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Abstract: The performance of an inertial navigation system (INS) operated on a moving base greatly
depends on the accuracy of rapid transfer alignment (RTA). However, in practice, the coexistence of
large initial attitude errors and uncertain observation noise statistics poses a great challenge for the
estimation accuracy of misalignment angles. This study aims to develop a novel robust nonlinear
filter, namely the stochastic integration H∞ filter (SIH∞F) for improving both the accuracy and
robustness of RTA. In this new nonlinear H∞ filter, the stochastic spherical-radial integration rule is
incorporated with the framework of the derivative-free H∞ filter for the first time, and the resulting
SIH∞F simultaneously attenuates the negative effect in estimations caused by significant nonlinearity
and large uncertainty. Comparisons between the SIH∞F and previously well-known methodologies
are carried out by means of numerical simulation and a van test. The results demonstrate that the
newly-proposed method outperforms the cubature H∞ filter. Moreover, the SIH∞F inherits the benefit
of the traditional stochastic integration filter, but with more robustness in the presence of uncertainty.

Keywords: inertial navigation system; rapid transfer alignment; stochastic integration H∞ filter

1. Introduction

The inertial navigation system (INS) is an entirely autonomous navigation system, in the sense
that it precisely provides the navigation parameters for the carrier without the aid of a signal from
an external device. As is well known, the performance of INS operated on a moving base is heavily
influenced by the accuracy of transfer alignment, which is an important research interest of modern
navigation techniques. In particular, the alignment issue between a main INS (MINS) and a slave
INS (SINS) has drawn extensive attention, partially due to its widespread application in diverse
carriers. For the MINS/SINS system, the unknown parameters of SINS are commonly initialized by
MINS at the very beginning. The inevitable initial misalignments will lead to poor accuracy of the
follow-on navigation operation, and thus, the alignment stage of SINS is necessitated. In [1], the rapid
transfer alignment (RTA) on the basis of the “attitude plus velocity” matching scheme was originally
proposed to estimate the attitude errors between two INSs. Then, the misalignment angles of SINS
with respect to the local navigation frame can be indirectly determined. Compared with traditional
transfer alignment, the RTA has superiorities in both model observability and convergence rate, and it
has been widely applied for both military and civilian purpose [1–3].

The central concerns of RTA are the estimation accuracy and convergence rate, both of which
are intimately related to the performance of the filtering algorithm. For the RTA with the linearized
model and Gaussian noise, the capacity of the Kalman filter (KF) that provides optimal estimation
has been authoritatively verified through numerical simulation and field tests [1]. However, the INS
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sometimes has to be initiated in a complicated environment, and higher demanding standards are put
forward to the filtering algorithm. First, for some quick response missions, the initial misalignment
angles of INS may be notably large, and significant nonlinearity will be brought into the model
description of RTA [2]. That is, the nonlinear character of the filtering algorithm should be deliberately
considered. In addition, the precision of observations severely influences the performance of RTA.
Nevertheless, in practice, the phenomenon of uncertain observations frequently occurs due to the
existence of multiple disturbances, including outliers, the time delay of data transmission, the coupling
effect between the lever arm and deformation, etc. [4,5]. The suppression of negative effects induced
by these disturbances is of crucial importance to the improvement of the accuracy and stability of
RTA. For this purpose, accurate modeling methods have been developed as intuitive solutions for
the compensation of these disturbances [6–8]. Yet, the complexity of the model will be severely
increased, and the un-modeled errors will destroy the veracity of model. Another way is to take these
disturbances as uncertain interfering input of the model, and against the negative effect by means of
the robust filtering algorithm. On the premise of the bounded energy of noise, one effective method
is the H∞ filter, which intends to minimize the downside on estimation results in the worst case of
the un-modeled disturbance and uncertainty. Contrary to KF, the H∞ filter requires neither statistical
noise properties, nor the exact system model and provides robust and accurate estimations, while the
uncertain parameters exist in the model description [9].

Many solutions, as exemplified by the Krein space approach and the game theory approach,
have been developed for the linear H∞ problem [9–12]. Afterward, these solutions are naturally
adopted for nonlinear systems with the utilization of the first-order linearization method; to be
more precise, the extended H∞ filter (EH∞F) [13,14]. However, the EH∞F inherits the drawbacks of
the extended Kalman filter, i.e., the cumbersome computation of Jacobians and the deterioration of
estimation performance in the presence of significant nonlinearity. Recent decades have witnessed the
development of sample-point filters on the basis of deterministic sampling quadrature methods
(as exemplified by the unscented transform, the cubature integration rule, the Gauss–Hermite
quadrature rule, etc.), which either approximate the probability distribution function representing
state estimates by a set of sample-points or approximate the nonlinear functions using polynomial
expansions [15–18]. The emergence of these quadrature methods facilitates the arising of the
derivative-free H∞ filter (DFH∞F), such as the unscented H∞ filter, cubature H∞ filter (CH∞F) and
sparse-grid quadrature H∞ filter [19–21]. Compared with EH∞F, the DFH∞F releases the restriction
of computing Jacobians and achieves high accuracy, as the posterior estimations are accurately
approximated to certain order. However, the approximations given by deterministic sampling
quadrature methods cannot eliminate systematic errors that exist in the solution of DFH∞F [15].
That is, the estimation accuracy will be degraded while significant nonlinearity exists in the model
description. Moreover, the boundedness and convergence of estimation error cannot be guaranteed
due to the local validity of these quadrature methods. To overcome these disadvantages, as of late,
a novel filter, named the stochastic integration filter (SIF), was proposed to provide asymptotically exact
estimation for nonlinear systems [22–24]. The core of SIF is the stochastic spherical-radial integration
rule (SSRIR), which approximates the probability distribution function of posterior estimation by a set
of randomly-chosen sample-points [25]. Contrary to the deterministic sampling quadrature methods,
the SSRIR can theoretically eliminate the systematic error with increasing iterations. Therefore, it can
be reasonably concluded that the incorporation of SSRIR with the framework of DFH∞F will result
in a filter with high accuracy and strong robustness, but there were few published literature works
focused on this study. This paper is devoted to developing a stochastic integration H∞ filter (SIH∞F) to
address the RTA issue with the coexistence of significant nonlinearity and uncertain observation noise
statistics. For the first time, the SSRIR is combined with the framework of DFH∞F, and the resulting
SIH∞F achieves estimation with both accuracy and robustness. Numerical simulation and the van test
are separately executed for the validation of the proposed method. The results demonstrate that the
SIH∞F has better performance than the previous, well-known CH∞F and SIF.
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The rest of this paper is organized as follows: The nonlinear model of RTA is briefly introduced
in Section 2. Section 3 firstly represents the preliminaries of the H∞ technique and the EH∞F.
Then, the derivation of SIH∞F is described in detail. Numerical simulation is executed in Section 4,
in order to demonstrate the superiorities of SIH∞F compared with the CH∞F and SIF. In Section 5,
the validity of the proposed method is further verified through a van test. The conclusions are given
in Section 6.

2. System Modeling of Rapid Transfer Alignment

The aim of system modeling is to describe the error propagation principle of RTA. In this
section, the process model and observation model of RTA with the nonlinear characteristic are briefly
introduced. The system modeling lays the foundation for the development of the filtering algorithm in
the following section.

The definitions of coordinate systems used in system modeling are shown in Figure 1,
where i-frame denotes the inertial frame, e-frame denotes the Earth-centered Earth-fixed frame,
n-frame denotes the local navigation frame, m-frame denotes the body frame of MINS, sr-frame denotes
the body frame of SINS and sc-frame denotes the calculated body frame of SINS. Note that all of these
coordinated systems are right handed and Cartesian; the detailed specifications of these coordinate
systems can be found in [2].
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Figure 1. Definitions of the coordinate systems.

In this paper, the two INSs are assumed to be directly installed on the carrier, and the sketch map
of misalignment angles between the MINS and SINS is represented in Figure 2, where ψm represents
the misalignment angles between the m-frame and the sc-frame and ψa represents the misalignment
angles between the m-frame and the sr-frame. The eventual purpose of RTA is to determine the
attitude transformation matrix from sr-frame to n-frame. Since the errors of MINS have been well
compensated by the external aid of the device, the attitude parameters given by MINS can be viewed
as reliable. In other words, the goal of RTA can be indirectly achieved by estimating the attitude errors
between the two INSs, i.e., ψa. However, due to the inherent accumulative errors of sensors, only the
inertial data sensed by SINS projected in the sc-frame imply the misalignment information. Therefore,
the description of error propagation is the prerequisite of RTA.
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Figure 2. Sketch map of misalignment angles between the main INS (MINS) and slave INS (SINS).

Generally, the process model of RTA includes the attitude error equation, velocity error equation,
dynamic models of inertial sensors and actual physical misalignment angles. The attitude error
equation mainly describes the function relationship between ψm and ψa. Assuming that large
misalignment angles exist in all three axes, the attitude error equation of RTA is given by [2]:

ψ̇m = Ξ
[(

I3×3 − Csc
m Cm

sr

)
ωsc

nsc + Csc
m Cm

sr εsr
]
+ wm (1)

where Ξ is defined as:

Ξ =

 cos ψmy 0 sin ψmy

sin ψmy tan ψmx 1 − cos ψmy tan ψmx

− sin ψmy/ cos ψmx 0 cos ψmy/ cos ψmx

 (2)

and ψm,i, (i = x, y, z) denotes the measurable misalignment angle in the corresponding axis; I3×3 is
the unit matrix; Csc

m denotes the attitude transformation matrix from the m-frame to the sc-frame; Cm
sr

represents the attitude transformation matrix from the sr-frame to the m-frame; ωsc
nsc is the angular

velocity of the sc-frame relative to the n-frame projected in the sc-frame; εsr is the constant drift of the
gyroscope with dynamic model ε̇sr = 03×1; wm is the noise term of the attitude error equation.

On the basis of the velocity solution given by the strapdown algorithm, the velocity error equation
can be described as [2]:

δV̇ n = Cn
sc

(
I3×3 − Csc

m Cm
sr

)
f sr
isr
−
(
2ωn×

ie + ωn×
en
)

δV n + Cn
sr∇

sr + wv (3)

where δVn is the velocity error vector projected in the n-frame; ωn
ie is the angular velocity of the e-frame

relative to the i-frame projected in the n-frame; f sr
isr

is the specific force sensed by SINS projected in the
sr-frame; ωn

en is the angular velocity of the n-frame relative to the e-frame projected in the n-frame; Cn
m

is the attitude transformation matrix from the m-frame to the n-frame, and it is commonly provided by
MINS in real time; ∇sr is the constant bias of the accelerometer with dynamic model ∇̇sr = 03×1; wv

is the noise term of the velocity error equation. Note, the derivation of Equation (3) assumes that the
acceleration induced by the lever arm effect has been well compensated.

Due to the impact of vibration and flexure, the modeling of ψa makes a compromise between the
complexity and accuracy, that is [1]:

ψ̇a = ηa (4)

where ηa is the noise term with covariance Qa.
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Choosing the state vector as x =
[
ψm δV n εsr ∇sr ψa

]T
, the process model of RTA can be

represented as follows:

ψ̇m = Ξ
[(

I3×3 − Csc
m Cm

sr

)
ωsc

nsc + Csc
m Cm

sr εsr
]
+ wm

δV̇ n = Cn
sc

(
I3×3 − Csc

m Cm
sr

)
f sr
isr
−
(
2ωn×

ie + ωn×
en
)

δV n + Cn
sr∇

sr + wv

ε̇sr = 03×1

∇̇sr = 03×1

ψ̇a = ηa

(5)

The modeling of observation relies on the matching scheme of RTA. In this paper, the measurable
misalignment angles and velocity error are chosen as observations. That is:

z =

[
Θ(Csc

n Cn
m)

V n
se − V n

me

]
(6)

where Θ(·) represents the function that calculates the Euler angle from the attitude transformation
matrix; V n

se and V n
me denote the velocity of SINS and MINS projected in their own body frame,

respectively.
The observation model is given by:

zk = Hkxk + vk (7)

where vk is the observation noise. The coefficient matrix Hk is described as:

Hk =

[
I3×3 03×3 03×3 03×3 03×3

03×3 I3×3 03×3 03×3 03×3

]
(8)

The system modeling of RTA implies that many factors could affect the precision of observations
provided by MINS; for instance, the unreliable signal from the external aid of the device, the random
time-delay effect, the coupling effect of the lever arm and deformation, etc. These unpredictable
disturbances may induce uncertain statistics of observation noise, which motivates the investigation of
the nonlinear filtering method to improve both the accuracy and robustness of RTA.

3. Stochastic Integration H∞ Filter

In this section, the derivations of SIH∞F are described in detail. First, the preliminaries of the
H∞ technique and EH∞F are briefly represented. Then, the general form of DFH∞F is given as the
prerequisite of derivations. At last, the construction of SSRIR is introduced to evaluate the Gaussian
weighted integrals in DFH∞F, and SIH∞F can be consequently achieved by combining the SSRIR with
the framework of DFH∞F.

3.1. Preliminaries of the H∞ Technique

A representative nonlinear discrete-time system can be represented as follows:
xk = f (xk−1) + ωk−1

zk = h(xk) + vk

yk = Lkxk

(9)

where xk ∈ Rn is the state vector; zk ∈ Rm is the observation vector; yk is the signal to be estimated;
f (·) and h(·) are the process model and the observation model, respectively; Lk is a known matrix,
which will be replaced by the identity matrix for estimating the whole state vector in this study;
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the process noise ωk−1 and observation noise vk are assumed to be the signals with bounded energy,
but unknown statistics, i.e., ∑∞

k=0 ωT
k ωk < ∞, ∑∞

k=0 vT
k vk < ∞.

Let ek = ‖ŷk− yk‖ be the estimation error; the essential purpose of the H∞ technique is to estimate
yk to minimize ek under the worst case of initial estimation error, process noise and observation
noise. For this purpose, the game theory approach gives a celebrated cost function, so as to map the
disturbances and uncertainties to the estimation error. That is:

J =

k
∑

j=0

∥∥∥ŷj − xj

∥∥∥2

∥∥∥x0 − x̂0

∥∥∥2

P−1
0

+
k−1
∑

j=0

∥∥∥ωj

∥∥∥2

Q−1
ω,j

+
k
∑

j=0

∥∥∥vj

∥∥∥2

R−1
v,j

(10)

where P0 denotes the initial covariance of the state vector and Qω,j and Rv,j are the covariance of

process noise and observation noise, respectively. The norm notation stands for
∥∥∥a
∥∥∥2

B
= aT Ba.

The H∞ filter sequentially estimates ŷj to satisfy the following inequality:

sup J < γ2 (11)

where notation ‘sup’ stands for the supremum; γ represents the error attenuation parameter that is
empirically set to a constant value or iteratively computed in real time [19,21].

3.2. Extended H∞ Filter and Derivative-Free H∞ Filter

As an intuitive extension of the linear H∞ solution, the EH∞F has been well studied to achieve
suboptimal solutions for a nonlinear system with uncertainties [13,14]. The implementation of EH∞F
is represented as follows:

x̂k|k−1 = f (x̂k−1|k−1) (12)

Pk|k−1 = Fk−1Pk−1|k−1FT
k−1 + Qω,k−1 (13)

Kk|k = Pk|k−1HT
k (HkPk|k−1HT

k + Rv,k)
−1 (14)

x̂k|k = x̂k|k−1 + Kk|k

[
zk − h(x̂k|k−1)

]
(15)

Re,k =

[
Rv,k + HkPk|k−1HT

k HkPk|k−1
Pk|k−1HT

k Pk|k−1 − γ2 I

]
(16)

Pk|k = Pk|k−1 −
[
Pk|k−1HT

k Pk|k−1

]
R−1

e,k

[
HkPk|k−1

Pk|k−1

]
(17)

where x̂k|k−1 is the predicted mean with covariance Pk|k−1; x̂k|k is the filtered mean with covariance Pk|k;
Fk−1 and Hk represent the Jacobian matrices of f (·) evaluated at the filtered mean x̂k−1|k−1 and h(·)
evaluated at the predictive mean x̂k|k−1, respectively; Kk|k is the gain matrix; Re,k is the auxiliary matrix.

Though the first-order Taylor expansion is utilized in EH∞F to approximate the nonlinear model,
the rough linearization method may degrade the estimation accuracy or even induce divergence in
the presence of significant nonlinearity. Moreover, the computation of Jacobians is also an inevitable
difficulty for the complicated model description. To overcome the limitations of EH∞F, multiple
DFH∞Fs have been proposed on the basis of deterministic sampling quadrature methods. Without
loss of generality, the general form of DFH∞F is represented as follows.

Analogous to the nonlinear filter with the Gaussian assumption, the prediction step of DFH∞F is
given by:

x̂k|k−1 =
∫

f (xk−1)N{xk−1; x̂k−1|k−1, Pk−1|k−1} dxk−1 (18)
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Pk|k−1 =
∫ [

f (xk−1)− x̂k|k−1

] [
f (xk−1)− x̂k|k−1

]T
N{xk−1; x̂k−1|k−1, Pk−1|k−1} dxk−1 + Qω,k−1 (19)

where N{xk−1; x̂k−1|k−1, Pk−1|k−1} denotes the variable xk−1 subject to the Gaussian probability
distribution function with mean x̂k−1|k−1 and covariance Pk−1|k−1, and this notation is available
for other equations.

Under the assumption that the integrated state vector needs to be estimated, the filtering step of
DFH∞F can be described as:

x̂k|k = x̂k|k−1 + Kk|k(zk − ẑk|k−1) (20)

Pk|k = Pk|k−1 −
[
Pxz,k|k−1 Pk|k−1

]
R−1

e,k

[
Pxz,k|k−1 Pk|k−1

]T
(21)

where Kk|k = Pxz,k|k−1(Pzz,k|k−1 + Rv,k)
−1 is the gain matrix; ẑk|k−1 is the predicted observation with

covariance Pzz,k|k−1; Pxz,k|k−1 is the cross-covariance between the state vector and observation vector.
Note that these three statistics of observation involve the computation of Gaussian weighted integrals,
that is:

ẑk|k−1 =
∫

h(xk)N{xk; x̂k|k−1, Pk|k−1} dxk (22)

Pzz,k|k−1 =
∫ [

h(xk)− ẑk|k−1

] [
h(xk)− ẑk|k−1

]T
N{xk; x̂k|k−1, Pk|k−1} dxk + Rv,k (23)

Pxz,k|k−1 =
∫ (

xk − x̂k|k−1

) [
h(xk)− ẑk|k−1

]T
N{xk; x̂k|k−1, Pk|k−1} dxk (24)

The auxiliary matrix Re,k is given by:

Re,k =

[
Rv,k + Pzz,k|k−1 PT

xz,k|k−1
Pxz,k|k−1 Pk|k−1 − γ2 I

]
(25)

In contrast to the EH∞F, the prediction step of DFH∞F is explicitly replaced by the general
Gaussian approximations, i.e., Equations (18) and (19). Furthermore, on the basis of the statistical linear
error propagation method, the statistics related to Jacobian matrix Hk in Equations (13), (16) and (17)
are substituted by the following approximations [26]:

Pzz,k|k−1 = E
[
(zk − ẑk|k−1)(zk − ẑk|k−1)

T
]
≈ HkPk|k−1HT

k (k = 1, 2, . . . ) (26)

Pxz,k|k−1 = E
[
(xk − x̂k|k−1)(zk − ẑk|k−1)

T
]
≈ Pk|k−1HT

k (k = 1, 2, . . . ) (27)

3.3. Stochastic Spherical-Radial Integration Rule

It is worth noting that the general form of DFH∞F requires the evaluation of Gaussian weighted
integrals with the form I(g) =

∫
g(x)N{x; x̂, P} dx. In general, these nonlinear integrals cannot be

analytically solved, and the numerical approximation method is required. Contrary to the previous
deterministic sampling methods, in this paper, the SSRIR is employed for the evaluation of I(g). Note
that two transformations must be implemented to convert the nonlinear integral expression to the
standard form.

The first transformation relates to the integration variable, i.e., x = x̂ + Sxu, where Sx is the lower
triangular matrix obtained from the Cholesky decomposition of covariance P. That is:

I(g) =
∫

g(x)N{x; x̂, P} dx

=
∫

g(x̂ + Sxu)N{u; 0nx×1, Inx} du
(28)

where nx is the dimension of x.
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The second transformation concerns the conversion of the integral variable to the radial-spherical
coordinate system. Let u = rû, where ûT û = 1. The domain of definition for radius is r ∈ [0, ∞).
The integral can be rewritten as:

I(g) =
1
2

∫ ∞

−∞

∫
‖û‖2=1

g(x̂ + Sxu)|r|nx−1N{r; 0, 1} dûdr (29)

In this stage, I(g) can be regarded as the combination of radial integration with the form
Ir (gr) =

∫ ∞
−∞ gr (r) |r|nx−1N{r; 0, 1}dr and spherical integration for the unit nx-sphere with the form

Is (gs) =
∫
‖û‖2=1 gs (û) dû. The stochastic radial integration rule (SRIR) and stochastic spherical

integration rule (SSIR) can be obtained from the following two Lemmas [25]:

Lemma 1. Assuming a set of weights {ωr,j}mr
j=0 are computed by the following equation:

ωr,j =
∫ ∞

−∞
|r|nx−1N{r; 0, 1}

mr

∏
t=0,t 6=j

r2 − ρ2
t

ρ2
j − ρ2

t
dr, j = 0, 1, . . . , mr (30)

where ρ0 = 0, and the set of sample points {ρj}mr
j=1 are extracted from the joint PDF p(ρ1, . . . , ρmr ) ∝

∏Nr
j=1 ρnx+1

j N{ρj; 0, 1}∏
j−1
t=1(ρj − ρt)2(ρj + ρt). Then, an unbiased dr = 2mr + 1 degree SRIR can be

obtained for Ir (gr), that is:

Īr (gr) ≈
1
2

mr

∑
j=0

ωr,j
[
gr
(
ρj
)
+ gr

(
−ρj

)]
(31)

Lemma 2. Let Īs (gs) = ∑ms
i=0 ωs,igs (ûi) be a deterministic ds-degree spherical integration rule for Is (gs),

and Q is a uniformly chosen orthogonal matrix. Then, ĪQs (gs) = ∑ms
i=0 ωs,igs (Qûi) is an unbiased ds-degree

SSIR for Is (gs).

Note, the selection of weights {ωs,i}ms
i=0 and sample points {ûi}ms

i=0 is not unique;
various deterministic spherical integration rules are given in [25].

In this paper, a three-degree SRIR and three-degree SSIR are adopted. Especially, the three-degree
spherical integration rule in Lemma 2 is given by:

Ī3,s (gs) =
‖Unx‖

2nx

nx

∑
i=1

(gs(−ei) + gs(ei)) (32)

where Unx is the surface of the unit nx-sphere; ‖Unx‖ = 2πnx/2/Γ(nx/2) is the surface content of Unx ;
ei denotes the unit vector with “1” in the i-th element and “0” in other positions.

The SSRIR can be obtained by constructing a product of a dr-degree SRIR and a ds-degree SSIR,
that is:

Ī(dr ,ds) (g) =
1
4

mr

∑
j=0

ωr,j

ms

∑
i=0

ωs,i
[
g
(

x̂± ρjSxQûi
)
+ ḡ

(
x̂± ρjSxQûi

)]
=

NSR

∑
k=1

ωSR
k g (χk)

(33)

where NSR denotes the total number of the sample points; χk = x̂± ρjSxQûi is the sample point with
weight ωSR

k = ωs,iωr,j/4 .
The approximation of I (g) based on SSRIR with N iterations can be obtained as:

I(dr ,ds)
N (g) =

1
N ∑N

l=1 Ī(dr ,ds)
l (g) (34)



where Ī(dr ,ds)
l (g) denotes the l-th Ī(dr ,ds) (g).

In theory, the statistics of function g (x), including the mean, covariance and cross-covariance,
should be separately approximated by SSRIR. However, in consideration of the computational cost,
these statistics are commonly approximated in a single run of SSRIR [22]. For completeness, the detailed
implementation of SSRIR with constant iterations is represented as follows:

1. Initialize the number of iterations l = 1. Define the maximum number of iterations as Nits. Set
the initial mean value µg = 0ng×1, initial covariance Pgg = 0ng×ng and initial cross-covariance
Pxg = 0ng×ng ; where ng is the dimension of g(x).

2. While 1 ≤ l ≤ Nits, use Equation (33) to generate the SSRIR-based sample points χ = {χl(k)}
NSR

k=1

and corresponding weights ωSR = {ωSR
l(k)}

NSR

k=1 at the l-th iteration.

3. Calculate the statistics of g(x) at the current iteration:

µg =
1
N

N

∑
l=1

NSR

∑
k=1

ωSR
l(k)g

(
χl(k)

)
(35)

Pgg =
1
N

N

∑
l=1

NSR

∑
k=1

ωSR
l(k)g

(
χl(k)

)
g
(

χl(k)

)T
− µg

(
µg
)T (36)

Pxg =
1
N

N

∑
l=1

NSR

∑
k=1

ωSR
l(k)χl(k)g

(
χl(k)

)T
− µx

(
µg
)T (37)

4. Set l = l + 1, and shift to Step 2.

For simplicity, the implementation of SSRIR can be compactly denoted as:[
µg, Pgg, Pxg

]
= SSRIR [g (·) , x̂, P] (38)

If the process model in (9) is nonlinear, Equations (18) and (19) can be substituted with:[
x̂k|k−1,

(
Pk|k−1 −Qω,k−1

)]
= SSRIR

[
f (·) , x̂k−1|k−1, Pk−1|k−1

]
(39)

Analogously, if the observation model in (9) is nonlinear, Equations (22)–(24) can be substituted with:[
ẑk|k−1,

(
Pzz,k|k−1 − Rv,k

)
, Pxz,k|k−1

]
= SSRIR

[
h (·) , x̂k|k−1, Pk|k−1

]
(40)

Eventually, Equations (20), (21), (25), (39) and (40) are composed of the integrated SIH∞F method.
The flowchart of the SIH∞F algorithm is shown in Figure 3.
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Initialize k = 1, x̂0|0 = 0nx×1, P0|0 = 0nx×nx

[
x̂k|k−1,

(
Pk|k−1 −Qω,k−1

)]
= SSRIR

[
f (·) , x̂k−1|k−1, Pk−1|k−1

]

[
ẑk|k−1,

(
Pzz,k|k−1 − Rv,k

)
, Pxz,k|k−1

]
= SSRIR

[
h (·) , x̂k|k−1, Pk|k−1

]

Re,k =

[
Rv,k + Pzz,k|k−1 PT

xz,k|k−1
Pxz,k|k−1 Pk|k−1 − γ2 I

]

Kk|k = Pxz,k|k−1(Pzz,k|k−1 + Rv,k)
−1

Pk|k = Pk|k−1 −
[
Pxz,k|k−1 Pk|k−1

]
R−1

e,k
[
Pxz,k|k−1 Pk|k−1

]T

x̂k|k = x̂k|k−1 + Kk|k(zk − ẑk|k−1) k = k + 1

Stop

Figure 3. Flowchart of the SIH∞F algorithm.

Figure 3 implies that the SSRIR is incorporated with the framework of DFH∞F so as to approximate
the nonlinear function in the model description. Compared with the traditional SIF, the SIH∞F
introduces the cost function described in Equation (10) and aims to estimate the state under the worst
initial error and model uncertainty.

4. Numerical Simulation

Numerical simulation is an essential approach to analyze the performance of the proposed method.
As a prerequisite, a flight trajectory is designed to generate the simulated data of MINS and SINS.
Then, the simulated data of the two INSs are processed by different filtering algorithms for comparison.

4.1. Designs of the Numerical Simulation

In this subsection, a typical flight trajectory with a turning maneuver is designed, as shown
in Figure 4.
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Figure 4. Trajectory of the simulation.

Firstly, the aircraft flies 20 s with a constant velocity, then turns anticlockwise 60◦ in 60 s and
continually flies 20 s with a constant velocity. Note that the roll angle and yaw angle of the aircraft
are changing simultaneously during the turning maneuver. The specifications of the simulated flight
trajectory are given in Table 1.

Table 1. The specifications of simulated flight trajectory.

Initial Attitude Initial Velocity Initial Position

Yaw 60◦ East −86.6 m/s Latitude 116◦ N
Pitch 0◦ North 50 m/s Longitude 40◦ E
Roll 0◦ Up 0 m/s Height 1000 m

The initial actual physical misalignment angles are set to ψa = [5◦; 5◦; 80◦] with covariance
Qa = diag{(0.02◦/h)2; (0.02◦/h)2; (0.02◦/h)2}. The errors of inertial instruments in SINS are listed
as follows: the constant drift of the gyroscope is 5◦/h, and the random walk of the gyroscope
is 1◦/

√
h; the constant bias of accelerator is 0.2 mg, and the random walk of accelerator is

0.02 m/s/
√

h. The attitude precision and velocity precision of MINS are 0.1◦ and 0.02 m/s, respectively.
The observation noise with uncertain statistics is achieved by injecting non-Gaussian noise in the
simulated observations. The disturbing noise for attitude observation is assumed to satisfy the uniform
distribution within [−0.05◦ 0.05◦]. Similarly, the disturbing noise for velocity observation is assumed
to satisfy the uniform distribution within [−0.01 m/s 0.01 m/s].

4.2. Results and Discussion

The simulated data are processed by SIF, CH∞F and SIH∞F, respectively. The error attenuation
parameter for CH∞F and SIH∞F is set to γ = 0.08. The number of iterations of SIF and SIH∞F
is Nits = 20. These methods were independently performed with 50 Monte Carlo simulations,
and the root-mean-square error (RMSE) of the three misalignment angles was utilized to evaluate the
performance of different filtering algorithms with statistical significance. The estimation results are
shown in Figures 5–7.
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Figure 5. RMSE of ψax (the subfigure is the magnification of the estimation result during 40 s–100 s).
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Figure 6. RMSE of ψay (the subfigure is the magnification of the estimation result during 40 s–100 s).
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Figure 7. RMSE of ψaz (the subfigure is the magnification of the estimation result during 40 s–100 s).

From Figures 5 and 6, it can be seen that all three methods have a quick convergence performance
for the estimation of horizontal misalignment angles, i.e., ψax and ψay. Meanwhile, the estimation
results of ψaz are partially estimated at the beginning of RTA and quickly converged to true values
while the turning maneuver of aircraft is carried out.

Among these methods, SIF gives poor performance in terms of all three misalignment angles,
as it requires accurate statistics of the noise. However, the existence of non-Gaussian noise in the
observation degrades the performance of SIF. Especially, Figures 5 and 6 show that SIF cannot suppress
the negative effect of uncertainties at the beginning of the turning maneuver (20 s). In contrast, CH∞F
has better performance than SIF, since the combination of the H∞ technique and cubature integration
rule simultaneously suppressed the negative effect of uncertainties and nonlinearities. Even so,
the estimation given by CH∞F fluctuates wildly for the estimation of ψaz, as is shown in Figure 7.
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This phenomenon demonstrates that the local validity of the cubature integration rule cannot guarantee
the consistency of the estimation error with the existence of uncertainty and nonlinearity. The SIH∞F
provides the highest estimation accuracy compared with other methods. Besides, the estimations
of SIH∞F are obviously smoother than CH∞F. This demonstrates that the SSRIR can approximate
the nonlinear function more accurately than the cubature integration rule, and the boundedness of
estimation errors can be guaranteed. As a result, the performance of SIH∞F outperforms the CH∞F
and SIF in the statistical sense.

The statistics of RMSE in the last 20 s are used to further evaluate the accuracy and stability of
different filtering algorithms. The mean values (in the time-averaged sense) and standard deviation
(STD) values of 50 dependent simulations are given in Table 2.

Table 2. Statistics of RMSE for 50 Monte Carlo simulations (◦).

Statistics SIF CH∞F SIH∞F

ψax
Mean 0.2101 0.1379 0.1122
STD 0.0481 0.0402 0.0397

ψay
Mean 0.2034 0.1489 0.1167
STD 0.0468 0.0421 0.0411

ψaz
Mean 2.7150 2.1596 1.8213
STD 0.1460 0.4266 0.4134

From Table 2, it is obvious that the results given by SIH∞F are superior to other methods in terms
of both mean and STD values, since it possesses a high ability to address the coexistence of nonlinearity
and uncertainty.

The major advantage of SIH∞F is the ability to address the estimation problem with significant
nonlinearity. To verify the performance of the proposed method, different cases with increasing
degrees of nonlinearity are designed. The initial values of ψai, (i = x, y, z) are set to 20◦–50◦ with 10◦

intervals, and the RTA based on CH∞F and SIH∞F were independently carried out 50 times for each
case. The statistics of RMSE, including the mean and STD for the last 20 s, are utilized to evaluate the
performance of the filters. The resulting statistics of the RMSE are represented in Figures 8–10.
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Figure 8. Statistics of RMSE for ψax.
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Figure 9. Statistics of RMSE for ψay.
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Figure 10. Statistics of RMSE for ψaz.

As shown in Figures 8–10, the estimation errors of CH∞F obviously increase with the growth
of initial actual misalignment angles. The result implies that the cubature integration rule based on
the deterministic sampling strategy deteriorates the approximation accuracy of Gaussian weighted
nonlinear integrals. In contrast, SIH∞F performs better than CH∞F, since the SSRIR provides
asymptotically unbiased approximations for Gaussian weighted nonlinear integrals. In other words,
SIH∞F alleviates the impact of significant nonlinearity, and the results demonstrate the validity of the
proposed method.

5. Van Test

To further verify the performance of the investigated method, a van test was carried out. In this
van test, the RTA is implemented while MINS and SINS are operated on a moving base. SINS outputs
the raw data of inertial sensors, including the angular velocity and specific force, while MINS provides
the observation data, i.e., the attitude and velocity. By using different filtering algorithms, the RTA
procedure provides the estimation results of misalignment angles in real time. Besides, an accuracy
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assessment procedure is also necessitated to evaluate the performance of different filters. The structure
diagram of the van test is displayed in Figure 11.

Restored data of 

SINS and MINS

Raw data of 

inertial sensors
Attitude and velocity 

Smoothing results

Filtering results

Estimation errors

Laptop

MINSSINS

+

-

Figure 11. The structure diagram of the van test.

5.1. Specifications of the Van Test

The test system contains a MEMS-based INS (NAV4400), an attitude and heading reference
system (XW-ADU7612) and a laptop. The NAV440 is utilized as SINS to provide raw data of inertial
sensors, and its dominating errors are listed as follows: the in-run stability of the gyroscope is 10◦/h;
the random walk of the gyroscope is 4.5◦/

√
h; the in-run stability of the accelerometer is 1 mg;

the random walk of the accelerometer is 1 m/s/
√

h. The XW-ADU7612 is taken as MINS. It contains an
inertial measurement unit, whose accumulative errors are corrected by a GPS module with two external
antennas. The attitude precision and velocity precision of MINS are 0.2◦ and 0.02 m/s, respectively.
The two INSs were bolted on a steel plate, and the GPS antennas were installed on top of the van.
The update rates of MINS and SINS are 10 Hz and 100 Hz, respectively. The laptop is used for restoring
the output data of the two INSs. The configurations of the van test are shown Figure 12.

XW-ADU7612

NAV440

Laptop

GPS antennas 

Experiment van

Figure 12. Configurations of the van test.

The van test was performed in the northern fifth ring road of Beijing city, China. The trajectory of
the van test is shown in Figure 13, in which the blue line denotes the trajectory for the implementation
of RTA. The RTA was initiated at Point A and ended at Point B, and the execution time was 120 s.
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A B

C

North

Figure 13. Trajectory of the van test.

The GPS signal of MINS was intentionally interrupted two times during the test, that is
the observations can be deduced to contain non-Gaussian noise. The number of captured satellites by
the GPS antennas is shown in Figure 14.
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Figure 14. Number of captured satellites by the GPS antennas.

5.2. Accuracy Assessment, Test Results and Discussions

For the purpose of evaluating the estimation accuracy of different methods, high precision
reference misalignment angles are required. However, the benchmark of misalignment angles
cannot be directly obtained in real time, and thus, the off-line accuracy assessment approach is
necessitated. In this test, the relative attitude between MINS and SINS is invariable since they were
rigidly bolted on the steel plate, i.e., ψa can be considered as a constant vector. Therefore, the CKF-based
fixed-point smoother was employed in the accuracy assessment procedure, on account of the nonlinear
characteristic of the model description [27,28]. As is shown in Figure 13, the accuracy assessment
procedure was initiated at Point B and ended at Point C (700 s), where the GPS functioned well
and the Gaussian assumption for the observation noise is accredited. The smoothing estimations of
misalignment angles are ψ̄ax = 0.18◦, ψ̄ay = 0.9◦ and ψ̄az = −90.5◦.
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In this test, the comparison between SIF, CH∞F and SIH∞F was executed. The error attenuation
parameter for CH∞F and SIH∞F was set to γ = 0.6. The the number of iterations of SIF and SIH∞F
was Nits = 20. The estimation errors of the three methods are represented in Figures 15–17.
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Figure 15. Error of ψax (the subfigure is the magnification of the estimation result during 70 s–120 s).
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Figure 16. Error of ψay (the subfigure is the magnification of the estimation result during 70 s–120 s).
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Figure 17. Error of ψaz (the subfigure is the magnification of the estimation result during 70 s–120 s).

Figures 15–17 clearly demonstrate that the estimation accuracy of SIH∞F outperforms SIF and
CH∞F in terms of all three misalignment angles. The oscillating amplitude of estimations given by
CH∞F is larger than that of SIH∞F, since the approximation accuracy of the cubature integration rule
is lower than that of SSRIR. The SIF cannot attenuate the influence caused by uncertain statistics of
observation noise and, thus, gives the lowest estimation accuracy. After 120 s, the estimate errors of
the three methods are shown in Table 3.
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Table 3. Estimation error of the van test (◦).

SIF CH∞F SIH∞F

ψax 0.3750 0.2284 0.1145
ψay −0.8059 −0.5242 −0.3731
ψaz −0.9873 −0.6494 −0.4253

From Table 3, one can notice that the estimation precision of SIH∞F is higher than SIF and CH∞F,
in which the precision of ψax increases by 69.5% and 49.9%, respectively, the precision of ψay increases
by 53.7% and 28.8%, respectively, and the precision of ψaz increases by 56.9% and 34.5%, respectively.

6. Conclusions

The coexistence of large initial attitude errors and uncertain statistics of observation noise severely
affects the accuracy of RTA. The major contribution of this paper is to develop a SIH∞F for the
purpose of improving the performance of RTA with considerations of accuracy and robustness.
For the first time, the SSRIR is combined with the framework of DFH∞F, and the resulting SIH∞F can
theoretically provide asymptotically unbiased estimation for a nonlinear system with high robustness.
The numerical simulation and van test were carried out to compare the performance of the SIH∞F,
CH∞F and traditional SIF. The results show that the newly-proposed method has the highest precision
of the estimation results and robustness to the unknown statistics of observation noise. Promoted by its
advantages, SIH∞F can be considered as a competitive candidate method for the practical application
of RTA.
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