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Abstract: For local homing navigation, an agent is supposed to return home based on the surrounding
environmental information. According to the snapshot model, the home snapshot and the current
view are compared to determine the homing direction. In this paper, we propose a novel homing
navigation method using the moment model. The suggested moment model also follows the snapshot
theory to compare the home snapshot and the current view, but the moment model defines a moment
of landmark inertia as the sum of the product of the feature of the landmark particle with the square
of its distance. The method thus uses range values of landmarks in the surrounding view and the
visual features. The center of the moment can be estimated as the reference point, which is the
unique convergence point in the moment potential from any view. The homing vector can easily be
extracted from the centers of the moment measured at the current position and the home location.
The method effectively guides homing direction in real environments, as well as in the simulation
environment. In this paper, we take a holistic approach to use all pixels in the panoramic image as
landmarks and use the RGB color intensity for the visual features in the moment model in which
a set of three moment functions is encoded to determine the homing vector. We also tested visual
homing or the moment model with only visual features, but the suggested moment model with
both the visual feature and the landmark distance shows superior performance. We demonstrate
homing performance with various methods classified by the status of the feature, the distance and
the coordinate alignment.
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1. Introduction

Navigation is a process of monitoring and controlling the movement of an agent from one place
to another. Many navigation systems have their goal positions that the agent is supposed to reach.
Recent navigation studies show diverse forms of moving vehicles from simple wheeled robots [1] to a
wide range of underwater vehicles [2], unmanned aerial vehicles [3] and spacecraft [4] with various
sensors [5,6]. Furthermore, there have been techniques using various sensors like vision [7], inertia [8]
and RFID [9], which represent a great deal of engineering achievement.

Different from the above engineering approaches, various animals demonstrate remarkable
homing capacity, and their navigation system robustly works in real environments. Local visual
homing based on a snapshot model [10] is inspired by insect navigation. An agent is supposed to return
to the nest using visual cues or landmarks. The snapshot model uses only a pair of snapshot images
at the nest and at the current position. The difference of landmark positions in the two images can
be used to derive information about the relative location difference or homing direction. The angular
difference in landmark position can greatly contribute to decisions about homing. Honeybees can
find the homing direction by reducing the differences of the angular distribution of visual landmarks
observed in a pair of snapshots [10].
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Desert ants (Cataglyphis f ortis) are known to use odometry and visual information for their
navigation. The path integration with odometry information is related to calculating the accurate home
location [11–15]. Cumulative errors in path integration can be compensated by visual cues including
the skyline and polarized information, as well as the surrounding landmark information [16–18].
There are many other examples with visual cues [19–22], and also, their navigation involves many
types of sensors including vision, olfactory, auditory, odometry and magnetic sensors. [23–26]

There have been many local visual homing techniques. We can largely divide these into two parts
using depth or intensity information [27] as shown in Figure 1. Furthermore, intensity-based approaches
can be divided into holistic methods and correspondence methods. Correspondence methods match
extracted features in the images and thus need a complex algorithm to process feature extraction
and feature matching. If there is a reference compass available, the one-to-one correspondence
matching can be omitted. Holistic methods try to match the whole pixel information in the two images
without extracting landmark features or classifying the features. Holistic methods have relatively
low complexity.

Figure 1. Overview of visual navigation. DELV, Distance Estimated Landmark Vector; ALV, Average
Landmark Vector; ACV, Average Correctional Vector.

Landmark vector models to represent the surrounding environment have been studied, and the
models often use angular positions of landmarks without landmark matching, if a reference compass
such as a light or magnetic compass is available and the two snapshots can be aligned with the reference
coordinate. The Average Landmark Vector (ALV) model [28] is a typical example of the landmark
vector model covering the omnidirectional view. Even if it is assumed that all the landmarks on the
retinal image have equal distances, the whole distribution of landmarks can be simply represented
as the average landmark vector, each of which has a unit length with its angular position. According
to the snapshot model [10], the model compares two ALVs obtained from the home snapshot and
the current view. The difference between the two vectors can estimate the homing direction from the
current position. The ALV model can be combined with visual feature detection [29]. The Average
Correctional Vector (ACV) [30,31] is a variation of the ALV model. This model uses the amount of
angular differences as the length of the landmark vector. Another method, the Distance Estimated
Landmark Vector (DELV) model [32,33], suggests encoding distance in the landmark vectors and
provides better estimation of the homing vector at the current position by localizing the current
position in a reference map. The snapshot matching method can be combined with optic flow [34],
and it has been applied to aircraft trying to estimate the current location.

In the holistic methods, there have been two ways to handle the whole image pixels, the image
distance model and the warping model. The Descent in Image Distance (DID) method [35] uses
the all pixels in a pair of images to calculate the image distance. The pixel difference between the
snapshot image at a given position and the home snapshot can roughly estimate the relative distance
between the two positions. If a snapshot among candidate snapshots at different positions is close to
the home snapshot in terms of the image distance, it is assumed that the direction to the snapshot is
close to the homing direction. More advanced models following the idea have been studied [36,37].
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Homing in scale space [38] uses correspondences between SIFT features and analyzes the resulting
flow field to determine the movement direction. It is mathematically justified by another study [39].
Another view-based homing method based on the Image Coordinates Extrapolation (ICE) algorithm
has been tested [40].

In contrast to the above image distance models, there have been warping methods to calculate
all possible matchings between all pixels in a pair of images as another holistic approach. In the
one-dimensional warping model [41–43], all possible changes of pixels along the horizontal line are
calculated under the assumption that landmarks have equal distances. The homing direction can be
estimated by searching for the smallest difference in a particular angle between the candidate image
and the home reference image. There are also advanced warping models including the 2D-warping and
min-warping model [44–46] that apply a variation of alignment angle estimation for the environment
without a reference compass. There have been other variations of the warping model [47,48]. Recently,
a method with various visual features like SURF has been compared with the holistic approach for
robotic experiment [49]. Generally, the holistic methods show robust performance, but need high
computing time.

The image warping methods normally have an equal distance assumption for landmarks.
However, the visual information is easily changed by position, distance, luminous sources, shades or
other environmental factors. They can produce large homing error depending on the environmental
situation. The distance information has been very often neglected in the holistic approaches, as well
as landmark vector models, although it can contribute to reading the surrounding environmental
information. Recently, it was shown that the depth information greatly improves the homing
performance [33,50]. In this paper, we suggest a moment model to combine the distance information
with visual features or image pixel information.

Another issue in local visual homing is related to an alignment problem of two snapshot images.
If there is no reference compass, the orientations of the current view and the home need to be aligned
together. That is, one visual feature in the current view should correspond to a visual feature in the
home snapshot, since the visual feature points to the same landmark object. A solution to match the
two different orientations is to calculate the image differences between the home snapshot and the
rotated image of the current snapshot and find the rotation angle of the current view with the minimal
image difference, which is called the visual compass approach [35]. Another approach is the landmark
arrangement method [51] in which a set of visual landmarks in the current view are re-mapped to
visual landmarks one by one in the reference coordinate, and a circular shift of the landmarks is applied
repeatedly to find the best matching of the visual landmarks in the two orientations by checking if a
set of the resultant homing vectors starting from each landmark has converged into one point with
small variance. In our experiments, we will test the above two approaches for the alignment of the two
snapshot images, if there is no reference compass.

In the complex cluttered environment, the Simultaneous Localization and Mapping (SLAM)
method has been popular. SLAM often uses a laser sensor for distance information to build a map
for the environment. Interestingly, a moment model called Elevation Moment of Inertia (EMOI) has
been suggested to imitate a physical quantity, moment of inertia [52]. The model characterizes the
environmental landscape, the surrounding range value and height information as a scalar value
called EMOI. Inspired by the model, we suggest a new type of moment function to cover various
environmental information, which can read the landmark distribution from the environment with two
components, the distance to landmarks and the visual feature of landmarks.

The main contribution of our work is to suggest a new type of moment potential to guide homing
navigation and prove the convergence of the moment model to a unique reference point. The homing
navigation follows the snapshot theory to compare two snapshots to determine the homing direction.
We provide a homing vector estimation based on the reference point in the moment model for a pair of
snapshots. Furthermore, it is shown that the moment model can encode the landmark distribution
and features. Our approach can be extended to a moment model with multiple features, which can
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produce multiple reference points for robust homing performance. The combinational model with
distance and visual features shows better homing performance than the distance information alone or
the visual features alone. We demonstrate robotic homing experiments with the moment model and
various methods.

2. Method

2.1. Robot Platform and the Environment

We test robotic experiments in a 6 m × 6 m room with several objects including dresser, drawers,
a trash can, a plant, windows and walls. We use i-Robot Roomba for a mobile robot with two wheels,
which is connected to a laptop computer for control. Here, the robot platform can read a panoramic
image of the surrounding environment through an omnidirectional camera in Figure 2, which consists
of a Logitech Webcam E3500, a metal ball for a reflection mirror and the acryl support for mounting.
The robot can also be mounted with a HOKUYO laser sensor URG-04 LX model shown in Figure 2.
The laser sensor can cover a range of 240 degrees in angular space with 0.36 degree resolution. To obtain
an omnidirectional distance image, two shots from the laser sensor are needed. In this way, we can
collect both an omnidirectional color image and depth information. Figure 3 shows an example of
the reconstructed image and depth map for the surrounding environment (red ×marks show sensor
readings from the laser sensor).

(a) (b) (c)

Figure 2. Mobile robot platform: (a) i-Robot ROOMBA mobile; (b) omnidirectional camera;
(c) HOKUYO laser sensor.

(a) (b)

Figure 3. Cont.
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(c)

Figure 3. Experimental environment env0: (a) a view of the environment; (b) omnidirectional
image from the camera; (c) distance map from the range sensor; the red square indicates the home
position (500,500).

An omni-directional image that the robot takes has 640 × 480 RGB pixels. It is converted into a
panoramic image, 720 × 120 pixels (with 0.5 degree angular resolution), with a uniform size of pixels
for each angular position, while the omnidirectional image has a relatively small number of pixels near
the observation point. The panoramic form can easily access the pixel in terms of the angular position
and distance, the angular position in the x-axis and distance from the center of the image in the y-axis.
Figure 4a,b shows examples of panoramic images obtained at two different positions. Figure 4c,d
shows range data from laser sensor readings corresponding to the panoramic images. The snapshot
images or snapshot distance maps have a similar landscape, but they are distorted depending on
the position.

(a) (b)

Figure 4. Cont.
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Figure 4. Omnidirectional image and distance map: (a,b) panoramic images at (50,50) and (62,54),
respectively; (c,d) omnidirectional depth information at at (50,50) and (62,54), respectively.

2.2. Moment Model for Landmark Distribution

In physics, the moment of inertia is a property of an area that reflects how its points are distributed.
By analogy, the moment is defined as a distribution of point measurements in our navigation model.

For a given set of landmarks in the environment, we analyze the landmark distribution as a
combination of their positions and features. The color intensity or height of landmarks can be feature
candidates. A landmark is defined as a natural feature in the world environment, which is observable
even at a far distance. All the landmarks are projected into the image plane, and the snapshot view
includes a collection of landmarks. Often, an object is represented with a cluster of pixels in the image
through the image segmentation process. Without any object feature extraction, each pixel in the
image view can be regarded as a landmark, and then, the feature extraction process can be omitted.
In real environments, the color pixels in the surrounding view (omnidirectional view) are regarded
as landmarks with the color intensity, as well as the range information. Even the background at a far
distance is represented as a set of landmarks. If salient landmarks are identified from the background,
only those landmarks may be used in our moment model.

The color of the visual cue is the feature used in this paper. We define the moment measure M
as follows:

M =
N

∑
i=1

ri
2Ci =

N

∑
i=1

((x− ai)
2 + (y− bi)

2)Ci (1)

where there are N landmarks, ri is the range value of the i-th landmark, that is the distance from the
current location (x, y) to the landmark location (ai, bi), and Ci is the feature value, for example the
color intensity of the i-th landmark.

The above measure is similar to the moment of inertia in physics,
∫

r2dm. We can also see this
measure as a potential function built with a set of landmarks. From that, we can find the gradient as
the first derivative of the potential function as follows:

∇M = (
dM
dx

,
dM
dy

) = (Mx, My) =
N

∑
i=1

(2(x− ai)Ci, 2(y− bi)Ci) (2)

where this gradient vector indicates the change of the potential function corresponding to the current
position (x, y). To find the minimum convergence point with the gradient, we calculate the determinant
of the Hessian matrix given below:
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H =

 d2 M
dx2

d2 M
dxdy

d2 M
dxdy

d2 M
dy2

 =

(
Mxx Mxy

Myx Myy

)
=

N

∑
i=1

(
2Ci 0
0 2Ci

)
(3)

where this Hessian matrix is produced from the second-order differential of the moment equation.
Mxx is a second-order differential with respect to x and Myy with respect to y. Mxy is equal to Myx,
and they are zero.

The determinant of the Hessian matrix is calculated as:

det(J) = (
N

∑
i=1

2Ci)× (
N

∑
i=1

2Ci) = (
N

∑
i=1

2Ci)
2 > 0 (4)

We assume that each feature value (Ci) is positive. The sign of the second derivatives of potential
function is positive as shown below:

Mxx = Myy =
N

∑
i=1

2Ci > 0 (5)

From the above property, there is only one global convergence (minimum potential) point with its
gradient zero, and the determinant of the Hessian matrix is positive. Let (X, Y) be the convergence
point. Then:

∇M(X, Y) =
N

∑
i=1

(2(X− ai)Ci, 2(Y− bi)Ci) = 0 (6)

The position (X, Y) is calculated as:

X =
N

∑
i=1

aiCi/
N

∑
i=1

Ci, Y =
N

∑
i=1

biCi/
N

∑
i=1

Ci (7)

where the convergence point (X, Y) is the weighted average of landmark positions with respect to the
landmark features, that is the center of the landmark distribution. The moment measure based on
features of landmarks has unique convergence point (X, Y), regardless of any current position (x, y).

Thus, we argue that if there is no environmental change or no occlusion observed as the robot
moves, then we can find the same convergence point in spite of any movement or any change in angular
position. To guarantee the unique convergence point, the feature value should be positive. In our
experiments, the landmark characteristics are defined as the height of landmarks or color intensity,
which is positive. The moment measure is an index of landmark distribution, and its center of
distribution can easily be estimated as an invariant feature, which will be useful in homing navigation.
In Figure 5, the surface of the potential function is convex-shaped, and the unique convergence point
is available. Various types of feature (Ci) values are available, and the convergence point can change
depending on the features.
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Figure 5. Moment measure as a potential function where the landmark height is regarded as a feature
value: (a) potential function, (b) contour line.

2.3. Homing Vector Using the Moment Model

We introduce how to estimate the homing vector using the moment function. We assume there is
a reference compass available. Each landmark has the feature value and range information. An agent
can observe a distribution of landmarks at a given position. Assume the same landmarks are observed
at any position in the environment. We take the above global convergence point as the reference point
to estimate the homing vector.

If there are N landmarks observed at the current position P = (x, y), their relative distance
ri = ||(ai − x, bi − y)|| and the feature value Ci are measured for i = 1, ..., N, where (ai − x, bi − y) is
the estimated landmark position in the coordinate with origin at the current position. The reference
point vector R = (Xc, Yc) can be calculated by Equation (7). In a similar way, N landmarks are observed
at the home position H̄ = (Hx, Hy). Their relative distance r′i = ||(a′i − Hx, b′i − Hy)|| and the feature
value C′i are measured for i = 1, ..., N, where (a′i − Hx, b′i − Hy) is the estimated landmark position
with origin at the home position H̄. The reference point vector R′ = (Xh, Yh) can be calculated by
Equation (7) again at the home position.

Then, we find the relation for homing vector
−→
H :

−→
H = H̄ − P ' R− R′, (8)

since we assume that the same reference point is estimated irrespective of any observation point, that is
the two vectors R and R′ should end at the same reference point, starting from the different positions,
the current position and the home location (a little deviation of the reference points may be observed
by noisy sensor readings or landmark occlusions).

At an arbitrary position P = (x, y), a mobile robot has information of the relative distance and
the visual features with a laser sensor and a vision camera. Equation (7) has absolute coordinate
representation, and so, we evaluate the convergence point in the coordinate with origin at the
observation point.

Xc =
N

∑
i=1

(ai − x)Ci/
N

∑
i=1

Ci, Yc =
N

∑
i=1

(bi − y)Ci/
N

∑
i=1

Ci (9)
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where P = (x, y) is the current observation point and (ai − x, bi − y) is the relative distance of the
i-th landmark in the current view. Similarly, the convergence point can be evaluated in the home
coordinate as follows:

Xh =
N

∑
i=1

(a′i − Hx)C′i /
N

∑
i=1

C′i , Yh =
N

∑
i=1

(b′i − Hy)C′i /
N

∑
i=1

C′i (10)

where (Hx, Hy) is the home location. Then, the difference of the two reference points measured at two
observation points (the home location and the current position) is given by:

R− R′ = (Xc, Yc)− (Xh, Yh) (11)

= (
∑ (ai − x)Ci

∑ Ci
, ∑ (ai − y)Ci

∑ Ci
)− (

∑ (a′i − Hx)C′i
∑ C′i

,
∑ (a′i − Hy)C′i

∑ C′i
) (12)

' (
∑ (ai − x)Ci

∑ Ci
, ∑ (ai − y)Ci

∑ Ci
)− (

∑ (ai − Hx)Ci

∑ Ci
,

∑ (ai − Hy)Ci

∑ Ci
) (13)

= (
∑ (Hx − x)Ci

∑ Ci
,

∑ Hy − y)Ci

∑ Ci
) (14)

= (Hx − x, Hy − y) = H̄ − P (15)

where it is assumed that the same landmarks and the same visual features are observed at any position,
(ai, bi) = (a′i, b′i), Ci = C′i for i = 1, ..., N. Hence, the homing vector

−→
H can be estimated by the

above property, −→
H = (Xc, Yc)− (Xh, Yh) (16)

Each position defines its own reference map, but there exists a unique convergence point that is
the same position regardless of any coordinate. By the convexity of the moment potential function,
the minimal potential point can be reached from any position. We provided a proof that the homing
vector calculated by the above model can reach the home position from any position, if the environment
is isotropic, that is all landmarks and their features are invariantly observed at any position.

2.4. Moment Model with Multiple Features

If there are multiple features available for landmarks, then we can build a separate moment model
for each feature. The set of moment models will lead to independent reference points, but we can
assume that the distribution of each feature in the environment will be almost equal for any measured
position if the environment is isotropic, that is the majority of landmarks are commonly observed in
the environment. The homing vector for each feature can be voted together, which can help estimate
homing direction more accurately.

We can test the moment model with RGB color intensities, three visual features for each pixel.
The image colors provide three different features, red, green and blue color intensity for each pixel.
The landmark feature Ci can thus have three components. The moment measure for each feature, red,
blue and green intensity, respectively, is defined as follows:

MR =
N

∑
i=1

ri
2Ri =

N

∑
i=1

((x− ai)
2 + (y− bi)

2)Ri (17)

MG =
N

∑
i=1

ri
2Gi =

N

∑
i=1

((x− ai)
2 + (y− bi)

2)Gi (18)

MB =
N

∑
i=1

ri
2Bi =

N

∑
i=1

((x− ai)
2 + (y− bi)

2)Bi (19)
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where (ai, bi) for i = 1, ..., N are the landmark position with respect to the current position P = (x, y)
and (Ri, Bi, Gi) are the color intensity for the i-th landmark.

Then, the above three measures lead to three reference points at a given position P = (x, y), using
Equation (9).

(XR, YR) = (
∑ (ai − x)Ri

∑ Ri
, ∑ (bi − y)Ri

∑ Ri
), (20)

(XG, YG) = (
∑ (ai − x)Gi

∑ Gi
, ∑ (bi − y)Gi

∑ Gi
), (21)

(XB, YB) = (
∑ (ai − x)Bi

∑ Bi
, ∑ (bi − y)Bi

∑ Bi
), (22)

Three reference points can be determined both at the current position and at the home location.
The difference of the reference points can estimate the homing direction.

The home vector
−→
H via the three reference points using the color intensities can be derived as a

combinational form, −→
H = (

−→
HR +

−→
HG +

−→
HB)/3 (23)

where
−→
HR is calculated with red color intensity,

−→
HG with green and

−→
HB with blue, using Equation (16).

As shown above, the color intensity of pixels can be applied to the moment model with multiple
features. We can extend the moment measure into that with various visual features. The visual feature
Ci allows any characteristics of landmarks, and also, multiple features can derive multiple homing
vectors. The sum of the homing vector for each feature can be effective on noisy feature readings.
RGB color space can be converted into another space, for example HSV space, and each feature can
make separate homing vectors. Furthermore, to handle noisy sensor readings, we can allow a cut-off
threshold for a feature value, and some feature can be set to Ci = 0. This has the effect of choosing a
set of landmarks in the omnidirectional view, instead of using the whole pixels. If Ci = 0 or Ci = 1
with the range value ri = 1, the moment model becomes similar to the ALV model [28]. If Ci = 0 or
Ci = 1 with continuous range value ri > 0, the model is similar to the DELV model [33].

2.5. Comparison with Other Methods

To compare our moment model with other conventional approaches, we consider possible
combinations of the process components. The components are related to what kind of features
will be used, whether the range sensor is available or the distance can be estimated in the visual image
and what kind of coordinate alignment process will be applied.

In the moment model, we can allow variable features in Ci. In our experiments, we will mostly
use the RGB color intensity as the feature value. To compare variable visual features and no visual
feature, we can test Ci = 1 for equal color intensity. In addition, the moment model requires the
distance information to calculate the centroid. Since there is no distance information of landmarks in
the image set, we estimated the distance using the ground line in the image, which was used for the
moment model. The ground line is the boundary line between the floor and an object in the panoramic
image. After blurring the whole image, a moving mask (4 × 2 pixels) to detect the horizontal edge
was applied, and the number of pixels between the horizontal line and the detected ground line was
counted to estimate the distance; more pixels counted indicate a larger distance to the ground or the
landmark. We discriminate the methods with the ground-distance estimation in the visual image and
those with the laser sensor readings for distance.

Without a reference compass, the snapshot images at two positions are not aligned. Their image
coordinates may be different. We need to make an effort to find the rotation angle of a given coordinate
to be matched to another coordinate. One of the well-known algorithms for alignment is the visual
compass [35]. The home snapshot is taken as a reference image, and the current view is shifted a step
angle until the home image and the shifted image have the minimum difference. The shifted angle is
the right angle in the coordinate alignment.
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Another alignment algorithm called landmark rearrangement is available [51]. A set of landmarks
observed in the home coordinate should match another set of landmarks observed at the current
position, if it is assumed that the environment is isotropic. That is, two sets of landmarks at the home
location and at the current position should correspond to each other. If two coordinates (orientations)
are not aligned, then the two sets of landmarks should be compared for one-to-one correspondence
by a rotating shift of one landmark at a time until they closely match each other. The landmark
rearrangement method first draws landmark vectors from the home location to each landmark and
then adds the opposite of landmark vectors from the current position to each landmark by one-to-one
mapping. Then, the sum of the resulting vectors can be converged to a point, if there is no matching
error. If the two coordinates are not aligned and landmarks have a mismatch, the end points of the
resulting vectors have a large variance. We use this variance criterion to make the two coordinates
aligned by following the landmark rearrangement [51]. We need to apply a rotational shift of landmarks
in a given coordinate to update a series of landmarks.

For visual homing navigation, the Descent in Image Distance (DID) method [35] can be applied to
calculate homing direction, which uses snapshots near the current position and the home snapshot.
We take a variation of the DID with multiple (three) images as reference images and the snapshot at
the current location in order to determine the homing direction. Using the property that the absolute
image difference between a pair of snapshots is proportional to the distance, the snapshot at the current
position is compared with three snapshots (including the home snapshot) near the home location,
and then, the image differences can determine the homing direction by the relative ratio of the image
distance between each of the three snapshots and the current image. This DID method uses only visual
images, and the relative difference of the in-between images can guide the homing direction without
any depth sensor.

Table 1 shows various methods classified by the feature selection, the range sensor or distance
estimation and the alignment process. With the reference compass, no alignment process is required,
and six methods are available. Without a reference compass, eight methods are listed (for Ci = 1,
no visual feature is observed and only landmark rearrangement will be tested, since the visual compass
is not applicable).

Table 1. Various methods classified by the feature, the range sensor and the alignment process.

Method Feature Range Alignment Method Class

with
reference
compass

DID color intensity no sensor aligned by compass I
moment color intensity equal distance (ri = 1) aligned by compass I I
moment equal intensity (Ci = 1) ground-line estimation aligned by compass I I I
moment color intensity ground-line estimation aligned by compass IV
moment equal intensity (Ci = 1) laser sensor aligned by compass V
moment color intensity laser sensor aligned by compass VI

without
reference
compass

DID color intensity no sensor visual compass Iv
moment color intensity equal distance (ri = 1) visual compass I Iv
moment equal intensity (Ci = 1) ground-line estimation landmark rearrangement I I Ir
moment color intensity ground-line estimation visual compass IVv
moment color intensity ground-line estimation landmark rearrangement IVr
moment equal intensity (Ci = 1) laser sensor landmark rearrangement Vr
moment color intensity laser sensor visual compass VIv
moment color intensity laser sensor landmark rearrangement VIr

3. Experimental Results

We defined the moment function as a property to characterize the landmark distribution consisting
of the distance and visual features. Initially, we will see the homing performance with the model in the
simulation environments. Then, we will test the moment model for homing navigation in the indoor
environments. We also investigate the model under various conditions to see the effect of the visual
features, the landmark distance and the coordinate alignment (orientation alignment).
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3.1. Simulation Environment

Initially, we test our approach in the simulation environment consisting of a set of salient
landmarks instead of pixel-wise landmarks. In the environment, it is assumed that an agent can
observe extrusive objects discriminated from the background area at a far distance, and those objects
are regarded as landmarks. Furthermore, the agent sees all the landmarks at any position. A set of
landmarks (discrete landmarks) is given in an arena, and each landmark has its height. We assume
that the distance to each landmark is obtained with a laser sensor. In Figure 6, we can observe the
unique convergence point with a feature value of height for each environment. The home location
may be different from the convergence point (with the minimum potential), but the moment model
guides the homing direction well. In the simulation environment, a mobile agent makes no obstacle
avoidance behavior and only moves towards the target position, assuming all the object landmarks are
visible at any position. Figure 6 shows only homing vectors calculated at a grid position based on the
moment model by ignoring the obstacles.
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Figure 6. Test with two different simulation environments; the first row shows the moment potential,
and the second row shows vector maps including the homing vector on the contour plot (triangles:
landmark positions, black dot: home location).

Figure 6 shows that the moment potential has a convex shape and it has the minimal peak point.
Even if the landmarks are not uniformly distributed, the moment measure has the minimal reference
point. A pair of positions including the home location can share the same reference point using the
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relative distances to a set of landmarks and the landmark features. In the simulation environment, there
is no error to estimate the reference point, and the homing direction at each position is very accurate.

3.2. Moment Model in Real Environments with Depth Sensor Readings

We investigate the possibility of the moment model in real environments. The moment measure
allows various features for landmarks in its calculation. In our experiments, a holistic approach over
the landmark distribution is used, and the omnidirectional depth information in combination with
visual features are encoded in the moment value.

Initially, we measured the moment with RGB color intensities in the panoramic image. The holistic
view takes all the pixels as landmarks in the environment. The information about 720 pixels near the
horizontal line and the corresponding depth determines a moment potential. The contour map of the
moment potential is displayed in Figure 7. The range sensor readings and color intensities can change
depending on the observation point. Figure 7 shows that the minimal potential positions closely match
each other in the real environment, although there is a little deviation of the minimal potential position
(reference point) when it is calculated at two different observation points. The measurement error or a
few occlusions of landmarks can induce a small deviation of the ideal reference point, thus causing
homing error potentially.

To see the effect of the two components, the color intensity and the distance of landmarks,
we tested the moment model with the unit distance ri = 1 or the unit feature Ci = 1. In the first test,
only color intensity is available for landmarks under the equal distance assumption (unit distance
ri = 1). Figure 8a shows the result, and relatively large homing errors are observed. This implies that
landmarks only with color intensity have difficulty in representing the surrounding environment.
The distribution of RGB colors changes depending on the observation point, which will highly
influence the estimation of the reference point, as well as the homing direction. In contrast, another
test with continuous-ranged distance, but no color intensity shows much better homing performance;
see Figure 8b. The depth information of landmarks greatly contributes to the estimation of the
homing direction.
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Figure 7. Contour plots at two different positions in the indoor environment env0 (Figure 3).
(a) Contour of moment potential at (460,460); (b) contour of moment potential at home position
(500,500); black dots indicate the minimum potential points.

Figure 9 shows vector maps using both the distance information and color intensity when
a reference compass is available. The moment model with both features shows good homing
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performance at any position in the environment, mostly better than the moment model only with
distance. Thus, the moment model, a combination model of distance and visual features, is a more
promising approach to read the landmark distribution or characteristics in the environment.
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Figure 8. Homing performance only with color intensity or only with range data (reference compass
available): (a) only with vision, but the unit distance (ri = 1) (all landmarks have equal distances);
(b) with only range data, but the unit feature (Ci = 1) (all landmarks have the same visual feature or
same color intensity) (the red box at (500,500) indicates home, and arrows show the homing direction
at each point).

300 350 400 450 500 550 600 650 700
350

400

450

500

550

600

650

300 350 400 450 500 550 600 650 700
350

400

450

500

550

600

650

300 350 400 450 500 550 600 650 700
350

400

450

500

550

600

650

300 350 400 450 500 550 600 650 700
350

400

450

500

550

600

650

Figure 9. Homing performance with both range data and color intensity (reference compass available);
the red box indicates the home position, and the arrows show the homing direction at each point.

Instead of the RGB space, we can apply one color, for example red-colored intensity, to the moment
measure. In this case, a single reference point is available to derive the homing vector. Furthermore,
the HSV space for one pixel can produce another visual feature, and the moment with the HSV
intensity can derive different reference points; but it also produces successful homing performance.
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To discretize the continuous-ranged attribute value, a cut-off threshold can be used; if a feature value
is greater than the threshold, we set Ci = 1, otherwise Ci = 0. In this case, the moment measure
is like extracting a special feature of landmarks, by collecting all the landmarks with Ci = 1. Then,
the moment model can be converted to the ALV or the DELV model depending on the distance
information (unit distance or continuous-ranged distance). Figure 10 shows the homing performance
result depending on various patterns of the feature Ci. Even one color intensity together with depth
information provides reasonable homing performance. More features or a different representation of
the visual feature like the HSV space can estimate homing directions well. A choice of special features
satisfying a given condition can also find homing directions; see Figure 10d.
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Figure 10. Homing performance with various feature values: (a) Ci is the blue color intensity; (b) Ci

is the red color intensity; (c) Ci is the V intensity in HSV space; (d) Ci = 1 or 0 depending on the
discretized condition with HSV (if

√
H2 + S2 + V2 > 50, Ci = 1, otherwise Ci = 0); the red box at

(500,500) indicates home, and arrows show the homing direction at each point.

If there is no reference compass available, we need to align the coordinates for the snapshot
images obtained at two positions. One of popular approaches is the visual compass approach by the
pixel matching process. Another approach is the landmark rearrangement method. The methods were
applied to the above environment. The moment model needs this alignment process a priori. Figure 11
shows the results. With the visual compass, there are some large angular errors at the right side corner,
while the landmark rearrangement method shows relatively small angular errors towards home at
all points.

To compare the moment model and the DID (Descent in Image Distance) method, we demonstrated
the homing results with the DID method in Figure 12. The DID method uses only visual images to
estimate the homing direction. Despite the limitation, it can estimate the homing directions reasonably.
It seems that whether the DID method has a reference compass or not has no large impact on the
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homing performance. Overall, the DID method has larger angular errors on average than the moment
model, and this is due to lack of depth information of landmarks.
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Figure 11. Homing performance of the moment model without a reference compass; both range data
and color intensity are used, and the coordinate alignment process is applied: (a) visual compass;
(b) landmark rearrangement method.
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Figure 12. Homing performance with the DID approach (a) with a reference compass; (b) visual
compass without a reference compass; the red box indicates the home position, and arrows show the
homing direction at each point.

3.3. Moment Model in a Real Environment with Ground-Line Distance

We applied our moment model to another environment, one of Vardy’s dataset called
‘a1original’ [36,53], which includes many panoramic snapshots, but without a distance map.
The omnidirectional images were collected for the indoor environment; the arena size is 2.7 m × 4.3 m,
and there are 170 points with 10-cm regular intervals for snapshots.

Figure 13 shows the homing performance results with a reference compass. Similar to the
previous results with our lab environment env0 shown in Figure 3, the moment model only with color
intensity shows the worst performance. The model with ground-line distance shows very successful
performance. The model with both distance and color intensity together shows a little more improved
performance. Some positions have angular deviation in the direction to the goal position, which is
related to the error in distance estimation. Without the laser sensor, only the visual image can determine
the homing direction effectively. It can be inferred that the distance parameter in the moment model
greatly influences the homing performance.
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Figure 13. Homing performance for Vardy’s image environment with a reference compass: (a) moment
model only with color intensity; (b) moment model only with estimated distance; (c) moment model
with estimated distance and color intensity; distance is estimated using the ground line in the image
without the laser sensor (the arrow indicates the homing direction).

Figure 14 shows the performance depending on the coordinate alignment methods. Even without
a reference compass, similar patterns of homing performance were observed. The moment model
only with color intensity is insufficient to guide homing, but the model with the ground-line distance
shows much better homing results. Furthermore, the landmark rearrangement method seems better
than the visual compass method; see Figure 14c,d. Even when we change the home locations, the
moment model with landmark rearrangement robustly works well for homing, as shown in Figure 15.
With only visual snapshots, we are successful at estimating the distance to landmarks, as well as
adjusting the coordinate alignment and deciding the homing direction ultimately.
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Figure 14. Homing performance for Vardy’s image environment without a reference compass: (a) visual
compass and moment model only with color intensity; (b) visual compass and moment model only
with estimated distance; (c) visual compass and moment model with both estimated distance and
color intensity; (d) landmark rearrangement method and moment model with both estimated distance
and color intensity; distance is estimated using the ground line in the image without a laser sensor
(arrow indicates the homing direction).
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Figure 15. Homing performance for Vardy’s image set without a reference compass; the landmark
rearrangement method to align the coordinate and the moment model with estimated distance and
color intensity are used: (a) home location (0,0); (b) home location (7,2); (c) home location (5,16).

3.4. Comparison of Homing Performances with Various Methods

We measured angular errors for homing directions with various methods listed in Table 1.
We assume that the desired homing direction is the direct path from the current position to the
home location. In the moment model, we encoded the depth information of landmarks and the
visual features into a moment potential. We also tested the coordinate (orientation) alignment for the
environment without a reference compass. The snapshot image at the home location becomes warped
at the current position, and it influences the landmark distribution and the moment characteristics.

The methods I and I I use only visual features to decide the homing direction, and they have large
angular errors. The moment model without depth information has shortcomings, compared to the DID
method (the method I), as we see the performance for the methods I and I I. However, in the moment
model, the depth information of landmarks by a laser sensor or the estimation of the ground-line
distance in the visual image significantly improves the homing performance; see the methods I I I–VI.
The same result can be found in both the indoor environment env0 and Vardy’s dataset. Furthermore,
if there is a real measurement of the distances to landmarks, it can further improve the performance as
shown in Figure 16a.

In the moment model, the orientation alignment is required for the environment without a
reference compass. We found that the landmark rearrangement is quite effective in aligning the
coordinates (orientations). In many cases, the average performance with the landmark rearrangement
is better than that of the visual compass, although not statistically significant. The methods (IV and
VI) with a combination of two components, landmark distance and visual feature, have lower error
performance, when compared to the methods with only distance (I I I and V). The DID method is
based on the visual images and their image difference, and the above experiments imply that visual
information alone seems insufficient to guide homing. The DID is significantly worse in homing
performance than the moment model with the visual feature and the depth information.

Tables 2 and 3 show angular errors for homing direction and 95% confidence intervals (assuming a
t-distribution). Mostly, the errors are within 45 degrees. The method I I with the visual feature
alone shows a relatively large portion of angular errors greater than 45 degrees in the two different
environments. The results are consistent with the performance shown in Figure 16. Especially, the DID
method shows somewhat poor performance in Vardy’s image set without a reference compass.
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Figure 16. Homing performance with a reference compass and without a reference compass; the x-axis
indicates testing methods described in Table 1: (a) angular errors in the indoor environment env0;
(b) angular errors in Vardy’s image set; error bars indicate 95% confidence intervals by assuming
a t-distribution.

Table 2. Angular errors with various methods for the indoor environment env0; testing methods are
described in Table 1 (N is the number of testing points, µ the average of angular errors, σ the 95%
confidence interval (assuming a t-distribution)).

Method error µ(±σ) deg. N 0 ≤ εθ < 45◦ 45 ≤ εθ < 90◦ 90 ≤ εθ < 180◦

with
reference
compass

I 21 (±4.2) 34 97.1% 2.9% 0%
I I 57 (±20.1) 34 67.6% 5.9% 26.5%
I I I 19.4 (±4.0) 34 97.1% 2.9% 0%
IV 13.4 (±3.1) 34 100% 0% 0%
V 6.4 (±1.4) 34 100% 0% 0%
VI 5.7 (±1.4) 34 100% 0% 0%

without
reference
compass

Iv 23 (±5.2) 34 94.1% 5.9% 0%
I Iv 59 (±19.7) 34 58.8% 14.7% 26.5%
I I Ir 19.1 (±4.1) 34 97.1% 2.9% 0%
IVv 18.4 (±5.3) 34 94.1% 5.9% 0%
IVr 19.1 (±4.1) 34 97.1% 2.9% 0%
Vr 7 (±1.7) 34 100% 0% 0%

VIv 14 (±8.8) 34 94.1% 0% 5.9%
VIr 7 (±2.1) 34 100% 0% 0%

Table 3. Angular errors with various methods for Vardy’s image set; testing methods are described
in Table 1 (N is the number of testing points, µ the average of angular errors and σ the 95%
confidence interval).

Method error µ(±σ) deg. N 0 ≤ εθ < 45◦ 45 ≤ εθ < 90◦ 90 ≤ εθ < 180◦

with
reference
compass

I 23.31 (±4.8) 169 97.1% 2.9% 0%
I I 33.28 (±9.8) 169 72.19% 24.26% 3.55%
I I I 14.31 (±2.9) 169 100% 0% 0%
IV 13.8 (±3.1) 169 100% 0% 0%

without
reference
compass

Iv 33.30 (±12.1) 169 79.88% 11.83% 8.29%
I Iv 35.15 (±11.2) 169 69.82% 23.08% 7.1%
I I Ir 14.53 (±2.9) 169 100% 0% 0%
IVv 19.56 (±7.4) 169 96.45% 0% 3.55%
IVr 14.53 (±2.9) 169 100% 0% 0%
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4. Discussion

In the current approach, we used a holistic approach to take all the pixels as landmarks. Each pixel
produces a landmark vector with its own angular position, instead of an object in the real environment.
If an object is close to the observer, it creates many vectors, while a small number of vectors is assigned
for an object far away from the observer. Summing these landmark vectors may be different from an
object representation in the real environment. It is possible that the image segmentation or clustering
process can help with identifying objects from the image. Then, the corresponding object features
and the distances of objects in the environment can be encoded with the moment model. In other
words, a sophisticated feature extraction algorithm can be combined with the suggested moment
model. We need further work to check if this feature extraction approach will be better than the holistic
approach. A basic assumption in this moment model is that invariant features can be observed at any
position, and a collection of the features can represent the environment well, while its centroid can be
localized as a reference point.

In our experiments, the RGB color intensity in the image view can be changed depending on the
observation point. The visual images can be affected by the illumination, the angle and position of the
light source, as well as glint on the floor. If these changes are intense, then the mobile robot cannot
estimate the homing direction accurately. Thus, the robust features available or a good measurement
apparatus will be helpful for homing accuracy. We believe that the range sensor has high accuracy
of measuring the distance, but the visual image has relatively noisy sensor readings for pixel-wise
landmarks. An ensemble of the two measurements seems to compensate one for the other. Possibly
alternative features would be helpful to improve the homing performance. An invariant feature
such as landmark height rather than the color intensity can be supportive to read the environmental
information better, which can play the role of a milestone to guide homing.

The suggested moment function models a distribution of landmarks with their landmark
characteristics. If we take a model with M = ∑ Ci/ri, the potential has a high peak at the landmark
position, which can be used as a collision avoidance model or landmark search model. The potential
value will rapidly decay to zero, if the measuring position becomes far from the landmark. If a mobile
robot senses a potential value greater than a threshold, then it can take the behavior of avoiding the
landmark or moving towards the landmark. This is another possible application of the moment model.

In our local homing navigation, we assume that landmarks are commonly observed at any
position. The suggested moment approach is based on the snapshot model, which works only in the
isotropic environment, and an agent can search for the target position as the home position, starting
from the current position. Our local navigation approach can be extended to a wide range of navigation
in complex cluttered environments with many occlusions of landmarks. Multiple reference images
as milestones can guide the right direction to the goal position [37], even if the goal position is far
way. That is, local homing navigation can be applied to each waypoint. A sequence of waypoint
searches may lead to the final goal position. For future work, we will test this approach in cluttered
environments to require complex homing paths.

5. Conclusions

In this paper, we suggest a new navigation method based on the moment model to characterize the
landmark distribution and features. The moment model is inspired by the moment of inertia in physics,
and it sees how the landmarks and their features are distributed in a given environment. Here, the
landmark features and the relative distance are encoded in the moment function. The moment model
allows multiple features, which can help estimate the homing direction more robustly. We proved that
the landmark distribution has a unique minimum peak of moment potential, and it can be a reference
point as an invariant feature at any position, which corresponds to the center of mass in physics. In the
moment model, the homing vector is calculated based on this reference point.

In the experiments, we used the RGB color intensity in visual images as the features in the
moment model. The distance was measured by a laser sensor, but without the depth sensor, the
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ground-line distance estimated in the panoramic image was tested as alternative distance information.
The two components, the depth information and the features, highly contribute to successful homing
performance, which is distinguished from other approaches’ results based on vision images. Especially,
the depth information cannot be neglected for good homing performance.

Our approach is a holistic approach to use all the pixels as landmarks. We assumed that the
environment is isotropic, that is the majority of landmarks is commonly observed in view at any
position in the arena. If the mobile robot moves far away from the home location, the environment
landscape will change greatly, and many occlusions occur, which may violate the isotropic assumption.
In that case, the homing performance may degrade to a great extent, since the centroid of the moment
value greatly migrates to another point. Thus, the moment model is appropriate for local homing
navigation. We need further study to handle the problem or to cover a long-range path problem.

In the moment model, we simply applied the RGB color intensity as the visual feature. However,
more sophisticated features, such as invariant features, can be developed in the image, which will
further improve the homing performance. For future work, we will find what kind of visual features or
other features will be useful in the moment model. Our model can be extended to various characteristics
that are not easily changeable by the change of measuring positions. If the invariant property of the
feature is preserved, the feature can be encoded in the moment model. Thus, various forms of the
moment model can be produced.
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