reached. Finally, the test data validate the results from the three-
dimensional simulation under different bending and tensile loads well. It is believed that the 
proposed method could give an intuitionistic process of optical fiber crack propagation and provide 
effective improvement countermeasures for long-term usage of optical fibers. The main conclusions 
are summarized below: 

Figure 18. The comparison between the simulated and experimental crack propagation times
under different tensile forces: (a) crack propagation time vs tensile force; (b) simulated results vs
experimental results.

5. Conclusions

Optical fibers are widely investigated and applied in both telecommunication and sensor
industries due to their prominent properties. For satisfying the long-term usage requirement of
optical fibers under critical operating conditions, it is essential to make an accurate failure-time
prediction for optical fibers in sensors. In this paper, an approach based on continuum damage
mechanics is presented for calculating the crack propagation process and failure time of the optical
fiber under static bending and tensile loads. The finite element model of the optical fiber subsection
is built with a pre-existing crack defect introduced in post-processing. The maximum principal
stress is used to calculate the damage variables for each element based on the time-varying damage
revolution mechanism. The crack propagates by killing damaged elements in the finite element
model until the fracture threshold is reached. Finally, the test data validate the results from the
three-dimensional simulation under different bending and tensile loads well. It is believed that the
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proposed method could give an intuitionistic process of optical fiber crack propagation and provide
effective improvement countermeasures for long-term usage of optical fibers. The main conclusions
are summarized below:

(1) From the simulation results, the change of the crack-front shape in the propagation process is
consistent with the observed image in the actual test, which indicates that the traces of the crack
fronts present a fan-like pattern path.

(2) The crack propagation process can be divided into two stages. Firstly, the crack-initiation stage
lasts from the starting point to the moment that nearly 30 elements are killed, and the crack
growth rates are relatively low, since a long time is taken for the material to be damaged in the
first place. Then, once entering the early crack-extension stage, the crack growth rates increase
rapidly as elements are killed faster until the failure criteria are met.

(3) Under different bending radii, the simulated crack propagation time values show that there is
an obvious inversely proportional relationship between the crack propagation time and bending
radius. The reason is that a smaller bending radius causes a higher bending load on the optical
fiber, and it increases the damage-accumulating speed. Additionally, compared with the test data,
the simulation results have the same variation tendency and similar magnitude changes in the
range of acceptable errors.

(4) Based on the simulation results, greater tensile forces can easily cause elements on the crack
flank to take on higher damage values and be killed, leading to the appearance of wider
cracks. The phenomenon basically conforms to the test results. In addition, the simulated
crack propagation times are close to the extrapolated values from fitting the curve of the
experimental results.

(5) The geometry size of optical fibers manufactured can seriously affect the optical fibers’ crack
propagation times through the finite element analysis. Through deeply investigating simulation
results, the maximum stress on the glass core decreases first and then increases along with the
diameter of the glass core, which can explain the non-linear relationship between the crack
propagation time and glass core diameter. Thus, there is an optimum diameter for the glass core
that takes on the lowest stress, which could give an optimization policy in the size design of
optical fibers to improve their usage time under static loads.
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